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ON THE SUMMABILITY OF SUBSEQUENCES

JOZEF ANTONI, Bratislava

The present paper deals with regular matrix summability methods and their
relations to the sets of limit points of transformed subsequences.

First we introduce some preliminary results. Let {s,};;_, be an arbitrary
sequence. With each subsequence {s,};/2, we can associate the number
-]
29 = z 2™, Conversely, let 0 << 2 < 1 and
=1

(1) x = 0. 000003 ...

be its dyadic expansion with infinitely many 1’s. Let {m;}>_ ; be the set of all
indices in (1) such that «,, = 1. Using {m;} we can associate to x the sub-
sequence {s,, }:° ;, which will be denoted by {s(n, z)}. This one-to-one mapping
of all subsequences of a sequence {s,} on the interval (0,1> have been utilized
by Buck and Pollard [1] to study certain properties of subsequences.

Let T = (amn) be a regular summability method. Let (1) be the dyadic

expansion of the number x with «,, = 1 and «, = 0forn + m(k = 1, 2, 3, ...).
Let us put

o(m, x) = > ams(k, z), where s(k, x) = s,,,
i1
o(k, m) = sup {v : > |ama| < k71}
n=1

p(k, m) = min {v : > |ama| < k71}
N=r+1

We now recall the definition of the homogeneous set and two sufficient

160



conditions for the homogeneity of a set from [3]. Let |A4]| (|4|,) denote the
Lebesque measure (the exterior Lebesque measure) of the set 4.

Definition. A set M < (0, 1) is satd to be. homogeneous if for two arbitrary
intervals 11, Is <= (0, 1) the equality

llllie i |IzmM|e

[11] | 12|

holds.

Theorem A. A set M < (0, 1) is homogeneous if an arbitrary interval I <
< (0, 1> can be divided into a countable system of intervals I, with the following
properties:

a) every two intervals I, =+ I, have at most one endpoint in common,

0
b) U Ll = 1]
n=1
c) for every n the set I, N M is geometrically analogous either to the set M
or to a set My, being distinct from M in at most a set of the measure zero.

Theorem B. Let M < (0, 1> be such a measurable set that for an arbitrary
trrational number xg € (0, 1>, xg = 0. cyopag ... etther all or none of numbers
Tp = 0.0, 0,,...(p=0,1,2,...) belong to M. Then M is a homogeneous set
and |M| = 0 or 1.

In [1] and [4] a restricted definition of the homogeneous set is used. This
definition is convenient as a criterion and is given in Theorem C.

Theorem C. Let a measurable set M < (0, 1) have the following property:
If x = 0. oz ... 18 the dyadic expansion of a point x of M, then the point
obtained by altering a finite number of «; also belongs to M. Then M is a homo-
genous set and |M| = 0 or 1.

Let {sa}, ; be a bounded sequence and 7' be a regular matrix summability
method. Golubov [2] (Theorem 2) proved that there is a set @ residual
in (0,1> such that for every x €@ the inclusion {o(n, z)}’ > {s.} is valid.
({ta}" denotes the set of all limit points of the sequence {t,},.,). The following
asserts that the set

Qu={ze (0,1 {o(n,2)} > {sa}}
is measurable. Inclusion @1 > @ is evident.

Theorem 1. Let {su};_, be a bounded sequence, T' a regular matriz summability
method. Then the set Q1 is a union of a countable set and a G5 set.
Proof. Let M be the set of all rational numbers of the interval (0, 1).
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Let X = (0,1> — M, Q2 = Q10 X and {u1, us, U3, ... U, ...} (m=1,2,...)
be a dense subset of the set {s»}'. Let us put

mnp {LE e X: I O’('IL + D, ) — ’uml << k_l}

and

Qk
bmn = U Snmp

We shall show that

(2) QZ_ n n nSlr‘;m .

m k=1 n=1

Let x belong to the right-hand side of (2). Then the statement

(3) VVVAlom+ p,a) — wml < k!

m k n p

is valid. The validity of the statement u, € {o(n, z)}’ for every m follows
from (3). Since {um} = {sy},” we obtain {s,}' < {o(n, x)}’. As x € X, we have
reQs.

Let x € Q2. Let m, n, k be three arbitrary positive integers. Since {o(n, 2)} o
> {sn} > {um}, we have u,, € {o(n, )}’ for every m. Also there is a strongly
increasing sequence of positive insegers 11 << ne << ng <C ... such that o(n;, @) -
— Um. We can choose ! such that n; > n and |o(n;, x) — uw| << k71 Let
p = n; — n. Then o(n;, ) = o(n + p, x) and |o(n + p, ) — upy| < k1. Since
x € X, from the definition of 8%, it follows that . € S, for arbitrary m, n, k
and thus x belongs to the right-hand side of (2).

We now show that Sy, is an open set in X. It is suffitient to prove that

og(n + p, x) is a continuos function of the variable x € X. Let 2y be an ar-
bitrary point from X. Since {sm};_, is a bounded sequence, there exists a
number C' > 0 such that |s,| < C (m =1,2,...). Let » be an arbitrary

number. Let us choose N such that z [an+pl| < n2C. Let 2o = 0. adaj .

be the dyadic expansion of z, with mﬁnltely many digits equal to 1. Let
N’ > N be a positive integer such that among the first N’ digits of the dyadic
expansion of xg exactly N digits are equal to 1. Let O, be an open set in X
such that x€0,, and for each z€0,,, x = 0. a3 ... we have o = o
(l=1,2,...N’). Then s(l, x) = s(l, o) for x€0,, and Il =1,2,... N. Thus
we get '

lo(n + p, &) — o(n + p, @o)| < 1 2ty 15, ) — s(l, xo)| <
=N+1
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< 20 Z |a’n+7)l| < Ui
I-N+1
Hence o(n + p, x) is a continuous function of the variable x and the sets Shonp
are open in X. @y is a G5 set in X, as it follows from (2) and @; is a Gy set
in (0,1), too. The set M Ny is countable. @1 = Q2 U (M N ) and the
theorem is proved.

The following theorem gives a sufficient condition for @ to be a homo-
geneous set.

Theorem 2. Let {s,}>, be a bounded sequence. Let T = (amn) be a regular
matrix summability method satisfying the following two conditions

(i) lim sup |@man| = 0
M—>0n

(i1) F(k) = o(k).
Then Q1 ts @ homogeneous set.

Corollary. If a sequence {sn}?, and a regular summability method satisfy
the conditions of Theorem 2, then |1] = 0 or 1.

To prove Theorem 2 we need the following lemma.

Lemma. Let T be a regular summability method defined by the matrix (amn)-
Then there exists a positive integer mo such that ¢(k, m) < +oo and gk, m) <
< yw(k, m) for each m > mg and k > 3.

Proof. Let Am = > apmy and 0 < 9 < 271 It is known that 4,, > 1 and

n=1

v t 4
obviously > |@mn| = > @mn. Let us choose a natural number mo = mo(n)
n=1 N=1

such that
(1) |dAnt < n/2

v

for m > mg. Since 2 @n — Ay for v— 00, then there exists a vo(m) such that
n=1

(B) 12 amn — Am| < /2

n=1

for » > »o(m). The inequality > ams > 1 — 7 follows from (4) and (5). If we

n=1
consider k > 3, then 1 — > k=1. Thus ¢(k, m) < oo for k > 3 and m > .

Suppose that ¢k, m) > y(k, m) for some k£ > 3 and m > mo. Then

o(k,m) ©

Z Iamnl + z lafmnl > Z lamnl > AT)L

n=1 n=y(k,m)+1 n=1

1€3



o(k,m)
Since Z |@mn| < k1 and Z |@ma| < k1

y(kon)+1
we have by (4)

2 i 3
2 4

2

— 2

3
This contradiction completes the proof of the lemma.

Proof of Theorem 2. The validity of the statement “Q; is a measurable
set** can be easily verified by Theorem 1. We are permitted to consider only
irrational numbers of ¢; when investigating the homogeneity of the set Q1
by Theorem A. x, has the same meaning as in Theorem B. Let |s| <
(n=1,2,...)and ¢ > 0. Let us choose ky > 3 and 1, such that ¢(k, m) < oo,

@k, m) < (k m), 4Clk < ¢[2, 20F (k)/k < e\2for k > ko and m > M. It can
be done according to (ii). Let us choose a fixed k > k9. We conclude from (i)
that there exists an M1 > Mo such that |ap,| < k1 (n=1,2,3,...)m > M;.
If xo € @1 and k, m > 3, are choosen in the above mentioned way, we obtain

© @(m,k)

ia(m, To) — G(m’ .’Up)l = i Z QS — 2 A S pv < Z Iamv Spy 31),.! +
v=1 v=1
e @ 20
+ Z Ia"“" ls”" - S'I)v‘ + z lamvl ‘Sm — S))yl <—+
o(k,m)+1 y(k,m)+1 k
2C [p(k,m) — @(k,m)| 2C
+ i 7 + n <e.

Hence lim |g(m, o) — o(m, xp)] = 0 holds for every p. Thus {o(m, 2p)}' >
m—>0

> {a(m,xz0)} > {sn}’ and xpe Q1 . Q) is a homogeneous set according to Theo-
rem B.

2

Henceforth a subsequence of the sequence {s,}, , means the sequence
{anSn}p.1, where ay = O or 1 and «, = 1 for infinitely many n. Also a one-to-one
mapping betwen the set of all subsequences of the sequence {s,}, , and the
inserval (0, 1> can be defined in an analogous way as in the first part of the
paper. Let € (0,1)> and « = 0. oqazers ... be the dyadic expansion with
infinitely many digits equal to 1. If T = (amx) is a regular matrix summability
method, then we put

@

T(m, x) = Z Arn%nSn -
N=1
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An analogous theorem to Theorem 1 can be obtained if o(n, x) is replaced
by 7(n, ). The following theorem is analogous to Theorem 2 but any other
conditions for the summability method except that of regularity are not
required.

Theorem 3. Let {sn};, ; be a bounded sequence and T a reqular summability
method. Then '

Q1= {xe(0,1>: {z(n, )} > {sa}'}
18 a measurable homogeneous set (and hence Q1] = 0 or 1).

Proof. It can be easily shown that @: is a measurable set. Let x =
= 0.oas3 ... (s = 0 or 1 and for infinitely many ¢ we have «; = 1) belong
to Q1. Let y = 0. f1f2f3 ... be a point obtained by altering a finite number
of the o; and 84| < C,C >0 (n=1,2,3,...). Let e > 0 and

Ko = min {k: oy = ff4 for i« >k}.

Since T is a regular matrix summability method, there exists an integer My
such that |amn| < ¢/KoC for m > My and » =1, 2, ..., Kg. Then we have
for m > M,

o) o e}

lt(m, x) — t(m, y)| = | z AmndnSn — Z AmnPnsn| < Z |@mn| |oan — Bul Isnl < €.
n=1 n=1 n=1

Thus we obtain that lim |t(m, ) — t(m, y)] = 0 and therefore ye@: . Q1

m—>0
is a homogeneous set according to Theorem C.

Remark. The assumption of regularity in Theorem 3 is essential. If the
regularity of a summability method is not required, then there exists a summa-
bility method summing every convergent sequence and a bounded sequence
such that |@i| = 2-2. The construction of this method for p = 1 is given
in the following example.

Example. Let {s,};, ,; be a bounded sequence for which s 7 0, s~ «
and |s,| > C. We define the summability method 4 by the matrix (ams),

where am1 = 308'11 (m=1,2,...), ampn=1 (m=2,3,...) and a = 0 for

k#1, n. Let 7(n,x) = > angoxsy. Then t(n, ) = ansy for x € (0, 3> and
k-1

7(n, ) = 3C + ansy, for x € (4, 1. It follows from the above that

e e (0, 1): fr(n, @)}’ > {sa}'} = 3.
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