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NOTE ON THE SET OF NILPOTENT ELEMENTS
AND ON RADICALS OF SEMIGROUPS

IMRICH ABRHAN, Bre tislava

In the present paper we consider some properties of nilpotent elements
and radicals in semigroups. .

Let S be a semigroup. Under an ¢deal of S we understand a two-sided ideal
of S. Let (T) [J, I] be an element (subsemigroup) [ideals] of S.

An element x [subsemigroup 7'] is called nilpotent with respect to the ideal J
if there exists a natural number n such that x» € J[M» < J].

An ideal I is called locally nilpotent with respect to J if every finitely ge-
nerated subsemigroup 7' < I is nilpotent with respect to J.

An ideal I is called wnil-tdeat with respect to J if every element x e[ is
nilpotent with respect to J.

An ideal P of S is called prime if S\P is an m-system of S (a set H < §
is called an m-system of S, if for every two elements a, b € H there exists such
an element x € S that axb € H; we take the empty set also as an m-system).

An ideal P of 8§ is called completely prime if S\P is a face of S (the non-
empty subset 7' of S is called a face of S if abeT if and only ifaeT,beT;
the empty set is also considered a face).

The set of all the nilpotent elements of S with respect to J will be denoted
by N(J).

The ideal R(J) [L(J)], which is the union of all the nilpotent [locally nil-
potent] ideals of S with respect to J is called the Schwarz [Sevrin] radical
of § with respect to J.

The ideal RB*(J), which is the union if all nil-ideals of S with respect to J
is called the Clifford radical of S with respect to J.

Let M be a non-empty subset of S. By C(M) [M(M)] we denote the set of all
such elements r € S that the intersection of every face [of every m-system]
of the semigroup § which contains » with M is non-empty.

It is known (see [4]) that M(M) JC(M )] is the intersection of all prime ideals
[complete prime ideals] of S which contain M.

The set M(J) [C(J)] is called the McCoy [Jiang Luh] radical of S with
respect to J.
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The direct product of the semigroups S; and S will be denoted by S; X S».
We use the remaining notions in this paper in their current sense.

Theorem 1. Let I be the minimal ideal of the semigroup S1 X Ss.

Then we have:

(a1) N(I) = N(I') x N({I"),
(a2) R(I) =R(I') x RUI"),
(as) MI) = M(I') x M(I"),
(aq) L) = LI x I(1I'),
(as) R¥(I) = R*(I') x BX(I"),
(a6) o) =coI) x o,

where 1" [1"] is the projection of I into Sy [Sa].

Proof. For every minimal ideal of S; X Sz we have:

I=Ix1",

where I'[1"] is the projection of I into Si[Sz] (see [2]). Wherefrom with respect-
to Theorem 3 of [1] we obtain the assertion of Theorem 1.

Theorem 2. Let M; (v = 1, 2) be an arbitrary non-empty subset of the semi-
group S;. Then the following holds
(by) MM, < My) = M(M1) X M(My),
(b2) C (M1 X M3) = C (M) X C(M3).

The proof can be given in the same way as the proof of Theorem 3, (c)

and (f) in [1].

Theorem 3. Let J1, J2 be ideals of the semigroup S. Then we have:

(c1) N(J1J2) = N(J1) N N(J2),
(c2) R(J1J2) = R(J1) N R(J3),
(c3) M(JJs) = M(J1) N M(Js),
(ca) L(JvJ2) = L(J1) N L(J3),
(cs) R*(J1J2) = B*(J1) N R*(J2) ,
(ce) C(JJs) = C(J1) N CJ2),
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Proof. I. Let Ji1, J2 be arbitrary ideals of §. We know that the following

holds:
() Ji1 c L(J1) and FL(J1 N Jg) = L(J1) N L(J2),

where instead of ¥ we can put any of the signs N, R, L, M, R*, C (see [3], [5]).
As J1Js < J1 N Jg, then from («) we have F(J1J2) < L (J1) N F(J2), where
& =N,R, M, L, R* C.

I1. (c1) Let x be an element of N(J1) N N(J2), then z is nilpotent with
respect to Ji(z™ € J1) and Ja(x™ € Jz2). Let n = n1 -+ ma, then an € J1Ja. This
means that N(J1) N N(J2) = N(J1/2).

(ce) Let x be an element of R(J1) N R(J2), then « is the element of a nil-
potent ideal I with respect to J2(I5* € Js) and of a nilpotent ideal I; with
respect to Jy(I7* < J1). The ideal-I1 N I is nilpotent with respect to JiJg,
because ([; N Ig)* < JiJa, where n = n1 + ng. This means that R(J1)N
N R(J2) < R(J1J2).

(cs) Let x be an element of M (J1) N M (J2). An arbitrary m-system H, which
contains x, contains also an element z; € J1 and an element xs € J». Because H
is an m-system of S, there exists at least one element % € S such that a1kxs € H,
but the element zihxycJiJe. It follows that M(J1) N M(J2) = M(J1J32).

(ca) Let x € L(J1) N L(Js); then the element z is from a locally nilpotent
ideal I, with respect to J; and from a locally nilpotent ideal I with respect
to Jo. Let H be an arbitrary finitely generated subsemigroup of I; N Is;
then there exist natural numbers n; and ns such that H% < J; and H7: < Js.
Therefore for n = n; + n2 we have H? < J1.Jo. Then L(J1) N L(J3) = L(J1J3).

(c5) Let x be an arbitrary element of R*(J1) N R*(J2). This means that
x is in a nil-ideal I; with respect to J1(z* € J1) and in a nil-ideal I, with respect
to Ja(xn: € Jo). We will preve that I; N Iy is a nil-ideal with respect to the
ideal J1Jo. It is clear that x € I1 N I and for n = n; + n2 we have an € J1Js.
Thus R*(J1) N R*(J2) = R*(J1J3).

(c6) We will prove the assertion (cg) similarly as (c3). It is nessesary to take
instead of an m-system H a face T of S. From I and II the assertion of Theo-
rem 3 follows.

It is known that the set S; of all ideals in the sense of multiplication of
complexes is a semigroup.

Theorem 4. Let S be a semigroup and Sy the smigroup of all ideals of S.
Then we have:

(a) the mapping J — N(J) is a homomorphism of the semigroup Sy into the
semilattice of all subsets of S.

(b) the mapping J — S(J) in an endomorphism of the semigroup Sy into the
semilattice of all ideals of Sy, where we can put instead of S8 any of the signs
R.L,M,R,C.
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In (a) [(b)] we understand under the semilattice operation N the inter-
section of two subsets [ideals] of S. The proof follows from Theorem 3.
R. Sulka in his paper [3] proved the following assertions.

(d1) R(J1) UR(WJ:) < R(J1U J9),
(do) R*(J1) U R*(J3) < R*(J1 U Jg),
(ds) M(J1) U M(Js) M(J1 U Jo),

In

In

where Ji, Jy are ideals of S. In paper [3] it is shown that there exist such
semigroups for which the equality in (di), (d2) and (ds) does not hold.

Theorem 5. Let J1 and Jo be ideals of S. Then we have:
(e1) R*¥(R*(J1) U R*(J2)) = R*(J1 U J),
(e2) MMT1) U M) = M(J1UJs).

Proof. I. From (dg) we have: R*(R*(J1) U R*(Jg2)) < R*(R*(J1 U Jg)) =
= R*(J1 U Jsg) (see [3]).

I1. As J1 = R*(J1) and Js = R*(J2), then J; U J2 € R*(J1) U R*(Jg).
It follows that R* (J, U Jg) = R* (R*(J1) U R*(J2)). The proof of (eq2)
is similar (e;). .

If we suppose that the suppositions of Theorem 5 are fulfilled, we have
(f1) R¥*(J1 U R*(Js)) = R¥*(J1 U J2),

(f2) M(JrU M(J2)) = M(J1 VU Jy).

The equalities (e2) (f2) are fulfilled even in the case when J1[J2] is an arbitrary
non-empty subset of §.

There exists a semigroup S in which the following is not fulfilled R(R(J1) U
U R(J2) = R(J; U Js), where .J1 and J; are ideals of S (see [4], Example 2.).
Let S be the semigroup generated by the set {0, a, b1, b2, ...} subject to the
generating relations

O0x = 20 = 0 for every x € S;

a2 = 0;

bibj =0 fori,j =1,2,...;

biabj = 0 fort =j;4.5=1,2,...;

(aby)t+t = (b)H1 =0 for i =1,2,....
Then R(R{0}) + R({0}) (see [4]). We put J1 = Jo, = 0. Then R(R({0}) U
L ({0})) + R ({0} © {0}).

Let us denote by & the system of complete prime ideals of S (we take
an empty set as a complete prime ideal, too).
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Lemma 1. A non-empty subsystem % of the system P of S is linearly ordered
with respect to < if and only if for arbitrary Pe %, Q € % there is PNQe XU

Proof. I. Let % be a linearly ordered subsystem, then it is clear that for
every Pe U, QeUisPNQe.

II. Let there for an arbitrary Pe %, Q€% be P N Qe %; then either
P <= @ or Q = P. Let us suppose the reverse, i.e. P ¢ ¢ and @ ¢ P. Then
there exist elements ye@, y¢ P and © ¢, x € P. Hence x, y e S\(P N Q)
and aye P N Q. Because P N Q e %, then S\(P N Q) is a face of §. It me-
ans zy € S\(P N Q). Tt is a contradiction of zy € P N Q.

Corollary 1. The set & of all complete prime ideals of S with respect to <
is linearly ordered if and only if for an arbitrary P € P and Q € P there is P N

NQeP. .

Corollary 2. If in the semigroup S every ideal is a complete prime ideal,
then the set 2 is linearly ordered with respect to <= (see [8]).

Theorem 6. Let % be an arbitrary non-empty subsystem of the system Z.
N P €2 if and only if for every Pe P and Qe P is PN QeP.

Pe¥

Proof. I. If for every non-empty subsystem % of the system Z [) P
Peu

€ 2 holds, then for every two P, Q €2 there is PN Qe Z.

I1. Let % be aa arbitrary non-empty subsystem of & and for every P € &
and @ € Z there is P N @ € Z. Then the subsystem % is linearly ordered with
respect to <. Let a, b € S\ [ P, then there exist P e, @ € % such that

B Peu
a € P and b € Q. This means that a, b are not the elements of at least one of

P,Q. Let e.g. a¢ P,b¢ P. Then abe S\P = S\ [} P. When abe S\ [} P

Pe¥ Pe¥
then ab ¢ R, where R e %. This means that ab e S\R, where S\R is a face
of S. It follows that a, b € S\R < 8\ [) P. Therefore S\ [) P is a face

Pet Peu

of the semigroup S and (] P € Z.

Pe¥
It is known that the subset H of the semigroup S is a face of the semigroup S

if and only if S\P € Z (see [6]). We denote by s the set of all faces of the
semigroup S.

Lemma 2. A non-empty subsystem ¥~ of the system A is linearly ordered with
respect to < if and only if for arbitrary He ¥, T € ¥ thereis HUT € ¥ .

Proof. I. Let ¥~ be a linearly ordered subsystem; then it is clear that for
every He vV, Tev isHUTe? .

II. Let there for an arbitrary He ¥  and T € ¥ be H UT € ¥". The set
P = 8\H is a complete prime ideal of the semigroup S for every H e ¥".
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Let # ={P|P =S\H,H e ¥}. Then PNQ=(S\H)N(S\T) =S\(HUT)e
€ U, where P e U, Q € %. Following Lemma 1 we have either S\H = S\T or
S\T = S\H. It follows that either H =< T, or T < H.

Theorem 7. Let ¥~ be an arbitrary subsystem of the system . Then |J ¥ " H e
Hey

€ H if and only if for every H e # and T € H# there is H U T € H#.

Proof. Let there for an arbitrary He #,Te# be HUT c¢ #.Let Pc P
and @ € Z; then PN Q = (S\H) N (S\T') = S\(HU T) € P. The set P = S\H
is a complete prime ideal of S for every H € ¥". Following Theorem 6 we have
N Pe2. Further we have S\|J H=[)P.- It follows that |J H

Peu Hey Pe Hev
H € 5. The second part of the theorem is clear.

Let 81, 82 be semigroups and S = 81 X 83 their direct product.

Theorem 8. Let 1[Ps, P] be the set of all complete prime ideals of Si[S2, S =
= 81 X Sz]. & is linearly ordered with respect to < if and only if every one
of the sets P and Py is linearly ordered with respect to < and at least one of the
semigroups S1 and Ss does not contain its proper non-zero complete prime ideal.

Proof. I. Let & be linearly ordered with respect to < and let Py e #1[P2 €
€P;] such that P; + 0, P1 + 81 [P2 + 0, P2 + S2]. Then it follows that
P =81 X Py and P" = P, x Ss are complete prime ideals of § and P & P/,
P’ & P. This is a contradiction. Further let #; = {#, S,}. Let & be linearly
non ordered. Then there exist P,, P, e, such that P, & P,, P, & P,.
The ideal P = S; x Po[P’ = S1 x Pj] is a complete prime ideal of S and
P &£ P,P &P

I1. Let 2, 2, be linearly ordered with respect to < and let &, = {0, Sa}.

For an arbitrary P, P’ € 2 we have:

P = (P1 X S2) U (81 X Pg), P = (P, x 8,) U (S, x P}).
The following cases may arise:
P, = P, = S,;
Pz = ﬂ, Pé = Sz;
Py =8;, P, =0;
Py = Py =90.
As P, < Pjor P, < P,, wehave P < P’ or P’ < P.
We denote by I [.71, 7 2] the topology on § = 81 X Sz [S1, S2]; the base
is H[H#1, Hs], where H[#1, H2] is the set of faces or S[S1, S2] (see [7]).

We denote by 1 X J 2 the topology of the semigroup S, the base of which
is A1 X Ay (see [3]).

Theorem 9. Let S1, Sz be semigroups and let S = S1 X Sa. Then for the
topology T and T1 X T 2 we have H = H3 X Hs.



Proof. It is clear that 1 X 5 = J# holds (see [3]).

Let He s, then P =8\HeZ and P = (P1 X S2) U (81 X P3) (see [4],
[1]). Further H = S\P = (81 X S2)\[(P1 X S2) U (81 X P2)] = [(S1 X Sa2)\
\(Pr X 82)] N [(S1 X S)\(S1 X Pa)] = [(S1\P1) X S2] N [S1 X (S2\P2)] =
= (81\P1) X (S2\P2) = H1 X Hz € #1 X H#Hs. It follows that 1 < #1 X H's.
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