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Matematicky €asopis 21 (1971), No. 2

BOUNDEDNESS OF SOLUTIONS
OF NON-LINEAR DIFFERENTIAL EQUATION SYSTEMS

PAVEL SOLTES, Kosgice

There is a theorem in [1] concerning boundedness of solutions of a non-linear
differential equation of order two

«” 4 a(t)f(x)) = 0
and a generalization of this theorem to a system

” aF .
z; +at)y —=0, 1=12,...n.
Bxi
In [2] this result is generalized to the system

n

oF
;) + ait) zbi,k(t)x; +at) — =0, i=12...,n,
axi
%1

where the function F is, among other conditions, assumed to be a function
of 21, ..., 2z, and therefore independent of ¢. In [3] some results are proved
concerning boundedness, oscillatoriness and extension of solutions of several
types of nonlinear differential equations of order two.

The aim of the present paper is the investigation of boundedness of solutions
of non-linear differential equation systems. Some results are given which are
generalizations of those appearing in [1], [2] and [3].

Consider a non-linear differential equation system of the form

(1) x; + filh, 21, .. 2n) =0, ©=1,2,...,7n,
ofi .
where fi(t, x1, ..., xn) and 5 are defined and continuous for &= f, = 0,

> |ai] < co. Suppose further that fi(t, 21, ..., x4) are such that
1=1
n

or;
=0 for k+1, k=12 ...,n,
oxy

i=1
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Xt
where Fy (t,x1,..., x,) = ffz (21,005 X1, 8, Ti41,..., y) ds. Let F(t,x) =
, O
= Iﬂ(t7 L1y ens xn) == ZFZ(ts X1, e, x‘ﬂ)'
i1
Theorem 1. Suppose that for every continuously differentiable vector function
x(t) = (21(f), ..., xn(t)) which s defined on the interval (fo, 1), I < 0 and un-
bounded for t — 1_, there exists a sequence {tx}s_, , such that

ar(t, x(t)) - oF (¢, x(tk))

(2) < , Sttt
ot ot
and
(3) lim Flto, x(ty) = F,
k>0

where F' < o0 1s independent of z(t)
Then every solution x(t) of the system (1) ,which satisfies the relation

(4) LIx'(o)II2 4 F(to, x(to)) < F,

s bounded on its domain {ty, c0).
(Il - || stands for the Euclidean norm).

Proof. Suppose that a vector function x(t) is a solution of the system (1),
satisfies the relation (4) and is nevertheless unbounded for ¢{— 7., where
{ty, t) is an interval on which this solution is defined. This means that there
exists a sequence {{;}7 ,, tx — i~ for k — oo such that lim ||x(t)|| = + oo.

k>
By multiplying the i-th equation of the system (1) by the function x(t),
summing over ¢ = 1,2, ..., n and then integrating over the interval (fo, ¢),
where ¢ € (fo, ). We get

Fx@r + | iff(s, @1(s), -, @n(8))z;(s) ds = § [Ix"(to) ]

and therefore, since
n

ar _or " oF, » + ,
a o P Jelt, o, aey

k=1 =1

, \ aF (s, x(s))
(3) FIx' @R 4 F(¢, x(t)) = § (X' (t)[>4-F(to, x(to)) + J P ds.

t
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From this, taking into account (2), we get

F oF (s, x(t)
F(te, x(tx)) £ 31X (t)l2 + F(to, x(to)) + Tds

b

I

= 3 Ix'(l)I? + Flto, x(to)) + F(tx, x(tx)) — F(to, x(tx)) »

or

F(to, x(tk)) = § ||Ix'(to)I? 4 F(to, x(to)) ,

which means that for k — co we have

F < 3 IX () + Flto, x(t)

which contradicts the assumption that x(f) satisfies the relation (4).

It is now necessary to prove that { = + oo, or that every solution satisfying
the condition (4) can be extended to {tp, o).

Let t < oo. It is enough to prove that there exist finite limits lim x(?)

and lim x’(t). As x(¢) is bounded on (i, ), clearly every componerizt-m(t)
of th:;t;/ector x(t) is bounded. If the lim x(¢) does not exist, the same must
be true for at least one component liniitt_l)it;n 2;(t). By the corresponding Lemma
in [3] lim sup x;(f) = 4+ c© and lim 1n}t;c () = — o0, so that there exists
a sequeri;l(; {ty}r, such that t; > 1_ i{g;:k — oo and lim «;(t;) = 4 0.

For t = t; we get from (1) .
x;(te) = ;3 (to) — [fi(s x1(s , Zn(s)) ds
and therefore
lim jfi s, x1(s), Zn(s))ds = — o0 .

k>0 f,

But this contradicts the assumption that 7 < oo, as x(t) = (x1(t), ..., zalt))

is bounded for ¢ e (fp,?) and the functions f;(¢, x1, ..,. x,) are continuous
n
for t 2 4o 2 0, > || < co. This completes the proof.

t=1

Remark 1. Evidently if F = 4- oo, then every solution of (1) is bounded
on {tp, 00).
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n
Theorem 2. Suppose that for every t = to = 0, Z || < 00 we have

i1
oF(t, x)
(6) — =
ot
If for every sequence {tx}y, such that ty— co for k— oo and every sequence
{x®e O x® = (@® 2® 2 ®) such that |x®|| - o for k- oo we have
(7) lim F(tg, x®)) = F ,
k—->o0

then every solution of (1) which satisfies the condition
(8) 3 X' () + F(to, x(to)) < F,

1s bounded on {ty, o0).
Proof: If the solution x(¢) satisfies the condition (8) and is defined on

{to, o0), the proof is simple. Using (5) and (6) we get
(9) 3 X' @7 + F(t, x(1) = % [Ix"(to)P + F(fo, x(to)) -

If x(¢) were unbounded for ¢— co, there would exist a sequence {f,};;
such that & — oo for k— oo and lim |[x()|| = co0. By (9) and (7) we get
k>0

F = 3 x4 Fto, x(to)) »

which contradicts the assumption (8).

Now let x(t) be a solution of (1) satisfying the condition (8) which is defined
on {ty, f), t < oo and suppose that for ¢ > {_x(¢) is unbounded. In that case
there exists a sequence {t.};°;, tx— f— such that for k— oo, #— - and
lim |[x(tx)|| = + oo. Let {f,}5, be any sequence such that

k>

e (k=1,2,...,n,...), Iy~ oo for k— o0 .

A

2
By (6) and (9)
Fx, x(tk)) < F(te, x(tx)) < § X (bo)[> 4 F(to, x(t0)) ,

which again contradicts the assumption (8).
The proof that any solution satisfying the condition (8) can be extended
to <{tp, o) is completely analogous to that of Theorem 1.

Theorem 3. In addition to the hypotheses of Theorem 2, suppose that F(t, x) = 0
n
for t =2 602 0, > |ay| < oo.

i=1

Then any solution of (1) which satisfies the condition (8) as well as the first
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derivative of any solution, are bounded on their domain which is {ty, o0) if the
said solution satisfies the condition (8).

Proof. The boundedness of a solution satisfying (8) is ensured by Theo-
rem 2.

n
In view of the assumption F(t, x) 2 0 for ¢ 2 to 2 0, > |ag| < o0, we get
i
from (9)

3 [IX'@)IP = & X () + F(to, x{to)) ,

which means that the first derivative of any solution is bounded on its domain.
Consider the system

(10) x; + (14 @i @)filh, 21, ..o, @) =0 (E=1,2,...,0),

where fi(t, 1, ..., ¥y) are the same functions as in (1), while ¢; (f) and g; (f)
are defined and continuous for all ¢ = ¢, = 0.

Theorem 4. In addition to the hypotheses of Theorem 1 suppose that

(11) 14+ gty 2 k>0, ¢i(t)=0

foreveryt 2 tp 2z 0Oandi =1,2,...,n.

Then any solution of (10) which satisfies the condition

n

E ;% (to)

1 L S

(12) 3 1 (pi(to) + F(t(), X(to)) < F
=1

18 bounded on {ty, ).

Proof. Suppose that x(¢) = (x1(f), ..., xs(t)) is again a solution of (10),

defined on (f, t) which satisfies the condition (12) and is not bounded for
t—>1_.

By (10)

t

n t n
z J Z:%%ds -+ z in(s, ;1}1(8), vy xn(s))x:(s) ds = 0 ,

i=1 1, i=l i,

where ¢ € (to, ). Moreover,

n n t

2;*(t) z [ 2 (s)pi(s)
13 P ) ——— +1% — " ds 4+ F(t, x(t)) =
o 22,1 + qilt) L) T+ )P s H0)



n ¢

2 oF
=1 z O e, xte) [ LU

1 + (Pi(t()) aS
t=1 to
or
n t
% (b) aI'(s, x(s))
1 F <1 _— Fto, x(t —F— ds,
(14)  F(t, x(t) < 2‘Zl+wo) + Fl(to X(o))—i—J p” s

i=1 to
from which similarly as in the proof of Theorem 1 we get

n

§M_ £ Flo, xt)
L

i=1

F

IIA

which contradicts the assumption (12).
The proof that any solution can be extended to {fp, c0) is analogous to that
of Theorem 1.

Theorem 5. Suppose that, in addition to the hypotheses of Theorem 2, (11)
holds. Then any solution of (10) satisfying (12) is bounded on {toy, c0).

Proof. The theorem can be proved using the relation (14). By using (6),
we get

Pt x(0) < } Z O b, <)
> X)) = 3 - 0, X\lo)) »
: 1 + gi(to)
i1

which, by (7) contradicts the assumption (12).

Evidently the following theorem also holds:

Theorem 6. Suppose that, in addition to the hypotheses of Theorem 3, the
Sfunctions @(t) satisfy the condition (11). Then every solution of (10) which
satisfies the condition (12) is bounded on {ty, o0).

If in addition to this for every i and all t = ty @i(t) << oo, then also the first
derivative of any solution is bounded on its domain.

Theorem 7. Suppose that the hypotheses of Theorem 3 are valid and that
F=+owm (7). Ifforallt z2t%=20,1=1,2,...,n

(15) 0<as14qt)<p<oo, [ lpH)dt< oo, :
fo
then every solution of (10) and its first derivative are bounded on {ty, o).
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Proof. Suppose that a vector function x(t) is a solution of (10), is defined
on (i, ?) and that lim sup ||x(¢)|| = -+ oo.

t->t

Using (13), (6) and the assumption F(, x) = 0, we get

n

li_ﬁz_(t)_< lzi(—to)——kF(t X(t))+
L) T Ll ee)

i1 i1
n t
+1~§[ W e
- ) S S
: TS
il &
and therefore
t n
lIx' ()2 = 28Ko + ‘f; s 2::;;2(3') o (s)| ds ,
fy il
where
n ;%(to)
Ky=1% ————— L F(to, x(t)) .
° 221 +ltgy X0
-1
Further

t n

lIx" ()2 = 2BKo + % j' llX'(S)sz lpi(s)l ds -
i=1

to

Using Bellman's lemma [4] we get

IO < 28Ko exp [-ﬂ— jz i ()| ds] < K1 <oo,

to
so that x'(t) is bounded.
We have still to prove that x(t) is also bounded. This can be done by using
(13) again. We get

n

z t ;(s) ,
F(t, x(t)) < Ko+ % mz lp; ()| ds
1

i=1 &
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and therefore
n 14

K
F(, x(t)) = Ko+ ﬁ zj lp:(s)] ds £ Ko < 0
o

i=1 ¢,

for all ¢ € <o, ). Suppose that {t,};°; is a sequence such that &y — - for k- oo
and lim ||x(t)|] = + co.

For this sequence we obtain, using the last inequality, a result which contra-
dicts (7) with F = -+ oo. This completes the proof.

Theorem 8. Suppose that the hypotheses of Theorem 7 are all valid except
(15). If -

hm%wZO,fwwﬂm<w,i=L&”qm
to

t>o0

then there exists t1, such that t; = to = 0 and every solution of the system (10)
s bounded on {t;, ).

Proof. The proof of this theorem is evident and rests on that of Theorem 7.
Namely the condition lim ¢;(f) = 0 ensures the existence of t; = ¢, such that

t>0

fOI’tZ_tl
P l+q®s=i.

Therefore the condition (15) is also satisfied and the conclusion of the theorem
holds.

Remark 2. From this proof it is evident that in Theorems 4, 5 and 6 the
condition (11) can be replaced by the following condition:

m gi(t) =0, @ (t)=20,t=T24t, i=1,2..,n.

>

In that case in (12) we substitute for fp a number ¢; such that {; = T and that
fortztisl+@t)2k>0,1=1,...,n
Let us now investigate the boundedness of solutions of the system

(16) x; + filb, 21, ... x0) = at), 1=1,...,n,

where fi(t, x1, ..., q) are again the same as in (1) while ¢;(¢), c;(t) are defined
and continuous for all ¢ = ¢ = 0. Under such conditions the following theorem
holds:

Theorem 9. Suppose that the hypotheses of Theorem T are valid with the
exception of (15). If the vector ¢(t) = (ci(t), ..., cu(t)) s such that

[ el at < oo,
to
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then every solution of (16)
interval {to, o).

Proof. By multiplying the system (16) by z;(t), i = 1, 2, ..., n, where x;(f)
are the components of a solution x(f) of the system (16), summing over i and

integrating from ¢y to ¢ (t € (to, 1), where {to, ?) is the interval of definition
of x(t)) we get

, together with its first derivative is bounded on the

Hx'@)F + F(E, x(1)) = lx'(t)l? + F(to, x(to)) +

t n t
oF (s, x(s)) ‘§ ,
+ ——— ds 4 (),
j‘ Js $§ —+ e J’ cz(s)xz(s) dS

and therefore

(17) Hix @I + F(t, x(t)) = Ko + | Z lea(s)ary(s)| ds .

..z=

Now suppose that x(¢) is an arbitrary solution of (16). Then from (17) we get

Hix' @I = Ko + f Z les(s)i(s)] ds

ty =1
which means

Ix" O = & X" @O +

and therefore

Doj

< Ko+ 3%+ tf lle@)Il - lIx"(s)ll ds

-

i
Ix"#)] < Kyexp [ lle(s)] ds,
to

where K1 = Ko + .

Thus x'(t) is bounded and there exists a constant K such that, for all t €
€ <to, ), X' = K.

From (17) we also get

Pl x(t) 2 KryhzﬂwﬁzRmmu:m+fmwwwumw,

=1 to

and therefore

Plt,x(0) S Ko+ K [ fe(o] s,

which means that for all ¢ € (fo, %> F(t, x(¢)) is a bounded functlon Thus
since in (7) F is equal to 4 oo, ||x(t)|| is bounded.

99



If # < oo, then it is easy to prove that the solution x(¢) can be extended

to {tp, o0). This completes the proof.
Remark 3. It is possible to generalize Theorems 1—9 by investigating,

instead of the systems (1), (10) and (16), the following systems:

(18) & + > b + filt, @1, ..., wn) = 0,

k=1
(19) ;i + (1 4 gu(t) kzlb”‘ )z, + (14 @i®)filt, 1, ..., 2a) = 0,
(20) x: + Z b;k(t)x]: + .fi(t’ [ I xn) = Ci(t),

where it is further supposed that for any ¢ = £ = 0, Z |z;] < oo, byx(t) is a con-

t=1
n

tinuous function and > by x(t)zr 2 0.
i1

As an example, we shall prove the following:
Theorem la. Suppose that the hypotheses of Theorem 1 are valid and that
forallt =zt =20

z bi,k(t)xizk =0

ik=1
Then every solution of (18) which satisfies the condition (4) is bounded on its

domain.
Proof. By multiplying the i-th equation of (18) by z;(t), summing and

integrating we get

Hix“ (@) + f Z b 1(8)zi(s)x;(s) ds + F(t, x(t) =
t, ,k=1

t oF (s, x(s))

= §lIx'(t)I? + F(to, x(t0)) + | —— ds

0s
&
Thus
4
, oF (s, x(s))
HIx'@)IF + F(t, x(t)) = Ko + —&s—ds ,
to '
where

= YIx'(%)[I> + F(to, x(to)) -

From here on the proof is similar to that of Theorem 1.
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Remark 4. We shall now show how some results of [3] concerning the
bounds of solutions of non-linear equations of order 2 can be generalized
to systems.

Theorem 1b. Suppose that, in addition to the hypotheses of Theorem 1, the
following conditions hold:

a) gi@1, -, Zn, Y1, .- Yn), t=1,2,...,n are continuous for every x =
= (X1, ..., %n) and y = (Y1, ..., Yn) and there exist nonnegative constants k;
such that

Gil@1, oy Xns Y1, s Y)Y Z kyh
for all x and y;
b) ai(t), bi(t) are continuous nonnegative functions fort = to = 0 and 2k;bi(t) =
2 a;(t).
Then every solution of the system

(21) a;()x; + bit)gi(@r, ..., X, @y, oy ) + filt, @1, ..., 20) = O,
which satisfies the inequality
(22) Z%zai tO +11(t05 ())<F,

=1

s bounded on its domain.
Proof. By multiplying the i-th equation of (21) by z;(f), summing and
integrating from ¢t to ¢, ¢ € (fo, ), where {to, #) is the domain of the solution
x(t) = (x1(t), ..., xa(t)). We obtain

n t n ¢
d ’
%S 4[ ai(s)?{xﬂg) ds 4 3 J bi(8)Gi(X1s « s Ty Tyy oees x;)x;(s) ds +
Acneed 8
il 1
n
+> ffi(S, 1(s), ..., Ta(s))a;(s) ds = 0.
il
Since fi(t, x1, ..., x4).are the same as in (1), we have

‘o n i , ’
32 a)z(t) + 3 [ u(s)gilar, o @as 2y, - w)(s) —
=1 i=1 ¢, .

— la; (s)x;%(s)] ds + F(t, x(8)) = } i a;(to)x;2(to) +

' oR (s,
+ F(to, x(to)) + J LaluL L

t
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Taking into account assumptions a) and b), we have

n t
o . oF (s, x(s))
3 a;(8)x;~(¢) + F(t, x(¢)) = Ko + PR ds .
P J
i1 &

and from here on the proof proceeds similarly as in Theorem 1.

Clearly this theorem is a generalization of our Theorem 1 as well as of
Theorem (1) in [3]. Moreover, by adding to the hypotheses of any theorem dealing
with the boundedness of solutions of (1) and their derivatives the assumptions
a) and b) and substituting the condition (22) for (4) we obtain a valid theorem
which, however, states that the solutions, and sometimes their derivatives,
are bounded on their interval of definition.

Analogously the theorem concerning the boundedness of the solution of (16)
can be generalized to solutions of the system

ai(t)x;' + bi(t)gi(xl, ey Xp, .2:;, R x,’l) +f;(t, X1y ovey Xn) = Ci@ty

wherez =1, ..., n.
The following theorem is a generalization of Theorem 3 in [1].

Theorem 10. Suppose that F(x) = F(x1, ..., x,) satisfies the hypotheses
of Theorem 3 in [1], ¢. e. that it is a continuous, twice differentiable function and

min F(x1, ..., ay) = m(r)—> oo, for r— o0.
|x|=r
Suppose further that a(t) > 0, a;(t) = 0, gi(y1, ..., yn) > 0 are defined and
n . oG, )
continuous for t =ty 2 O,Z il < o0, t=1,...,m. If — = 0, 1 £ k
i1 Oy
Yt
8
i, k=1,...,n, where Gi(y1, ..., yn) = - ds,
Gi(Y1s <o Yio15 8, Yitls -5 Yn)
0
then every solution x(t) of the system
" 6F ’ ’
(23) x; +at) —gi(xy, ..., x,) =0,2=1,...,n
axi
18 bounded on its domain.
: : . @;(t)
Proof. By multiplying the i-th equation of (23) by —————, ¢:i(x") =
ai(t)gi(x’)

= gi(x;, ..., x,), summing and integration we get
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t m

J N TG Fx() = Fixit)
; Lll a’i(s)gi(xl’ ey ‘Zn)

which gives us the relation

1 d
j z == Gy(x'(s)) ds + F(x(t)) = F(x(t)) ,
a(s) ds

’

where x’(s) = (2,(s), ..., «,(s)). Therefore

n

1 1
(24) § wl) Gi(x'(1)) + F(x(1)) = F(x(to)) + S‘ Gi(x'(to)) = Ko,

L. ot , £ ai(to)
=1 i=1

so that

(25) F(x(t)) < Ky,

and consequently, ||x(t)|| < oo for every ¢ in the interval of definition of x(¢).

Theorem 11. Suppose that, under the assumptions made in Theorem 10,
ait)y S kfortzto=20andt=1,2,...,n. If '

min G(y1, ..., yn) > o0 for r—>o0,
lyl-r

n

where G(y) = Gy, ..., yn) Z (1, .-> yn) then every solution of (23)
i=1

and its first dertvative are bounded on (iy, ).

Proof. Let x(t) be a solution of (23) which is defined on {fy, ). The bounded-

ness of its first derivative can be deduced from (24) and (25). In fact
\

1
z —— Gy(x'()) £ Ko — F(x(t)),
a(t)

i=1

so that
G(x'(t)) = k(Ko — F(x(1))) ,
which means that for all ¢ e {fo, ) we have

G(x'(1)) = k(| Kol + |Kol)
and therefore ||x'(¢)|| < oo.
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It remains to be proved that = + oo or that any solution can be extended
to {tp, o). To do this we shall show that if # < 00, then there exist finite limits

lim x(¢) and lim x’(¢).
MIf lir_n x(t) E:)es not exist, then for at least one 1 lir_n zi(t) does not exist.
In thti: case, however, according to the lemma in [I;_]),t ]ir}l sup z;(t) = + ©
and lim inf «;(f) = — oo. This contradicts the assumption :;;:z;t x'(t) is bounded.
Su;;ose now that lim x’(t) does not exist. Using the same lemma as before,
we conclude that lint:;-up z;(t) = + oo and lim inf z;(t) = — oo for at least
one 4. Consider th;—s)t_i and the correspondingt—xi(t). If lim sup x;(t) = + oo,
then there exists a sequence {f,};7,, such that for l_);c_—) oo, l—> 1~ and
lim «; ({) = -+ co. For this sequence we get (using (23))

k>
oF (x(t
hm ai(tk) —_—(x—(ﬁ gz(x;(tk)’ LR x;»“k));, = — 0,
ko ox;

which contradicts the assumptions that a;, 0F/dx; and g; are continuous,
I < o0, ||x(t)]| < o and |[x'(t)]] < co. Thus we have proved that there exist
finite limits lim x(¢) and lim x’(¢) and completed the proof.

>t t>t-

A further generalization of this theorem and of Theorem 18 in [3] is the
following theorem which deals with boundedness of solutions of the system
(26) w A filt, 21, o Xa)Gi(Xyy s x) =0, i=1,..., 1,
where fi(t, 21, ...,2,) are the same functions as those in (1) and where
gily1, ..., yn) and Gi(y1, ..., yn) satisfy the assumptions of Theorem 10.

Theorem 12. Assuming the validity of the hypotheses of Theorem 1, any solu-
tton of (26) which satisfies the inequality
(27) Ko = G(x'(to)) + Fto, x(to)) < I,

18 bounded on its domain.
Proof. From (26) we get

" _r

x;x; ,
————— + filtb 21, ..., 20); = 0
9@ 2L
and therefore
(28) G(x'(t)) + F(t, x(t)) = G(x'(to)) + F(to, x(to)) +
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t

+j‘ oF (s, x(s))

ds .
0s
to
From here on the proof is analogous to that of Theorem 1.
Remark 5. Theorem 2 will also hold for solutions of (26) if for condition (8)
we substitute (27) with F' defined by the relation (7).

Theorem 13. Suppose that G(y) = G(y1, ..., yn) satisfies the conditions of
Theorem 11 and that the assumptions of Theorem 3 are valid. Then every solution
of (26) satisfying the condition (27) and its first derivative are bounded on {ty, ).

Proof. That the solution itself is bounded is evident from Remark 5.
From (28) we get

G(x'(t)) = G(x'(t)) + F(to, x(to)) »

which means that G(x'(t)) is a bounded function of ¢ and therefore ||x’(t)||
is also bounded.
The proof that a solution satisfying (27) can be extended to <fp, o) is ana-

logous to the corresponding part of the proof of Theorem 11. This completes
the proof.
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