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Matematický časopis 21 (1971), No. 2 

NOTE ON THE SET OF NILPOTENT ELEMENTS 
AND ON RADICALS OF SEMIGROUPS 

IMRICH ABRHAN, Brr tislava 

I n the present paper we consider some properties of nilpotent elements 
and radicals in semigroups. 

Let S be a semigroup. Under an ideal of S we understand a two-sided ideal 
of S. Let x(T) [J, I] be an element (subsemigroup) [ideals] of S. 

An element x [subsemigroup T] is called nilpotent with respect to the ideal J 
if there exists a natural number n such that xn e J[Mn £= J ] . 

An ideal I is called locally nilpotent with respect to J if every finitely ge­
nerated subsemigroup T <= I is nilpotent with respect to J . 

An ideal I is called nil-ideal with respect to J if every element x e I is 
nilpotent with respect to J . 

An ideal P of S is called prime if S\P is an m-system of $ (a set H ^ S 
is called an m-system of S, if for every two elements a,b e H there exists such 
an element x e S tha t axb e H; we take the empty set also as an m-system). 

An ideal P of S is called completely prime if S\P is a face of S (the non­
empty subset T of /S is called a face of S if a& e T7 if and only if a e T, b eT; 
the empty set is also considered a face). 

The set of all the nilpotent elements of S with respect to J will be denoted 
by N(J). 

The ideal R(J) [L(J)], which is the union of all the nilpotent [locally nil-
potent] ideals of S with respect to J is called the S c h w a r z [Sev r in ] radical 
of S with respect to J . 

The ideal R*(J), which is the union if all nil-ideals of S with respect to J 
is called the Cl i f fo rd radical of S with respect to J . 

Let M be a non-empty subset of S. By C(M) [M(M)] we denote the set of all 
such elements r e S tha t the intersection of every face [of every m-system] 
of the semigroup S which contains r with M is non-empty. 

I t is known (see [4]) tha t M(M) ]C(M)] is the intersection of all prime ideals 
[complete prime ideals] of S which contain M. 

The set M(J) [C(J)] is called the McCoy [ J i a n g L u h ] radical of S with 
respect to J . 
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The direct product of the semigroups Si and S2 will be denoted by Si x S2. 
We use the remaining notions in this paper in their current sense. 

Theorem 1. Let I be the minimal ideal of the semigroup Si X S2. 

Then we have: 

(ai) N(I) = N(I') x N(I") , 

(a2) R(I) =R(I') X R(I"), 

(as) M(I) = M(I') x M(I") , 

(a*) L(I) = L(I') x L(I") , 

(a5) R*(I) = R*(I') X R*(I") , 

(a6) C(I) = C(I') X C(I") , 

where I' [I"] is the projection of I into Si [S2~]. 

Proof . For every minimal ideal of Si x S2 we have: 

/ = F x I" , 

where / ' [ / " ] is the projection of/ into #i[$2] (see [2]). Wherefrom with respect-
to Theorem 3 of [1] we obtain the assertion of Theorem 1. 

Theorem 2. Let Mi (i = 1, 2) be an arbitrary non-empty subset of the semi­
group Si. Then the following holds 

(bi) M(Mi x M2) = M(3Ii) x M(M2) , 

(b2) C (Mi x M2) = C (Mi) X C (M2) . 

The p r o o f can be given in the same way as the proof of Theorem 3, (c) 
and (f) in [1]. 

Theorem 3 . Let Ji, J2 be ideals of the semigroup 8. Then we have: 

(ci) N(JiJ2) =N(Ji) nN(J2), 

(c2) R(JiJ2) =R(Ji) nR(J2), 

(03) M(JiJ2) = M(Ji) n M(J2), 

(04) L(JiJ2) =L(Ji) nL(J2), 

(o«) B*(JiJ2) = B*(Ji) n B*(J2), 

(oe) C(JiJ2) =C(Jt) nC(J2), 
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Proof . I. Let J i , J 2 be arbitrary ideals of S. We know that the following 
holds: 
(a) J i c S?(Ji) and S?(Ji n J2) = Sf(Ji) n ^ ( J 2 ) , 

where instead of ^ we can put any of the signs N, B, L, M, E*, C (see [3], [5]). 
As J i J 2 c J i n J 2 , then from (a) we have £f(JiJ2) c ^ ( J i ) n ^ ( J 2 ) , where 
¥ = N,B, M, L, E*, C. 

I I . (ci) Let a; be an element of N(JX) n N(J2), then # is nilpotent with 
respect to Ji(#Wl

 G J i ) and J2(x
m e J 2) . Let n = ni -\- n2, then a:n G J I J 2 . This 

means that N(Ji) n iV(J2) c iV(JiJ2). 
(c2) Let a; be an element of I?(Ji) n E(J2), then a: is the element of a nil-

potent ideal / 2 with respect to J2(E2 e J2) and of a nilpotent ideal / i with 
respect to J i ( / i x -= J i ) . The idea l ' / i n / 2 is nilpotent with respect to J i J 2 , 
because (/i n / 2 ) w ^ J i J 2 , where n = m + w2. This means tha t B(Ji) n 
n I?(J2) c B(JiJ2). 

(C3) Let .r be an element of M(Ji) n M(J2). An arbitrary m-system /I, which 
contains #, contains also an element xj G J i and an element x2 e J2. Because H 
is an m-system of S, there exists at least one element h e S such that xjix2 e /I, 
but the element xihx2eJiJ2. I t follows that M(Ji) n il/(J2) c J I ( J 3 J 2 ) . 

(C4) Let x E L(Ji) n L(J2); then the element # is from a locally nilpotent 
ideal /1 with respect to J i and from a locally nilpotent ideal I2 with respect 
to J 2 . Let H be an arbitrary finitely generated subsemigroup of /1 n I2; 
then there exist natural numbers wi and n2 such that Hni <= JT and //w2 c J 2 . 
Therefore for n = ni + w2 we have IIn c J i J 2 . Then £ ( / i ) n £(J 2 ) £ L(JiJ2). 

(C5) Let x be an arbitrary element of E*(Ji) n B*(J2). This means tha t 
x is in a nil-ideal /1 with respect to Ji(xni G J i ) and in a nil-ideal I2 with respect 
to J2(x

n2 eJ2). We will prove tha t /1 n / 2 is a nil-ideal with respect to the 
ideal J i J 2 . I t is clear that x G / J n / 2 and for w — ni + w2 we have xw G J I J2 . 
Thus R*(Ji) n I2*(J2) c B*(JiJ2). 

(c6) We will prove the assertion (c6) similarly as (C3). I t is nessesary to take 
instead of an m-system H a face T of S. From I and I I the assertion of Theo­
rem 3 follows. 

I t is known tha t the set Sj of all ideals in the sense of multiplication of 
complexes is a semigroup. 

Theorem 4. Let S be a semigroup and Sj the smigroup of all ideals of S. 
Then we have: 

(a) the mapping J -> N(J) is a homomorphism of the semigroup Sj into the 
semilattice of all subsets of S. 

(b) the mapping J -> S(J) in an endomorphism of the semigroup Sj into the 
semilattice of all ideals of Sj, where we can put instead of S any of the signs 
B, L, M, B, C. 
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In (a) [(b)] we understand under the semilattice operation n the inter­
section of two subsets [ideals] of S. The p r o o f follows from Theorem 3. 

R. S u l k a in his paper [3] proved the following assertions. 

(di) i?(Ji) UR(J2) < = i ? ( J i U J 2 ) , 

(d2) R*(Ji) u R*(J2) c i?*(Ji u J2) , 

(d3) M(JX) u M(J2) c M(Ji U J2) , 

where J i , J 2 are ideals of 8. In paper [3] it is shown that there exist such 
semigroups for which the equality in (di), (d2) and (d%) does not hold. 

Theorem 5. Let Ji and J2 be ideals of 8. Then we have: 

(ei) R*(R*(Ji) u R*(J2)) = R*(Ji u J2) , 

(e2) M(M(Ji) u M(J2)) = M(Ji u J2) . 

Proof . I. From (d2) we have: R*(R*(JX) U R*(J2)) c R*(R*(J1 u J2)) = 
= R*(Ji U J2) (see [3]). 

I I . As e/i c 22*(Ji) and J 2 c i2*(-/2), then J i U J 2 c i?*(Ji) u i?*(J2). 
I t follows tha t R* (Ji u J2) c i?* (i?*(Ji) U R*(J2)). The proof of (e2) 
is similar (ei). 

If we suppose tha t the suppositions of Theorem 5 are fulfilled, we have 

(fi) R*(Ji u R*(J2)) = R*(Ji u J 2 ) , 

(f2) M(Ji u Jf(J2)) - J f (Ji u J2) . 

The equalities (e2) (f2) are fulfilled even in the case when J i [ J 2 ] is an arbitrary 
non-empty subset of 8. 

There exists a semigroup 8 in which the following is not fulfilled R(R(Ji) U 
U R(J2) = R(Ji U J 2 ) , where J± and J 2 are ideals of S (see [4], Example 2.). 
Let 8 be the semigroup generated by the set {0, a,bi,b2, ...} subject to the 
generating relations 

Ox = xO = 0 for every x e 8; 

«2 = 0; 

&*fy = 0 for i, j = 1, 2, . . . ; 

biafy = 0 for i = J ; i, j = 1, 2, . . . ; 

(abi)*1 = {bia)M = 0 for i = 1, 2, . . . . 

Then i?(i?{0}) + i?({0}) (see [4]). We put J1 = J2 = 0. Then R(R({0}) U 
U ({(?})) 4= 2J ({0} U {0}). 

Let us denote by ^ the system of complete prime ideals of S (we take 
an empty set as a complete prime ideal, too). 
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Lemma 1. A non-empty subsystem °li of the system 0 of S is linearly ordered 
with respect to <= if and only if for arbitrary P e °tt, Q e tft there is P C\Q etf/ 

Proof . I. Let ^ be a linearly ordered subsystem, then it is clear tha t for 
every P e °l/, Q e °l/ is P n Q e <&. 

I I . Let there for an arbitrary Pe°ll, Qe<% be Pr\Qe%\ then either 
P c Q or Q c P. Let us suppose the reverse, i. e. P $ Q and Q $ P. Then 
there exist elements y e Q, y $ P and x&Q, x e P. Hence x, y e S\(P n Q) 
and xy e P n Q. Because P C\Q G%, then # \ (P n #) is a face of #. I t me­
ans xy e # \ (P n $) . I t is a contradiction of xy e P n Q. 

Corollary 1. The set SP of all complete prime ideals of S with respect to c 
is linearly ordered if and only if for an arbitrary P e& and Q eSP there is P n 
nQe0. 

Corollary 2. If in the semigroup S every ideal is a complete prime ideal9 

then the set 2P is linearly ordered with respect to <= (see [8]). 

Theorem 6. Let °ll be an arbitrary non-empty subsystem of the system 3P. 
f]P e& if and only if for every P e& and Q e& is P nQ e0>. 

Pe<% 

Proof . I. If for every- non-empty subsystem °ll of the system SP f] P 
PeW 

G0 holds, then for every two P, Qe0 there is P n Q e0>. 
I I . Let <?/ be an arbitrary non-empty subsystem of SP and for every P e& 

and Q e 0 there is P n Q e SP. Then the subsystem °tt is linearly ordered with 
respect to c:. Let a, b e S\ f] P, then there exist P e°U, Q e °tt such that 

Pe°tt 

aeP and b eQ. This means that a, b are not the elements of at least one of 
P , Q. Let e. g. a$P,b$P. Then ab e S\P c S\ f ) P> When ab e S\ f] P 

p^m Pe<% 

then ab <£ R, where R eW. This means that ab e S\R,, where S\R is a face 
of 8. I t follows that a, b e £ \ P c £\ f] P . Therefore £\ f | P is a face 

P e ^ Pem 

of the semigroup S and f] P e£P. 
PeW 

I t is known that the subset H of the semigroup S is a face of the semigroup S 
if and only if S\P e 0* (see [6]). We denote by 3tf the set of all faces of the 
semigroup S. 

Lemma 2. A non-empty subsystem Y* of the system ^ is linearly ordered with 
respect to c if and only if for arbitrary H eY,T eY there is H U T eY. 

Proof . I. Let Y be a linearly ordered subsystem; then it is clear tha t for 
every HeY^eYisHuTeY. 

I I . Let there for an arbitrary H e f and TGYbeHuTeY. The set 
P — S\H is a complete prime ideal of the semigroup S for every H e y . 
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Let °U = {P | P = S\H, H G r \ Then PnQ = (S\H) n (S\T) = S\(H\JT)E 
e °U, where P G °li,Q e W. Following Lemma 1 we have either S\H — S\T or 
S\T c S\H. I t follows that either H ^T,orT ^ H. 

Theorem 7. Let V be an arbitrary subsystem of the system ffl. Then ( J i^ H e 
Her 

E 3? if and only if for every H e J^ and T e Jt there is H KJ T G Jf . 
Proof . Let there for an arbitrary H e JF, T e J? be H u T e J f . Let P e ^ 

a n d Q e ^ ; then P nQ = (S\H) n (£\T) - /S\(.ffu T) G ^ . The set P = £ \ # 
is a complete prime ideal of S for every H e i^. Following Theorem 6 we have 
f\Pe0>. Further we have S\ \J H = f] P. I t follows tha t ( J H 

Pe<% Heir pe<% Heir 

H G Jf . The second part of the theorem is clear. 
Let S\, S% be semigroups and S = Si X S% their direct product. 

Theorem 8. Let 0-^0^, 0] be the set of all complete prime ideals of Si[S2, S = 
= Si x #2] . 3P is linearly ordered with respect to c= if and only if every one 
of the sets 0\ and &<i is linearly ordered with respect to <= and at least one of the 
semigroups Si and $ 2 does not contain its proper non-zero complete prime ideal. 

Proof . I. Let 0 be linearly ordered with respect to s= and let P i G ^ I [ P 2 G 

e02] such tha t P i =# 0, P i -# Si [P2 #= 0, P 2 4= £2] . Then it follows tha t 
P = Si X P2 and P ' = P x x >S2 are complete prime ideals of $ and P c£ P ' , 
P ' $ P . This is a contradiction. Further let 0i = {0, £1}. Let 0<L be linearly 
non ordered. Then there exist P 2 , P2e02 such that P 2 ^ P 2 , P'2 ^ P2. 
The ideal P = Si x P^\P' = Si X P2] is a complete prime ideal of S and 
P $ P ' , P ' $ P . 

I I . Let 0^, ^ 2 be linearly ordered with respect to c: and let 0% = {0, $2}. 
For an arbitrary P , P' e0 we have: 

p = (Pi x £2) u (£1 x p2) , p ' = (p ; x #2) u («! x p 2 ) . 

The following cases may arise: 

P — P' — S -

P a = 0, P ; = ^ 2 ; 

P 2 = # 2 , P 2 = 0; 
p 2 = p 2 = 0. 

As P x c P^ or P[ c i > j , we have P c P ' or P ' c P . 
We denote by ^ [ ^ " 1 , ST2] the topology on S = Sx x -S2 [Si, S2]; the base 

is 3f[Jfi, J^2], where .W'tfx, «3f2] is the set of faces or *5[*Si, *S2] (see [7]). 
We denote by 3~i X 3~2 the topology of the semigroup S, the base of which 
is 2/fi x tfi (see [3]). 

Theorem 9. Let Si, S2 be semigroups and let S = Si x S2. Then for the 
topology ST and £rx x 3~z we have 2^ = J f j X ^ 2 . 
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Proof. It is clear that jTi x Jf'2 ^ $? holds (see [3]). 
Let H e Jf, then P = 8\H e & and P = (Pi x s2) U (si X P2) (see [4], 

[1]). Further H = S\P = (si x s2)\[(Pi X s2) U (si x P2)] = [(si X s2)\ 
\(P, x s2)] n [(si x s2)\(si x P2)] = [(si\Pi) x s2] n [si x (s2\P2)] = 
= (si\Pi) X (s2\P2) = Hi X H2 eJfi x JT2 • It follows that JTi c Jfi x Jf 2 . 
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