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MATEMATICKO-FYZIKALNY CASOPIS SAV, 15, 4, 1965

ONE-POLE APPROXIMATION FOR HIGHER WAVES
AND THE CORRECT THRESHOLD BEHAVIOUR
OF PHASE SHIFTS

MIKULAS BLAZEK, Bratislava

Treating the nonrelativistic elastic scattering, the Jost function is approxi-
mated by one pole and it is emphasized that this leads to the threshold be-
‘haviour of the phase shifts (k) expressed exactly by the formula k cotg =
= a; + bik? (the a;’s and b;’s are constants) for any physical I = 0. This does
not correspond to the elastic scattering for { = 1. The correct behaviour
of the phase shifts for low energies expressed by the effective range theory
generalized for higher waves k2+1 cotg o = oy + Sik2 + ... can be obtained
by considering more poles even when in the last series expansion only the
first two terms are under consideration. However, in this case the pole para-
meters must obey some conditions. The connection between the number
of poles and the correct threshold behaviour of the phase shift for a given
angular momentum is discussed. Lastly the Jost function approximated by
more poles for higher waves is treated. The derivation of potentials and phase
shifts is performed by solving the Gelfand-Levitan equation.

I. INTRODUCTION

The solutions of the inversion problem of the nonrelativistic scattering
theory can be schematically divided into three groups: The solutions using
a) the integral equations, b) a particular Ansatz usually based on the supposed
analytic properties and ¢) the first Born approximation or its improvements.
All three groups are often generalized and extended to more complicated
cases. The presented paper belongs to the first group of mentioned methods
and its results are in close connection with the ones of the second group.

By searching for an appropriate model to the given scattering data one
often procceds from the one-pole approximation for a function under con-
sideration. We use a one-pole approximation for the higher-wave Jost function
and by means of the Gelfand-Levitan equation the potentials and the phase
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shifts are found. This problem was partially discussed in [1] with the main
result that the potentials with a finite number of-non-negative point eigen-
values induce the zero phase shifts. However we distinguish here explicitly
two cases corresponding to the symmetrical and asymmetrical Gelfand-
Levitan kernel Py(r, &) and for the assymetrical case we emphasize the behaviour
of the potentials both near the origin and near the infinity. Generalizing the
last case it can be shown that the potentials can have an assymptotic tail
e.g. »3 and r-2 respectively; however in recent literature there is absent
a detailed investigation of the behaviour of the potentials resulting from the
solution of the inversion problem in scattering theory within the bounds
of the first group mentioned above.

In order to be self-contained we derive in this paper after establishing some
basic relations, in Sec. 3 the Gelfand-Levitan equation for higher waves
by a slightly adapted and generalized Levinson’s way used for s-scattering
in [2], [3]. In Sec. 4 we solve the Gelfand-Levitan equation for the Jost function
approximated by one pole. The expressions for potentials are explicitly given
in various cases. The problems in which the Jost function is approximated
by more poles can be solved by similar methods (see Sec. 5). The potentials
obtained are special cases of the Barmann’s potentials for higher waves.
From this point of view the present paper can be also considered as a contri-
bution to the theory of Bargmann’s potentials; the models based on the po-
tentials are continually used (sce e.g. [4]). We discuss also the connection
between the number of approximating poles in the Jost function and the
correct behaviour of the phase shifts for low energies.

IT. BASIC RELATIONS

The Schridinger equation for the radial part of the wave function can be

written in the form
A2uy(k, r -1
(1) *—E—(w“‘z + [ k22— e — V| w(k,r)=0
dr2 2
where k2 = F is the energy (h/2m = 2M = 1) and V == V(r) is the potential.
The repulsive barrier is explicitly written down.
We denote
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where ji(z) and my(z) are, respectively, the spherical Bessel and Neumann
functions and A{®(z) are the spherical Hankel functions of the second kind.
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In what follows the following relations will be used:
1. The free motion functions:
a) the regular solution g¢y(k, ) = @{O(k, r)

20 4 1!
( +’l‘/-lfz(/07”);

O (7. )
(2) @ (kyr) = P

b) the Jost solution fi(k, r) = f{O(k, r)
Ok, 7) = i-CDED (k)
¢) the Jost function f,(k) = fi(k)
(20 + 1!
3 O (L) == e oo |
(3) Ji (k) (ik)

2. The asymptotic form of the regular solution

k Tl
(4) @ik, r) ~ If-[;—C)I sin (kfr — —2~ - 771) .

r—>00

Introducing the function Iy(k) (which is often referred to as the Jost function

(5], [6])

Julk)
(5) Bull) =g
fi7 (k)
we express the phase shifts #;(k) in the form
©) () ReFy(k)
5 cotg 7 = - .
& i ImFy(k)

The relation between the elements of the S-matrix Sj(k) and the Jost function
fi(k) is the following

Sy(le) == el U GRnth)
!

We have

7l

fulk) = 1filk) €@, o) = nu(k) — o

3. The completeness relation for the regular solutions

-+ 00
(7) f q)l(k: 7)‘7’1(76, 71)dQl(E) = (3(7' — 7").

00
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For a given angular momentum [, the spectral function g;() in the case when
there exists besides the continuous spectrum for positive energies also a discrete
spectrum with eigenvalues k = —isxs, % > 0 (s = 1,2, ..., n) is expressed
in the form

1 k

da®) S ® |fuk

for £ > 0,

N S M2 (B — By) for B < ¢
s=1
(let g,(— co) = 0); the normalizing constants M; are given by M-? =
- doy(F) (IQ(O)(E)
{ (—ixs, 7)]2 dr. For thefree particle case we have ——— — — =
dr dE
1 do{"(B)

k
= for £ > 0, ~ = 0 for ¥ < 0. We introduce an

O dE
auxiliary functmn a(F)

k 1 1
=_. ——————— | for § > 0
) o) _dedB)_ deB) _ S w [ R }
dE ar dE N doBE)
El— for ¥ <
dZ
For the free motion the completeness relation (7) has the form
+‘oo 0
(9) J POk, 1@k, ')A (E) = 2~J/11(7cr)/,4l(/cr’)dk = o(r — 7').
i

4. The regular solution ¢i(k, r) can be expressed by means of that for the
free particle case (2) in the form

(10) gk, r) = "k, 7) + [ Kalr, )"k, 1)
0
It can be shown that the kernel K(r,t) satisfies the following conditions

02K 2K e
(1) 2K, (r, tz__ 02 ryl(:', t) _[ (04 1) o Il -+ I)J Ky(r, t) = (7.)1(1(,,., t)

or? ot 72 t2

dKl(r, 7‘)
(12) 2 — = V(r)
dr

and
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aly(r. 1) ding(kt)

(13 lim | (kt) — = (e ) | 0
-0 ( kot kot

or

(13) Ky(r, 0) -~ 0,

The conditions (11), (12) and (13):are equivalent to the Schréodinger equation (1)
with boundary condition for the regular selution.

III. THE GEL’FAND-LEVITAN EQUATION FOR HIGHER WAVES

We generalize here briefly for the higher waves the slightly modified ver-
sion [3] of the Levinson’s derivation [2] of the Gelfand-Levitan equation
which was performed for s-scattering.

Similarly to (10) we can write
p

(14) O, 1) = qul, )+ | N, gk, e
0
where the kernel Ny(r, f) has similar properties as K(r, t). We multiply (14)
by ¢qu(k, r) and integrate (according to Stieltjes) with respect to g;(#). Using
the completeness relation (7) we obtain for 0 =< " << r
oo

(15) [ 0, )k, o) = o.
In (15) we express the regular solution ¢;(k, 7) in accordance with (10). We get

o 7 - co

[ ¢k, ") gk, #)doy(B) - Jdt](;(r, ) f 7SOk, ")k, t)doy(H) = 0.

— oo 0 —oo

We replace the spectral function ¢ (E) by means of oy() (8). Taking into
account (9) we get

[

[ 4O, )0k, r)don®) +

(16)
+ [k 1) [ g ng@k. r)doB) + Kur, ') = 0.
0 — oo
We introduce the function
(17a) P ') = [ g{0e, 1)gk, r)doy(E)
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for

(17b) .
By means of (17) We obtain from (16) the Gelfand-Levitan equation in the
form i .
(18) P, )+ ‘ Ki(r, &P, £)d& - J.Kz(r. E)Pi(&, )& +
: 5 K

+ Ky(r,»") = 0.

If the kernel P;(r, »') is symmetrical we have

(19) Pyr,r") + ( Ky(r, &)Py(&, v )dE + Ky(r, 1) = 0.

0
If we consider for instance the problem mentioned above, (8) .we have
n

Pyr, ') = > Mg (—ing, )i —ixe, 1") +-

s=1

9 1
20 = Ok, ¥)g Ok, »')k2dl: -
(20) +7TJ ['fl (k)2 |f§o)(k)l ] ( r)q; r") k2

0

where the free particle regular solutions ¢{* are given in (2).

Solving consequentially the inversion problem we should procecd as follows:
Postulating the basic integral equation (18) we have to determine the pro-
perties of the solutions and potentials obtained. This, however, is rather
hard to accomplish. We consider the potentials obtained in the one-pole
approximation of the Jost function for higher waves. Some of their properties
are being emphasized. However, for the correct threshold behaviour of the
phase shifts it is necessary to consider more poles in the Jost functions. Namely
for a given angular momentum ! we must take into account at least [ 4 1
poles and between them [ conditions are to be satisficd in order to obtain
the correct behaviour of the phase shifts for low energics (1, ~ k2'1). However
the potentials obtained by considering more poles in the Jost function are
in the higher-wave case more extensive and cumbersome; for this reason
we give for [ =1 only the solution of the Gelfand-Levitan equation (18)
assuming there are no bound states.
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IV. ONE-POLE APPROXIMATION

In what follows the discussion leads us to the Jost function of the form
futk) = f\k) . (k — ip)/(k — ix) for various values of « and . In particular
cases the phase shifts can be determined with respect to (6) or by direct
computation; this is performed mainly when the potential induced does
not satisfy the usually imposed conditions (c.g. the existence of the first
and second absolute moments).

A. Symmetrical degenerate kernel

As the first example of the use of the Gelfand-Levitan equation in the case
of the gencral (integer non-negative) value of the angular momentum we
consider the simplest case of a symmetrical degenerate kernel P,(r, »"). Let

Pi(r, &) = Ai(r)Ai(§)
and with respect to (13)
(21) Ay(0) = 0.
Using the Gelfand-Levitan equation (19) we get

(22) Ky(r, §) = ————————.

>

14 ( [Ay(t)]2dt
0
If we put (22) into (11) we obtain

d24y(r) W+1)
s s o e 4y (r) = const. Ay(r) 0 —p2 L Ay(r).
di2 2
Taking into account the boundary condition (21) there are the following
possibilities:
la) p2 < 0

1b) p2 > 0
2. p2 =0, then Ay(r) ~rbit,

} p? a0, then Ai(r) ~ (pr);

Ad 1. Let
Pi(r, &) = Nyu(pr)m(pé)

(N = const). Considering (22) we have
—2Np . pu(pr)(pé)
2p -+ Npr[pi(pr) — p-1(pr) . wia(pr))

Ky(r, &) =



One can obtain the potential by means of (12)

d ipr)

V('I') i —--HV]) S [
dr 2p + NP"U’[( ) — - 1(1?')“1»1(177)]

and the regular solution ¢y(k, ») by means of (10). I'rom the asymptotic
expansion of this regular solution we get the phase shifts 4,(k) in accordance
with (4). The computation is straightforward but a little tedious. We obtain
for the case la): Let p = —ir, v > 0. Using the formula
Il + 1) o8
pua(z) v sin o A e e

9 ol

™
where w; = 2z — >-;)-l, we have for any ! exactly the relation

1 1
(23) k (ot(r g =T - - : 2
2 2T

With respect to (5) the relation (23) (*01‘1‘0&1)011(18 to the Jost function

/x/ —{

P

fitk) = 170

for the case 1b): The use of the familiar formulae leads to tgy, =0 ie.
filk) = fO(k) (almost everywhere). There exists one bound state with posi-
tive energy, the continuous spectrum is absent (similarly as in [1] and [3] for
s-scattering).
Ad 2. We put
Py(r, & = Npl+1 g1

(IV = const). Denoting 4 = (21 4 3)/N we get

VLt gL
Kir, &) = —-——"——

1
1 —*- —_— 7-2l 13
Y3

and

243 22(1 - 1)

V = 2(2 + 32t
(2143 - )2

This potential was explicitly obtained also in [1]. Making again usc of the
asymptotic expansion of the regular solution we obtain tg#, = 0 i.e. Fi(k) ==

Silk)

== ——— — |. Tn this case there exists a bound state with zcro energy.

f(O)
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B. Asymmetrical degenerate kernel

We express the Jost funetion in the form

24 k) = £y

k —ia

Let us suppose there is no bound state and « > f > 0. Using (24) we obtain

from (20)
a2 2

p 2,
Py(r, &) = (1)1 /)) EP (—ipr)(ipé).
Further putting
Ki(r, &) = Bi(r)p(iof)
and using the formula (A 2) we obtain from (18)
]

Bir) = (o2 /32)E§2)(—i/37‘)
Dy

where
Dy o) B (—ipr) + opn-1(ior) B (—ipr) .

This leads to the lickart’s potentials for higher waves

22 — f2
(25) Vi = 'V(;') — S_J_ __/_‘l [ 2il

(D)2 r

— (ahy)? . (i} + i 1)]

wheve w - (o), £, = BP(—ipr) and uf == (10)2, B} -~ (E?)%
For the potential (25) tho follo“ ing relation holds

2

Vi@ -> 0) = (a2 — p2) + O(r
K o o
and
oA — /)) e - 2ar
(26) Vi(r-—> o) = (— D182 —— ' otar £ 0 .
o4 r
This potential exponentially falls down at infinity. We have further
ofp 1
kcotg g = == k2,

o - f o —f

We consider another rather pathological case when

— By Dy (Bug)? (B 4 BE
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-
k) = £ = v

and cotg 7, = — - (the Jost function has the behaviour fi(k) ~ k-0*D).

We have
Pfr, ) = (=1 f . BP(—ifr)(ipé)
and taking K (r, &) = Oy(r) . (&)1 we get
BB (—ir)
iyt B (—ifn)

01(7') =

In this case the potential is given by

2p2 [2(0+1)
By ipr

(27) Vo= V(r) = —

By B+ BY L+ E?] ;

there is B, = E\*(—ifr) and E} = [E®(—ifr)]2. For the potential (27) it is true

V> 0) = — 40
AT )_21+1 o)
and
20+ 1 1
(28) Valr > o0y — CE 1y (___\.
72 73/

The potential (27) in the s-scattering case was obtained in [5], [3].

V. THE JOST FUNCTION WITH MORE POLES

In the case without bound states we consider the Jost function(!) in the form

n

k — ifs
(29) Fill) = FO) _kai-

(1) Solving the inversion problem for higher waves by direct substitution of the
assumed Jost solution in the Schrodinger equation (using an adopted Bargmann'’s
method, belonging to the second group of methods mentioned in the introduction)
it is more convenient to take into account the Jost function of the form (sec e.g. [7]
eq. (22))

m Ay
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where all ffs > 0. We get

nmy

Pi(r, &) = (=) gy L BO(—isr) . pulipsé)
s=1
where
SO (k)
fulk)

the K| s represent the zeros of fi(k) in the upper half of the momentum plane .
Using (29) we get

2

os = 2i Res
k IKS

ki

my

LB A
' Bs Bt — B

t=1
t+#s

The solution of the Gelfand-Levitan equation (18) has the form

Ky(r, &) = > X(r) . m(iesé).
§==1
We use (A 2) and the relation

6o o — B oF —
St STl ey e m
a;_ﬁu o & _ﬁ -

=1 v=1 (=1 v v

We obtain a system of linear algebraic equations for the functions X;(r)

7@ 1 ,
> X, 5 [Bstaalionr) B (—iBsr) + oupur— (o) B (—ifsr)] —
t=1 % =

— iE@(—ifsr) =0 (s=1,2,...,n)
which is a high-wave generalization of the system of equations obtained
for s-scattering in [8].
In the case under discussion it is possible by an appropriate choise of the

parameters to obtain potentials with an asymptotic tail r—» where n = 3;
it was mentioned also in [5]. However, if one hase.g. V ~ r~4,the comparison

with the exactly solvable Schrodinger equation for the case V = const/r4 [9]
is rather cumbersome.

VI. DISCUSSION

The Jost function approximated by one pole leads to the phase shifts expres-
sed exactly in the form k cotg , = a; + bik2. However this is not in agreement
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with the theory of the elastic scattering; the theory of the effective range
of nuclear forces gives in this case (e.g. [10], p. 267)

(30) k241 cotg nyy == oq + pik? 4 ...

With respect to (6) one concludes that the higher the waves the higher
number of poles must be considered. In this case, in general, the kernel (17)
is not symmetrical and the expressions obtained by means of the Gelfand-
Levitan equation are not so simple as they are for a one-pole case. FFrom the
expression (29) it follows that in order to satisfy the relation (30) [having
in mind the relation (6)] it is necessary for a given angular momentum /
a) to consider at least [ 4 1 poles and b) all pole parameters arc not free as the
conditions must be fulfilled.

The potentials (25) and (27) with their generalizations arve finite in origin
and at infinity they can have an asymptotic tail »-2 and -7 (n = 3) respec-
tively. It would be convenient to solve the inversion problem for singular
potentials; in this case however the S-matrix has in the £ plane an essential
singularity in infinity. On the other hand, solving the inversion problem
by means of the familiar methods one can try to find whether an inverse
Carter’s statement holds (2).

Lastly, it is obvious that the rational Jost function for every angular
momentum leads to the potential V = V,(r) which induces in the Schmdmgor

equation Hw = (P -+ )1p = Ky a nonlocal interaction term Uzp of the form

-~ dg-;) -> -> -> -» -> e
[Ty= = U(r,ny . n)p(k, rsmoom2)  where (e, ny . m) = > (204 1YV()

0s 47 =0
n

Py(ny . n) (the P, s are the Legendre polynomials).

APPENDIX

By solving the Gelfand-Levitan equation and computing the given expres-
sions, mainly the following relations were used:

!
() = » . BD(z) il i he iz N .
Ei7(2) 1 (2) ! ( 2 os (o (i

§:=20) )
(®) D. S (“‘”t(“ proved (sce [5] p.333): If a potential satisfics the conditions:
o0
a) (rzwz [V (r)] dr < oo, b) there is no zero-energy resonance, i.e. f,(0) + 0, then the
0 1 — Siy(k)
following holds: ln .

=0 fear41
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(0 + 1) cosay (I + 2)! sinwy;
Al u(z) = z2n(z) ~ sinmy -p ————— :
Ao B RS SO T e Ty s

(I 4 3)! cos w?

(L —3) 483

7T
where w; ==z — Sy {and [11]

(A 2) i()a(z) = pa)mz) = 1,
-
f11lz(ocz)i\7z(/3z)(lz = mz/g’ [BMi(0z)Ny-a(pz) — oM a(o2)Ni(f2)],
o — B2

1
f [ M) Pz = — (e[ Ma(o2) P — Mia(o2) My (02)}

where M;(z) and N;(z) are any linear combinations of 14(z) and »(z) with
coefficients independent on z and [
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OJHOITIOJIOCHOE NMPUBJANMEHNE ITPN1 BLICHINX BOJHAX
I IPABIJILHOE IIOPOI'OBOE MNOBEJEHUE ®A30BLIX CMENIEHWUNA

Mukynam Buaamex
Pesiome

Pafora sannmaerca yHmpyruM paccesiHueM HepeJdATHBHCTCKUX uacTui. OHOomoscHoe
npudmmxenie yurunn Mocra semer K HempaBHIIBHOMY MOPOrOBOMY TMOBEHEHUIO (PABOBHIX
cMeleHuit mpu yriaoBeix MomeHTtax [, Gonpmux Hydd. llpaBuabhoe mopemenue §asoBbX
CMelieHHil MpPH HHUBKIX OHePruAX MOMKHO MOJYUHTH TOJbKO MHOTOINOJIOCHBIM NpuGiimke-
HHeM, 1o MeHbuieit mepe (I + 1)-TOMIOCHBIM HPUOINKEHUEM, HO IIOJIOCHBIE NMAapaMerphl
JTOJIHKHBL YIOBJIETBOPATh | ycuoBuaAM. Pemas ofparTHylo 3afgady Teopuu paccesnus JJf
BBICIIIX BOJIH C ITOMOIIbI0 ypaBHeHus enbanyna n JieButana, MOMKHO JIJIA MHOI'OMOJIIOCHOI
¢yurmun Mocra mosyuurs moTeHNANB, KOTOPHIE HE YIOBJIETBOPAIT OOLIYHO HAJATAEMbIM
VCIOBUAM (HATIpUMep, JJIsI HUX He 0053aTeIbHO CYLIECTBOBAHIE IEPBOrO I BTOPOro abcotioT-
HBIX MOMEHTOB).
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