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MATEMATICKO-FYZIKÁLNY ČASOPIS SAV, 15, 4, 1965 

ONE-POLE APPROXIMATION FOR HIGHER WAVES 
AND THE CORRECT THRESHOLD BEHAVIOUR 

OF PHASE SHIFTS 

MIKULÁŠ BLAŽEK, Bratislava 

Treating the nonrelativistic elastic scattering, the Jost function is approxi­
mated by one pole and it is emphasized that this leads to the threshold be­
haviour of the phase shifts ?]i(k) expressed exactly by the formula k cotg r]i= 
= ai + bjc2 (the ai's and bVs are constants) for any physical I ^ 0. This does 
not correspond to the elastic scattering for I ^ 1. The correct behaviour 
of the phase shifts for low energies expressed by the effective range theory 
generalized for higher waves k2l+1 cotg r}\ = OLI + fi\k2 + . . . can be obtained 
by considering more poles even when in the last series expansion only the 
first two terms are under consideration. However, in this case the pole para­
meters must obey some conditions. The connection between the number 
of poles and the correct threshold behaviour of the phase shift for a given 
angular momentum is discussed. Lastly the Jost function approximated by 
more poles for higher waves is treated . The derivation of potentials and phase 
shifts is performed by solving the Gel'fand-Levitan equation. 

I . INTRODUCTION 

The solutions of the inversion problem of the nonrelativistic scattering 
theory can be schematically divided into three groups: The solutions using 
a) the integral equations, b) a particular Ansatz usually based on the supposed 
analytic properties and c) the first Born approximation or its improvements. 
All three groups are often generalized and extended to more complicated 
cases. The presented paper belongs to the first group of mentioned methods 
and its results are in close connection with the ones of the second group. 

By searching for an appropriate model to the given scattering data one 
often proceeds from the one-pole approximation for a function under con­
sideration. We use a one-pole approximation for the higher-wave Jost function 
and by means of the GeTfand-Levitan equation the potentials and the phase 
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shifts are found. This problem was partially discussed in [I] with the main 
result tha t the potentials with a finite number of-non-negative point eigen­
values induce the zero phase shifts. However we distinguish here explicitly 
two cases corresponding to the symmetrical and asymmetrical Gel'fand-
Levitan kernelP/(r, £) and for the assymetrical case we emphasize the behaviour 
of the potentials both near the origin.and near the infinity. Generalizing the 
last case it can be shown that the potentials can have an assymptotic tail 
e.g. r~3 and r~2 respectively; however in recent literature there is absent 
a detailed investigation of the behaviour of the potentials resulting from the 
solution of the inversion problem in scattering theory within the bounds 
of the first group mentioned above. 

In order to be self-contained we derive in this paper after establishing some 
basic relations, in Sec. 3 the Gelfand-Levitan equation for higher waves 
by a slightly adapted and generalized L e v i n s o n ' s way used for s-scattering 
in [2], [3]. In Sec. 4 we solve the Gelfand-Levitan equation for the Jost function 
approximated by one pole. The expressions for potentials are explicitly given 
in various cases. The problems in which the Jost function is approximated 
by more poles can be solved by similar methods (see Sec. 5). The potentials 
obtained are special cases of the Barmann's potentials for higher waves. 
From this point of view the present paper can be also considered as a contri­
bution to the theory of Bargmann's potentials; the models based on the po­
tentials are continually used (see e.g. [4]). We discuss also the connection 
between the number of approximating poles in the Jost function and the 
correct behaviour of the phase shifts for low energies. 

II. BASIC RELATIONS 

The Schrodinger equation for the radial part of the wave function can be 

written in the form 
d2ui(k, r) 

(i) 
dr2 k2_w+J) щ{k, r) = 0 

where k2 = E is the energy (A/27U = 2ilF = 1) and V = V(r) is the potential. 
The repulsive barrier is explicitly written down. 

We denote 
ZM*) = /'*(*), 
zni(z) = n(z), 

zhf\z) = Ef\z) 

where ji(z) and ni(z) are, respectively, the spherical Bessel and Neumann 
functions and hf\z) are the spherical Hankel functions of the second kind. 
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In what follows the following relations will be used: 

1. The free motion functions: 

a) the regular solution (pi(k, r) =E <pf\k, r) 

(21+ 1)!! 
(2) vi0){k9r)=^_^_^l{kr). 

b) the Jost solution /,(&, r) =/,(0)(fc, r) 

/{0)(ft,r) = i-«+i)B|2)(Ar); 

c) the Jost function/,(&) = ff(k) 

(21, + 1)!! 
(3) f^(k)=---^-L. 

(iky 

2. The asymptotic form of the regular solution 

\fi(k)\ I izl \ 
(4) <pi(k, r)r~^—^~- sin \kr - — + % I . 

Introducing the function Fi(k) (which is often referred to as the Jost function 

[5], [6]) 

fm 
,m=™ 

we express the phase shifts t]i(k) in the form 

lleF^k) 
(6) cotg Vl(k) 

ImFi(k) 

The relation between the elements of the S-matrix Si(k) and the Jost function 
fi(k) is the following 

«,(&) = e " 1 ' - ^ - = e2i"«*). 
fi(-k) 

We have 

f(k) = \fi(k) \eiS«k), a,(fc) - Vl(k) - — . 

3. The completeness relation for the regular solutions 

-{- CO 

(7) [ <n(k, r)<pt(k, r')dei(E) = d(r - / ) . 
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For a given angular momentum I, the spectral function Qi(E) in the case when 
there exists besides the continuous spectrum for positive energies also a discrete 
spectrum with eigenvalues k = —-ixs, xs > 0 (8 = 1, 2, . . . , ni) is expressed 
in the form 

1 k 
= fQr fl > () 

dQi(E) ^ / TU | / Kk) |2 

dE = 2 Ml. Ö(E - Es for E < 0 

(let Qi(— oo) = 0); the normalizing constants Ms are given by M~f 

7 , do,(E) dQf(E) 
= r«P/(—i*s, ?')12 dr. For the free particle case we have — 

J dE 

1 * dQf(E) 
— for E > 0, TC l/j0)(£)l2 

auxiliary function oi(E) 
dE 

dE 

0 for E < 0. We introduce an 

(8) 
dcr,(#) dg,(^) dQf(E) 

dE dE dE 

\fi(k)\2 |/!0)(!c)|2 

dQi(E) 

dE 

for # > 0 

forD < ( ) . 

For the free motion the completeness relation (7) has the form 

+ oo oo 

(9) <p?\k, r)<pf\k, r')def(E) = fлi(kr)fii(kr')dk = ô(r — r'). 

4. The regular solution <pi(k, r) can be expressed by means of that for the 
free particle case (2) in the form 

(10) <PI (k, r) = <pf(k, r) + І Kг(r, t)<ff(k, t)dt. 

I t can be shown that the kernel Ki(r, t) satisfies the following conditions 

( - - : 

(12) 

and 

8Шг(r, t) д*Kг(r, t) 

cr2. дß 

1(1 + 1) 1(1 + 1) 

t2 

dKi(r, r) 
2 ^—- - V(r) 

dr 

Ki(r, t) = V(r)Kt(r, t) 
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(13') l i ra 
t--o 

Oľ 

;i:5) 

дKt(r. t) дщ(kt) 
<ц(kt) -- —KiЬ;ł) 

Ш kдl 

K.(r, 0) :- 0. 

The conditions (11), (12) and (13)are equivalent to the Schrodinger equation (1) 

with boundary condition for the regular solution. 

I I I . THE GEL'FAND-LEVITAN EQUATION FOR H I G H E R WAVES 

We generalize here briefly for the higher waves the slightly modified ver­
sion [3] of the Levinson's derivation [2] of the GeTfand-Levitan equation 
which was performed for s-scattering. 

Similarly to (10) we can write 

(14) Чf\k, Г') = cpн(k, {-•') + \ Җ(r, t)9l(к, t)dt 

where the kernel Ni(r, t) has similar properties as Ki(r, t). We multiply (14) 
by (fi(k, r) and integrate (according to Stieltjes) with respect to Qi(E). Using 
the completeness relation (7) we obtain for 0 f£ r' < r 

+ oo 

(l.r>) J <pf\k, r')<pi{k, r)dQl(E) = 0. 
-—• oo 

Iii (15) we express the regular solution (fi(k, r) in accordance with (10). Wre get 

+ oo •;• + oo 

J qf(k, r')<p?\k, r)dQl(E) + jdtK,(r, t) J cp?\k, r')cp?\k, t)dQl(E) = 0. 
— oo 0 — oo 

We replace the spectral function QI(E) by means of 01(E) (8). Taking into 
account (9) we get 

;i«) ? f \ k , r')f\°\k, r)dat(E) + 

+ jdtKt(r, t) J <p?\k, r)(p?\k, r')dat(E) + Kt(r, •/•') - 0. 

We introduce the function 
-j CO 

(17a) Pt(r, r') == (* 9,?\k, r')cp\°\k, r)dat(E) 
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for 

r' < r. 
(17b) 

By means of (17) w e obtain from (16) the Gelfand-Levitan equation in the 

form 

(18) Pt{r, r') + JKI(Г, š)Pi(r', f)df + jKi(r. f)Př(čт, »•')<!£ + 
+ K,(r,r') = 0. 

If the kernel Pi(r, r') is symmetrical we have 

r 

(19) Pi(r, r') + J K,(r, f)P,(f, r ')df + K,(r, r') - 0. 
d 

If we consider for instance the problem mentioned above, (8) .we have 

m 

Pt(r, r') = 2 MW>\-ix„r)q>\°H-ix,.r') 
. 9 = 1 

oo 

1 1 2 
(20) + -

тт: 

<ff(k, r)<r]0)(k, r')кЧ\к 
MW \ff(lc)\\ 

where the free particle regular solutions a;j0) are given in (2). 

Solving consequentially the inversion problem we should proceed as follows: 

Postulating the basic integral equation (18) we have to determine the pro­

perties of the solutions and potentials obtained. This, however, is rather 

hard to accomplish. We consider the potentials obtained in the one-pole 

approximation of the Jost function for higher waves. Some of their properties 

are being emphasized. However, for the correct threshold behaviour of the 

phase shifts it is necessary to consider more poles in the Jost functions. Namely 

for a given angular momentum I we must take into account at least / + 1 

poles and between them I conditions are to be satisfied in order to obtain 

the correct behaviour of the phase shifts for low energies (?jl k~0k
2l]1)- However 

the potentials obtained by considering more poles in the Jost function are 

in the higher-wave case more extensive and cumbersome; for this reason 

we give for Z^>'1 only the solution of the GeTfand-Levitan equation (18); 

assuming there are no bound states. 
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IV. ONE-POLE APPROXIMATION 

In what follows the discussion leads us to the Jost function of the form 
f(k) = ff\k) . (k — ift)/(k — ia) for various values of a and /?. In particular 
cases the phase shifts can be determined with respect to (6) or by direct 
computation; this is performed mainly when the potential induced does 
not satisfy the usually imposed conditions (e.g. the existence of the first 
and second absolute moments). 

A. Symmetrical degenerate kernel 

As the first example of the use of the Gel'fand-Levitan equation in the case 
of the general (integer non-negative) value of the angular momentum we 
consider the simplest case of a symmetrical degenerate kernel Pi(r, rf). Let 

Pt(r, f) = A,(r)A,(f) 
and with respect to (13) 

(21) A.(0) = 0. 

Using the Gel'fand-Levitan equation (19) we get 

-A i ( r )A i (£) 
(22) Kt(r, f) 

/ 
1 + \[Ai(t)fát 

If we put (22) into (11) we obtain 

d2At(r) 1(1 + 1) 
1- - Ai(r) = const. At(r) -. -p2 . Ai(r). 

dr2 r2 

Taking into account the boundary condition (21) there are the following 
possibilities: 

la) v2 <C 0 ) 
l b ) p - > 0 | pi "" ° ' t h e " Mr)~ f'i(pr); 

2.p* = 0, then A,(.-) ~ r '+ 1 . 

Ad 1. Let 

P,(r, | ) = Nrtprh'iW) 

(N = const). Considering (22) we have 

— 2Np . jui(pr)fii(p£) 
Ki(r, f) 

2p -|- Npr[/if(pr) - m-\(pr) . /n+i(pr)'i 
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One can obtain the potential by means of (12) 

d pf(pr) 
V(r) = — iNp 

dr 2p + Npr[/if(pr) — /ч-i(pr)/iш(pr)] 

and the regular solution (fi(k, r) by means of (10). From the asymptotic 
expansion of this regular solution we get the phase shifts yt(k) in accordance 
with (4), The computation is straightforward but a little tedious. We obtain 
for the case la): Let p = — ir, T > 0. Using the formula 

1(1+1) cos On 
/d(z) ~ sin coj -\ h ... 
' v ' Z—>00 iy <r 

1Z 

where coi = z — --7, we have for any I exactly the relation 

1 1 
(23) k cotg )]} = T 4 k2. 

2 2T 

With respect to (5) the relation (23) corresponds to the Jost function 

k + iT 
Ыk)=f<o\k) 

к - ïт 

for the case lb): The use of the familiar formulae leads to tg r/7 ~ 0 i.e. 

f(k) = ff\k) (almost everywhere). There exists one bound state with posi­

tive energy, the continuous spectrum is absent (similarly as in [1] and [3] for 

s-scattering). 

Ad 2. We put 

Pi(r,£) = Nr*+i . ? j l 

(jVr = const). Denoting X = (21 + 3)/N we get 

— ]\Trl+l£l+l 

Ki(r,£)= 

I -| r2l\3 

X 

and 
r2i+z __ 2X(l + 1) 

V = 2(21 + 3)r-i+i 
r 2 M З + Л)-

This potential was explicitly obtained also in [1]. Making again use of the 

asymptotic expansion of the regular solution we obtain tg r\{ -i-: 0 i.e. Fi(k) ^ 

fi(k) 
= -—:— = 1. Tn this case there exists a bound state with zero energy. 

ff(k) 
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JB. Asymmetrical degenerate kernel 

We express the Jost function in the form 

k - ip 
(24) fi(k)=ff\k) 

k — ia 

Let us suppose there is no bound state and a > /? > 0. Using (24) we obtain 
from (20) 

Pi{r,$) = ( - 1 ) " 1 -
Ѓ 

ß 
•Ef(-ißr)in(iß^). 

Further putting 

and using the formula (A 2) we obtain from (18) 

1 
Bl{ľ) = ~--i(aß--ßђEJ2\-ißr) 

1Һ 
where 

l), ^li,n(i^r)Efll1(-ipr) + a//,-i(iV)_f>(-i/jfr). 

This leads to the Eckart 's potentials for higher waves 

(25) Vк •" V(r, 
2(a- - ß2) 

(D,J~ 
•2ІІ 

-m.Et.Di + tfttf.Wf + Éf^)-

(«Bг)2 • (ľï Ч-l) 

where //, , //,(iar), Et - Af >(-i/ir) and f,f ._ (/^)2, Ef . (_}-))-. 

For the potential (25) the following relation holds 

VE(r-> 0) 
- 2 

2/ + 1 
(a- - /?2) + o(ł-; 

and 

(26) M r 
« —/> / e -

] ) M l 8 a 2 . 0-2a;- + Q [ __.. 
a + 0 \ r 

rThis potential exponentially falls down at infinity. We have further 

a/? I 
k cotg )}l џ. 

a — /* a - /? 

We consider another rather pathological case when 
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fi(k)=ff(k) 
k - i t 

and cotg rjl 

We have 
ß 

(the Jost function has the behaviour fi(k) ~ k~V+V). 
k->0 

Pt(r, |) = (-l) t . 0 . Ef(-ipr)Mm 

and taking K,(r, f) = C|(r) . (i|8f)'41 we get 

= i / ^ 2 ) ( - i f a ) 

(ij3r)l+1-Ef+\(-tfr)' 

In this case the potential is given by 

2Л2 
(27) 7 , = V(r) = - — -

Łï+i 

2(1 + 1) 

ìßr 
Ei+i • Ei + ^f+i + -S/ 

there is Et = Ef(-ipr) and Ef = [£ f >(-i/>)]2 . For the potential (27) it is true 

2^2 
Vx(r^0) 

21 + 1 
0(r) 

and 

(28) 
2(ř + 1) / 1 \ 

Va(r-> oo) = + O 

The potential (27) in the s-scattering case was obtained in [5], [3]. 

V. T H E JOST FUNCTION W I T H MORE POLES 

In the case without bound states we consider the Jost function^) in the form 

(29) fi(k) = f?>(k) • П k-ißt 

k — ias 

(x) Solving the inversion problem for higher waves by direct substitution of the 
assumed Jost solution in the Schrodinger equation (using an adopted Bargmann's 
method, belonging to the second group of methods mentioned in the introduction) 
it is more convenient to take into account the Jost function of the form (see e.g. [7] 
eq. (22)) 

mi A 

fm=flm(k)+ y '— 
./-/i * + iBs 
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where all (1S > 0. We get 

mi 

Pi{r, |) = (-l)l+1 2 a* • -?.2)(-i/V) • !>i(iM) 
8 = 1 

where 

Ö$ = 2i Res 
k = Ks fi(k) 

the Ks s represent the zeros offi(k) in the upper half of the momentum plane k. 
Using (29) we get 

2 o2 . m _ 2 oo 
a* - ßs Г T a t - & FT^=-

1 Ьř-& 1 1 # - д 
2 

The solution of the Gel'fand-Levitan equation (18) has the form 

mi 

Kl{r,£) = 2Xs{r).pi{™>£)-
* = 1 

We use (A 2) and the relation 

m' m m ° 2 2 2 

Ovfiv X ^ 1 T a« ~~ & a t "~ Pv 
1; 5 = 1, 2. . . . , m*. П-a s

2 - /?; - - - , 1 1 a s

2 - ßl ß \ - ßl 
1 V = 1 t = 1 

t ^ V 

We obtain a system of linear algebraic equations for the functions Xs(r) 

mi Y 

y Xt{r)-— -[f)sMmr)E£\(-ipsr) + a^.-i(ia.r)2Sf>(-i&r)] -
t = l 

— i©<2>(—i/S r̂) = 0 ( 8 = 1,2, . . . , n ) 

which is a high-wave generalization of the system of equations obtained 
for s-scattering in [8]. 

In the case under discussion it is possible by an appropriate choise of the 
parameters to obtain potentials with an asymptotic tail r~n where n ^ 3; 
it was mentioned also in [5]. However, if one has e.g. F ~ r~4, the comparison 
with the exactly solvable Schrodinger equation for the case V = const/r4 [9] 
is rather cumbersome. 

VI. DISCUSSION 

The Jost function approximated by one pole leads to the phase shifts expres­
sed exactly in the form k cotg v\x = ai + bzk2. However this is not in agreement 
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with the theory of the elastic scattering; the theory of the effective range 
of nuclear forces gives in this case (e.g. [10], p. 267) 

(30) m +i cotg rjl = oa + Ihk2 + .. . 

With respect to (6) one concludes that the higher the waves the higher 
number of poles must be considered. In this case, in general, the kernel (17) 
is not symmetrical and the expressions obtained by means of the G elf and -
Levitan equation are not so simple as they are for a one-pole case. From the 
expression (29) it follows that in order to satisfy the relation (30) [having 
in mind the relation (0)] it is necessary for a given angular momentum 1 
a) to consider at least I -f- 1 poles and b) all pole parameters arc not free as the I 
conditions must be fulfilled. 

The potentials (25) and (27) .with their generalizations are finite in origin 
and at infinity they can have an asymptotic tail r~2 and r~n (n ^ 3) respec­
tively. I t would be convenient to solve the inversion problem for singular 
potentials; in this case however the S-matrix has in the k plane an essential 
singularity in infinity. On the other hand, solving the inversion problem 
by means of the familiar methods one can t r y to find whether an inverse 
Carter's statement holds (2). 

Lastly, it is obvious that the rational Jos t function for every angular 

momentum leads to the potential V = Vi(r) which induces in the Schrodinger 

equation Hip == (T -f- U)ip —- Eip a nonlocal interaction term Uip of the form 

" dQ^ _> _ v 

Uip = - — - °?/(r, n\ . n)ip(k, r\n . n2) where J?/(r, n\ . n) = >̂ (2/ -|- ])Vi(r) 
\) n 

Pi(n\ . n) (the Pt s are the Legendre polynomials). 

APPENDIX 

By solving the Gel'fand-Levitan equation and computing the given expres­
sions, mainly the following relations were used: 

' 1 (/ -1 sV 1 

^2*.s\ (l~s)\ (\z)> 

(2) D. S. C a r t e r proved (see [5] p . 333): If a potential satisfies the conditions: 
oo 

a ) r2i+2 \V(r)\ dr < GO , b) there is no zero-energy resonance, i.e. f0(0) i 0, then the 
6 I - Si(k) 

following holds: lim -" oo . 
k~~r() k2l+1 
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( A l ) Mz) 5 ZMZ),~ sin «n 
(Z+ 1)! COSWÍ (/ + 2)! sincoj 

(I — 1)! 2s (l - 2)! 8--

(1+3)1 coso)1 

(l — 3)! 48?3 

where co. — 2 — — I and [111 
2 

(A 2) //.(z)v.-i(z) - !H-i{z)vi{z) = 1: 

1 

а2 - /З2 

J [Af,(o2)]-d- = — {2[^(а-).1- - Ж,_1(а-)3/1.ц(а2)} 

J lf.(02)N|(/?z)d2 [/Ш.MNi-ií/fc) - 7.Ml-1{<xz)Nl(ßг)} 

where Mi(z) and Ni(z) are any linear combinations of Mz) a n c ^ ^l(^) with 

coefficients independent on z and I. 
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ОДНОПОЛЮСНОЕ ПРИБЛИЖЕНИЕ ПРИ ВЫСШИХ ВОЛНАХ 
И ПРАВИЛЬНОЕ ПОРОГОВОЕ ПОВЕДЕНИЕ ФАЗОВЫХ СМЕЩЕНИЙ 

Микулаш Б л а ж е к 

Резюме 

Работа занимается упругим рассеянием нерелятивистских частиц. Однополюсное 
приближение функции Йоста ведет к неправильному пороговому поведению фазовых 
смещений при угловых моментах I, больших нуля. Правильное поведение фазовых 
смещений при низких энергиях можно получить только многополюсным приближе­
нием, по меньшей мере (I + 1)-полюсным приближениеVI, но полюсные параметры 
должны удовлетворять I условиям. Решая обратную задачу теории рассеяния для 
высших волн с помощью уравнения Гельфанда и Левитана, можно для многополюсной 
функции Йоста получить потенциалы, которые не удовлетворяют обычно налагаемым 
условиям (например, для них не обязательно существование первого и второго абсолют­
ных моментов). 
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