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Matematický časopis 21 (1971). No. 2 

CONGRUENCE RELATIONS ON THE LATTICE 
OF PARTITIONS IN A SET 

HILDA DRAŠKOVICOVA, Bratislava 

O. O r e [9] has shown t h a t the symmetric partition lattice Il(ilf) (the lattice 
of all equivalence relations on a set M) has only trivial congruence relations. 
The present paper deals with congruence relations on the lattice P(M) of all 
symmetric and transitive relations in a set M, or equivalently, partitions 
in M (the empty partition included), contrary to partitions on M, treated 
by Ore. The construction of all congruence relations on P(M) is described. 
Two congruence relations $, T on P(M) are of especial importance (see 
Lemma 2.3). I t is shown (Remark 2.3) t h a t the lattice ®(P(M)) of all cong­
ruence relations on P(M) is a set-theoretic union of the intervals [A, \F] and 
[O, N] where A, N are the least and the greatest congruence relation on P(M). 
There is an interesting duality among the quotient lattices P(M)/0 and 
P(M)IXF, formulated in Theorem 4.1. Ideals which are congruence classes 
(normal ideals) are described. I t is shown that any normal ideal in P(M) 
belongs to at most two congruence relations, one of them is in [A, XY] the other 
in [<J>, N]. Normal ideals belonging to exactly one congruence relation are 
characterized (Theorem 3.2). But there is a one-one correspondence between 
the elements of Q(P(M)) and the couples (J, J ' ) , where J is a normal ideal 
of the sublattice J ( T ) and J ' a normal dual ideal of the sublattice J '(®), J OF) 
and J '(O) being the ideal and the dual ideal of the congruence relations *F 
and O respectively (Theorem 4.3). Moreover J ( T ) ^ 2^. The lattice @(P(M)) 
is shown to be isomorphic to the cardinal product 2 x 0(2 M ) (Theorem 4.2). 
Hence it is a Boolean algebra if and only if M is finite (Theorem 4.4). No non-
trivial decomposition of P(M) into a cardinal product exists (Corollary 4.1). 
On the other hand, every interval [0, A] in P(M) is isomorphic to the direct 
product of lattices P(Ay), where Ay are blocks of the partition A (Theorem 4.6). 
In Yl(M) an analogous result holds for any interval [A, B] (Corollary 4.2). 
Distributivity and modularity of quotient lattices of P(M) are investigated 
(Theorem 4.7). 
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1. Notations and some propositions 

We shall use the logical symbols ,,=->", , , o " , ,,A"> >>V" to denote impli­
cation, equivalence, conjunction, disjunction and the symbols U, n , V? A 
for the lattice operations. 

Throughout the paper M denotes a non-empty set. 
A partition in a set M is a set R of disjoint nonempty subsets Ra of M [2]. 

The sets Ra are called blocks of the partition R . R can also be empty. We shall 
call this partition an empty partition and denote it by 0. A domain of a parti­
tion R is the set D(R) = ( J Ra. If D(R) = M, then we shall call I? a partition 

a 

on the set M. Throughout this paper we mean by a relation a binary relation. 
If a is a relation, we shall write *xocy, or x = y(a) to denote tha t x and y are 
in the relation a. Similarly, if R is a partition, xRy or x EEE y(R) will denote 
tha t x and y are in the same block of R. There is a one-one correspondence 
between partitions in a set M and relations in M which are transitive and 
symmetric. There is a one-one correspondence between equivalence relations 
in M and partitions on M. We shall say tha t a partition R1 is less or equal 
to R2 and denote R1 ^ R2 iixRhj => xR2y. Partitions in a set M form a complete 
lattice. For it is evident tha t the relation <; is a partial ordering on M with 0 
as the least element. I t suffices to check that there exists the least upper 
bound to an arbitrary system of partitions in a set M (see [2], § 13). 

If R1 and R2 are partitions, xR1R2y will mean that there exists such an 
element z tha t xRxz and zR2y. The partitions R1, R2 will be called permutable 
if xR1R2y implies xR2R1y. The following assertion is obvious. Two partitions 
R1, R2 on a set M are permutable if and only if any block R\ of R1 intersects 
all blocks of R2 which are in the same block of R1 U R2 with R\ [3, § 5]. We shall 
denote by R° a discrete partition on a set M, i. e. the partition in which any 
block consists of a single element, and by Rm the greatest partition on M, i. e. 
the partition with only one block M. Any congruence relation on an algebra A 
gives a congruence relation a | B on an subalgebra B : x == y(& \ B) (x, y e B) 
if and only if x == y(oJ). A non-empty set J of a lattice S is an ideal if and only 
if for arbitrary elements a,beS:aeJf\beJoaUbeJ. A dual ideal 
is defined dually. A normal ideal of a lattice S is an ideal which is a class of 
some congruence relation on S. We denote by J(OL) the normal ideal belonging 
to the congruence relation a. The lattice of all congruence relations of a lattice S 
will be denoted by Q(S). The lattice of all partitions in a fixed set M, or on M, 
will be denoted by P(M) and U(M), respectively. The least (greatest) element 
of Q(P(M)) will be denoted by A (N). 

Theorem 1.1 [9, p. 626]. There are only trivial congruence relations A 
(x A y o x — y) and N (x N y for any x, y e M) on the lattice U(M). 
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Theorem 1.2 [4, I I , Corollary 3.12], Let h : A-> B be a homomorphism of an 
algebra A onto an algebra B and let a be the corresponding congruence relation 
on A (x ~ y(ai) o h(x) = h(y)). There exists a one-one correspondence between 
congruence relations on B and those congruence relations a] on A which are ^ a. 
If oci ^ a is a congruence relation on A and a\ is the corresponding congruence 
relation on B, then x = y(&i) <=> h(x) ~ h(y) (oci). 

Theorem 1.3 [8, § 32]. Let B be a Boolean algebra, J an ideal in B. Set 
x = y(fi) if and only if there is an element a e J such that a U x = a U y. Then 
(3 is a congruence relation on B. Any congruence relation co on B is determined 
by the ideal J = {xeB\x~ 0(co)} in the above described way. 

2. Congruence relations on the lattice P(M) 

Lemma 2.1. Let O, T be relations on P(M) defined as follows: R1 = i22(0) o 
o D(R1) = D(R2). R1 = R2(W) o (for any x,yeM, x^y, x = y{Ri) o 
ox^iy(R2)) (that is the partitions R1, R2 have all blocks, having more 
than one element, identical). Then <D, XY are congruence relations on P(M). 

R e m a r k 2.1. In the following sections O, *F mean the congruence relations 
of Lemma 2.1. 

Proof . Obviously *F is an equivalence relation. I t is sufficient to show for 
arbitrary T e P(M) t ha t : R1 = R2(Y) => R1 U T = R2 U T(Y) and R1 nT = 
= R2 n T(^¥). But if R1 = R2(Y), then R1, R2 have all blocks with more than 
one element identical, and the same holds for R1 nT, R2 n T. I t follows 
tha t R1 n T == R2 n T(Y). Let R1 = R2^), T e P(M). If for x, y e M, x 4= y 
x =: y(R1 u T), then there is a sequence xo, x\, ..., xne M, xo = x, xn = y, 
Xi_\ = Xi(Al), where A1 is either R1 or T. We can suppose ^ 4= xjc for J 4= k. 
If Xi-i == ^(i?1) , .Xi_i 4. Xi, then xL_i = Xi(R2), thus # = 2/(i22 U T). Similarly, 
x 4- y, x = ?/(i?2 U T) => x = ^/(i?1 U T). Thus we get R1 U T = i?2 U T^F). 
O is also an equivalence relation. Let R1 = R2(<b), Z eP(M). Then .D^1) == 
= D(R2). Because D(R1 n Z) = D{Ri) n D(Z) = D(R2) n D(Z) = i)(i?2 n Z), 
we get R1 nZ ^ R2 r\ Z(O). Likewise ^ ( i ? 1 u Z ) = .DfU1) U F>(Z) = D(JB2) u 
u D(Z) =-= i)(i?2 U Z) we get R1 U Z ~ R2 U Z(O). 

R e m a r k 2.2. The mapping D : P(M)-+ 2M (as we have just seen) is 
a homomorphism of the lattice P(M) onto the Boolean algebra 2M. Hence 
P(M) I <D ^ 2M. 

Lemma 2.2. The congruence relations O, *F on P(M) are complemented, i. e. 

Proof . R1 = i?2(0 n T ) => i?1 = i?2(<D) A -R1 = ^ 2 ( ^ ) => D(R^ = D(R2) /\ 
A (R1, R2 have all blocks with more than one element identical) => 221, i?2 
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have all blocks identical => B1 = B2 => B1 = B2(A). Thus <D n XF = A. Let 
B1, B2 be arbitrary partitions from P(M). Let us take first B1 sS B2 and let T1 

be a partition which has all blocks with more than one element identical 
with B1 and each element a of the set D(B2) — DO?1) form a block {a} of T1. 
Thus D(B2) = D(Ti) and B1 = T-OF), T1 = R2(0), which implies R1 = R2 

(Y U O). Now let B1, B2 be arbitrary. Then B1 ^ B1 U B2, R2
 = B1 U B2 and 

B1 = B2 u B-pF u O), B1 u B2 = B2(0 u T ) . If follows R1 = R2(T u O). 
Hence Y U O = N. 

Lemma 2.3. If 0 , is a congruence relation on P(M) letting all elements of 
H(M) in the same class and TV is a congruence relation on P(M) separating 
each two elements of U(M), then TV ^ T , O ^ $8-. 

Proof . Let R1 = B2(%). Ttien B1 U B° == B2 U B°(Y,) and R1 U B°, 
B2vB°e U(3I). Thus B1 U B° = R2 U R°, hence the blocks of R1 and B2 

with more than one element are identical, and R1 = B2(T). If R1 = B2(<I>), 
R1, R2 e P(M), then D(R-) = D(R2). If D(JR

1) = Jf, then obviously B1 = B2 

(O.). Let D (R1) #= J / and let X be a partition consisting of exactly 
one block M - D(B^ = M - D(R2). Then B1 u X, R2 u X e n (3 i ) , hence 
R1 U X = B2 U X(0«). Now let Y be a partition consisting of exactly one 
block D(Ri) = D(R2). I t is obvious tha t R1 ^ Y, B2 ^ Y. We have Y n 
n (R1 U X) = Y n (R2 U X) (O*). Using Theorem 2.4 [5] we get Y n 
n (B1 U X) = B1 U (X n Y) = B1 U O = R-. Analogously Y n (R2 u X) = 
= R2. Hence R1 = B2(Oi). 

R e m a r k 2.3. Let a be a congruence relation on P(M). Then the con­
gruence relation a \ U(M) on n(ilf), induced by a, is trivial [Theorem 1.1]. 
From this and Lemma 2.3, it follows: A lattice Q(P(M)) is the set-theoretic 
union of (disjoint) intervals [A, T ] and [O, N]. By Lemma 2.2, <I>, T are 
complemented and Q(P(M)) is distributive [7] and it follows that the mappings 
T ( - > $ u T j , <Py-> T n O/ are mutually inverse isomorphisms between 
these intervals [8, § 13]. 

E x a m p l e 1. A lattice of partitions in a three-element set {a, (3, y} has a 
diagram in Figure 1. The lattice has the following congruence relations: K0 = 
= A, I n = N, Kx: {0, a}, {b, d}, {j, / } , {», m), {c, e}, {g}, {h}, {/}, {n}, {k}. 
K2 : {0, b}, {c,f}, {e, j}, {a, d}, {I, h}, {g}, {»}, {k}, {m}, {n}. K 3 : {O, c}, {b,f}, 
{a,e}, {d,j}, {g,k}, {h}, {i}, {I}, {m}, {n}. K4 : {0, a,b, d}, {c,e,f,j}, {h,l}, 
{m,i},{g}, {k}, {n}. K5 : {0,b, c,f), {a,d,e,j}, {h,l}, {g, k}, {%}, {m}, {n}. 
K6 : {0, a, c, e}, {b, d,f,j}, {g, k}, {m, i}, {h}, {n}, {I}. K7 = T : {(), a, b, c, d, e, 
f,j}, {g,k}, {m,i}, {h,l}, {n}. K%: {0,a,b,d,g}, {f,j,k,l,m,n,i,e,c,h}. 
K9 : {o, b, c,f, i}, {a, e, d,j, m, n, I, k, h, g}. Kw : {0, a, c, e, h}, {j, I, n, k, m, d, 
g, i, b,f}. Kn : {0, c}, {b,f, %}, {a, e, h}, {d, g,j, k, I, m, n}. Ki3 : {O, a}, {b, d, g}, 
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{e, c, h}, {k, I, m, n, i, j , /}. Ku : {0, b}, {c, f, i}, {a, d, g}, {k, j , I, m, n, e, h}. 
Ku> = O : {0}, {a}, {&}, {c}, {e, h}, {g, d}, {/, i}, {k, I, m, n,j}. A lattice of con­
gruence relations of this lattice is 24. 

ІЇ«Ь\ß,zl}=™ 

ЯßyjИ 

3. Normal ideals in P(M) 

Normal ideals in P(M) are exatly the zero-classes of congruence relations 

on P(M). With respect to Remark 2.3, it is sufficient to consider the zero-classes 

of congruence relations belonging to the intervals [A, \F], [O, N]. 

Lemma 3.1. // we assign to any ideal J of the Boolean algebra 2M a set h(J) <z 

<-= P(M) defined as follows: R e h(J) o D(R) e J, then h is a one-one corres­

pondence between the set of all ideals of the lattice 2M and the set of all zero-classes 

of congruence relations on P(M), belonging to the interval [O, N] . 
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Proof . Let J be an ideal in 2M, (Jj the congruence relation on 2M which 
has J as a zero-class. If we define on P(M) i?i == R2($') o D(RX) == D(R2) ($j), 
then according to Theorem 1.2 and Remark 2.2, (3' is a congruence relation 
on P(M) belonging to the interval [O, N] and its zero-class is just h(J). Con­
versely, let (3 e [O, N] and let J i be its zero-class. With respect to Theorem 1.2 
a congruence relation /? on 2M corresponding to p has a zero-class J = {D(R) \ 
| R e J i} and it is obvious that h(J) = J i . 

Lemma 3.2. The zero-classes of congruence relations from the interval [A, Y] 
are just the sets having the form J (Y) n J(Oi), where Oi e [O, N]. 

Proof . By Remark 2.3, any congruence relation from [A, x¥] has the form 
T n $ i , $ i G [O, N]. I ts zero-class is obviously J(Y) n J(Oi). 

Theorem 3.1. A set J is a normal ideal in P(M) if and only if it has one of the 
following forms: 

(a) J = {R \ D(R) e J i , where J\ is an ideal of the lattice 2M). 

(b) J = J(Y) n Jr2, where J2 is an ideal of type (a). 

Proof . The Theorem follows from Lemmas 3.1 and 3.2. Ideals of the 
form (a) (or (b)) are zero-classes of congruence relations from [O, N] (or 
[A,T]) . 

We shall now investigate the following question: When two congruence rela­
tions on P(M) have the same zero-class? 

Lemma 3.3. Oi, <D2 e [0 , N], <Dj -# 0 2 => J(Oi) + J (0 2 ) . Y i , Y2 G [A, Y] , 
Yi4= Y2=^ J(Y3)4= J(Y2) . 

P roof . If Oi 4= 0 2 , Oi, 0 2 G [<D, N], then the congruence relations <D1? <1>2 
on 2M, corresponding to Oi , ®2 are different with respect to Theorem 1.2. 
According to Theorem 1.3 we get J(O^) 4= J(0 2 ) - Then by Lemma 3.1, J(Oi) 4= 
4= J(<D2). Let T i , Y 2 G [A, Y] , Y i 4= Y 2 . Let us denote <Di = <D u Y i , <D2 = 
= O U Y 2 . By Remark 2.3, Oi 4= 0 2 and then with respect to the above 
result J(Oi) 4= J (0 2 ) . Then there exists RE J ( O I ) , R $ J (0 2 ) (or symmetri­
cally). Let us recall tha t Yi = Y n Oi , Y2 = Y n 0 2 (Remark 2.3), hence 
J(Yi) = J (Y) n J(d>i), J(Y2) = J(Y) n J(<D2). J (Y) is an ideal consisting 
of all partitions in M which have no block with more than one element. Let R' 
be the discrete partition on a set D(R). From Oi, 0 2 ^ O and R' = R(Q>) 
it follows R' = i?(Oi), R' = R(02). Then ReJ(^) implies R' e J(<l>i). I t is 
evident tha t i ? ' G j ( Y ) . I t follows tha t i?' e J(Yi) = J(<Di) n J (Y) . Since 
i? £ J (0 2 ) , R' $ J (0 2 ) . Thus iJ' £ J(Y2) = J (0 2 ) n J(Y). Hence J(Yi) 4= J(Y 2) . 

R e m a r k 3.1. A lattice-theoretical join of normal ideals of P(M) need not 
be a normal ideal of P(M). See Example 2. 
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E x a m p l e 2. If we take congruence relations K7, if8 in Example 1, then 
K7 U Ks = Kn = N. But J{Ks) U J{K7) = {0, a, b, d, g) u {0, a, b, d, c, e,f, 
j} = {0, a, b, d, g, c, e,f,j, k} =# J(if i i) . J{KS) U J{K7) is a class of no con­
gruence relation KQ — iCi5, hence it is not a normal ideal. 

Now we shall characterize the normal ideals which are classes of two or more 
congruence relations. 

Theorem 3.2. Any ideal consisting either of the empty partition alone 
or of the empty partition and a partition having only one one-element block is 
a normal ideal of just two congruence relations on P{M), one of which is in 
[A, T ] and the second in [O, N]. Any other normal ideal is a class of exatly one 
congruence relation on P{M). 

Proof . If an ideal is a class of more congruence relations, then at most 
one of these congruence relations can be in [A, T ] and at most one in [O, N] 
(according to Lemma 3.3). The ideal consisting of the empty partition is 
a class of the congruence relations <D and A. Because the empty set and one-
element set {a} form an ideal in 2M, then by Lemma 3.1, the corresponding 
ideal in P{M) (let us denote it by J($i ) ) consists of the empty partition and 
the partition having onty one one-element block {a} and it is a normal ideal 
of some congruence relation Oi ^ O. If we d e n o t e d = T n $ i , then J(*Fi) = 
= J ( T ) n J(Oi) = J(Oi) because J(Oi) c J (Y). I t follows tha t the congruence 
relations T i , Oi have the same zero-class. If ®2 e [<£, N] and J(<1>2) contains 
more than two partitions, then by Lemma 3.3, J(<J>2) cannot be a class of 
a congruence relation 0 3 e [O, N], O3 4= ®2. We shall show tha t J (0 2 ) cannot 
be a class of a congruence relation T i e [A, XY]. I t is evident tha t J(<I>2) contains 
some partition i?a having only one one-element block {a} (a e M) and the 
partition 0. Let Re J (0 2 ) , -Ra + R 4= 0. If we denote R1 = i?a U R, then 
R1 e J(®2). Since 0 2 ^ O, then J(®2) must contain also a partition R2 having 
only one block D{Rl) with more than one element. If T i ^ T , then JOVi) <= 
c J ( T ) . Now J (T i ) 4- J(®2) because otherwise R2 e J (Yi) c J ( T ) , but this 
is impossible because no partition, belonging to the ideal J ( T ) has blocks 
with more than one element. This completes the proof. 

4. Further results on congruence relations on P(M) 

Definition. A symmetric partition lattice on M is the lattice U{31). 

Theorem 4.1. The quotient lattice P( i l i ) /0 is isomorphic to the ideal J ( T ) , 
consisting of all partitions in a set M which have no block with more than one 
element, and is isomorphic to 2M. Any class of congruence relation O is isomorphic 
to a symmetric partition lattice on the domain of partitions belonging to this class. 
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The quotient lattice P(M)jxY is isomorphic to the dual ideal which is a class 
of the congruence relation O, that is with the symmetric partition lattice on M. 
Any class of congruence relation *F is a Boolean algebra. 

Proof . Obviously J^Y) — [0, R°]. To prove the first part of the Theorem 
it is sufficient to show that to anj^ R e P(M) there is exactly one partition R' e J(XY) 
such tha t I?' == R(<f>). This partition R' is a discrete partition on the set D(R). 
I t can be immediately seen tha t the interval J ( T ) = [0, R°\ is isomorphic 
to 2M. (The isomorphism P(ilF)/® ^ 2M follows also from the homomorphism 
D : P(M)-> 2M, see Remark 2.2.) If R is a class of the congruence relation 
0 and R e R, then evidently R is isomorphic to the symmetric partition lattice 
on D(R). To prove the second part of the Theorem it is sufficient to show tha t 
to any R e P(M) there is exactly one element R' e Yl(M) such tha t R = R'(XY). 
This partition is R' = R U R°. Let R be a class of the congruence relation XF 
and let V(R) be the set-theoretic union of all blocks with more than one 
element of the partitions belong to R. We shall show tha t the lattice 2M~F<R> 
(of all subsets of M — V(R)) is isomorphic to the sublattice R of P(M). To this 
purpose we assign to any subset A cz M — V(R) a partition RA e R the one 
element blocks of which are exactly the sets {a} with aeA. One can easily 
verify that this assignment yields a lattice isomorphism between R and 2M~F(R>. 

Now we shall investigate relationship among congruence relations on the 
lattice P(M) and congruence relations on the sublattices Il(ilf) and J(X¥). 
Any congruence relation y on P(M) induces the congruence relations y I ̂ 0^) 
on J ( T ) and y I U(M) o n Yi(M). R± = R* (y| J(Y)) <> R1 = R2(x)> R1> R2 e 
e J (Y) . R1 =R2(x\ Tl{M)) o Rl = R2(x), R1, R2 e U(M). With respect to 
Theorem 4.1 J ( T ) = 2M, hence we know the congruence relations on J(VF). 
According to Theorem 1.1 we have only trivial congruence relations A, N 
on U(M). 

Lemma 4.1. If y, y are congruence relations on P(M) and y #- y, then 
either x I J(*Y) 4= y' I J ( T ) or y I Tl{M) * y \ U(M). 

Proof . If y 4= y' and y | Yl(M) = y \ U(M), then we have two possi­
bilities : 1) y, x induce the least congruence relation on H(M). Then according 
to Lemma 2.3, x , x ' e [ A , Y ] . Thus J(y), J(y') c J (Y) . By Lemma 3.3, 
J(x) #= J ( x ' ) , hence' y | J ( T ) 4= y' | J ( T ) . 2) x , y' induce the greatest 
congruence relation on II(iY). By Lemma 2.3, y, y e [O, N]. If xFi = T n y, 
T ; = T n y', t h e n T i * % (Remark 2.3) and by Lemma 3.3, J (T i ) * J(Yt). 
Then T i | J ( T ) == y | J (T ) , Yj | J ( T ) = y' | J ( T ) . Because J (T i ) , J (T j ) <= 
c= J (T ) , J (T i ) * JOFJ) implies y | J (T ) * y' | J (Y) . 

Lemma 4.2. Let %' be an arbitrary congruence relation on J(T). If we define 
X : R = R'(x) o (there is T e J(x) such that T U R = T u R') then x is 
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a congruence relation on P(M) and x I J^) = x'» X I n(ilf) = v (y is the 
least congruence relation on Il(ili). 

P roof . First we shall show that x 1S a congruence relation. Obviously x 
is an equivalence relation. If R = R'(x)> then there is T e J(x) such tha t 
T U R = T U R'. Let Ze P(M). Obviously T \J R\J Z = T KJ R' \J Z. Thus 
R\JZ = R' \J Z(x). If T e J(x') c: J(Y), then T = R°. With respect to 
Theorem 3 . 4 [ 5 ] , T u (R n Z) = (T U R) n (T U Z), T U (R' nZ) = (T U R') n 
n(T\JZ). If T u R = T u R', then T \J (R n Z) = T KJ (R' n Z), con­
sequently R n Z ~ R' nZ(y). Thus x is a congruence relation. We shall 
now show that x I n(.M) = y. If -R1 = ^2(x)> R\ R2 E n ( M ) , then there 
is T e J(x') <= J(Y) such that T V R1 = T U R2. Since i?1, i?2 G II (Jf), 
evidently i?1, i?2 ^ i?°. Since T e J (T ) , T ^ i2°. I t follows tha t R1 = Tu R2 = 
= R2. Thus x I n(ilf) = Y- Now we shall show that x I J^) = x'- L e t 

R1, R2eJ(y¥), R1 = R2(x)- As J(Y) is a Boolean algebra this holds if and 
only if there exists T e J(x') such that T U R1 = T U R2 (see Theorem 4.1 
and Theorem 1.3). This holds if and only if R1 = R2(x) (see Definition of x)-
I t follows that x I JCF) = X-

Lemma 4.3. O | II (if) is the greatest congruence relation on II(ilf). 
P roof . The assertion is evident from the Definition of the congruence 

relation O. 
R e m a r k 4.1. Obviously R1 = R2(<5>) o R° n R1 = R° n R2, because the 

equality on the right-hand side is equivalent to D(R1) = D(R2). 
In the next Lemma 4.4 we shall denote by J'(oc) the dual ideal of a congruence 

relation a, tha t is the class of the elements which are congruent with the 
greatest partition Rm on the set M. 

Lemma 4.4. Let x be an arbitrary congruence relation on J OF) with the 
ideal J(x')> X the congruence relation of Lemma 4.2, and <D | U(M) the con­
gruence relation of Lemma 4.3. Then the congruence relation a = O U x on P(M) 
has the following properties: 

(1) J (a ) n JOF) = J(X ' ) = J(X ) . 

(2) J ' (a) O IL(M) = n(ilf). 

(1') a | J ( T ) = X ' . 

(2') a | U(M) = <t> | U{M). 

Proof . The assertion (2) is trivial, because J ' (a) 3 J '(O) = U(M). 
We shall prove (1'). Let R = B'(a), R, R' e J ( T ) , then R, R' ^ B°. From the 
Definition of the congruence relation a, B1, R2, ..., Rn exist such tha t R = 
= Bi(O) [or xl Rl = JJ-(x) [or O], . . . , JB» = R'(O) [or x ] . Then R = 
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= RnR° = Rin P°(0) [or y], Ri n R° = R* n R°(x) [or <D], . . . , R» n R° = 
= R' nR° = R'(<b) [or y]. We have U« n 22° ^ i?° for i = 1, . . . , n and thus 
JR' n R° e J(*F). With regard to Lemma 4.2, y | J ( T ) = y'. Then JB* n R° = 
= i2«+i n i?°(x) implies 22* n P° = i ^ 1 n R°(x). Rl n R° = RM n i?°(0) => 
=> 5* n P° = 72<+i n 72° (because /?* n R°, 5<+i n i2° e J(Y)) => R* n R° = 
= RM n R°(x). I t follows tha t P = P'(y ') . W e proved a | J ( T ) ^ y'. 
We have a = y, hence a | J ( T ) ^ y | J (T ) = y'. Hence we get a |J(VF) = y ' . 
The assertion (V) implies immediately the first part of the assertion (1), tha t 
is J(a) n J (T ) = J(x). We have to show J(x) = J(x')- x' i s a congruence 
relation on JC¥), thus J(y') c J ( T ) . By Lemma 4.2, y | H(ilf) = y, thus 
J(x) -̂  J ^ ) (Lemma 2.3), moreover y | J ( T ) = y' and it follows tha t 
J(x') = J(yJ- W e shall P r o v e (2')« B y Lemma 4.3, a | II(i¥) ^ O | II(i¥) . 
Since O ^ a, <J> | n( i l / ) = a | U(M) and we get a | II (Jf) - O | 11(10. 

Theorem 4.2. 7%e lattice of all congruence relations on P(M) is a cardinal 
product of the lattice of all congruence relations on the sublattice J(*F) and the 
lattice of all congruence relations on the sublattice 11(31). Consequently, Q(P(M)) ^ 
.=" 0 (2^) x 2. 

Proof . The m a p p i n g / : y-> (y | J (T ) , y | U{M)) maps Q(P(3I)) into the 
cardinal product 0 ( J (T) ) x 0(11(3/)). By Lemma 4.1 / i s infective and clearly 
isotone. To prove tha t / is surjective and / - 1 isotone, let y' and y" be con­
gruence relations on J OF) and U(M), respectively. 1) If y" = y, let y be the 
congruence relation y e 0 (P(J / ) ) of Lemma 4.2. Then /(y) = (y', y"). 
Moreover, if we repeat this process with y{ G 0(J (T) ) , y = xl E 0(11(71/)) 
and obtain y\ e Q(P(M)), then (according to the proof of Lemma 4.2) 
(X', X") = (Xi> Xi) ™phes y ^ yi . 2) If y" = 0 | II(Jf), take first y as 
in the case of 1), then put a = <J> U y. Then according to Lemma 4.4, /(a) = 
~ (x'> x")- Moreover, if ai = <J> U yi is the congruence relation obtained 
from the couple (y[, yi) by the same way, we see immediately tha t (y', y") 5S 
= (Xi> Xi) imply X =- X1 a n c l a = a 1 - We have proved the surjectivity 
of / and, in two cases, the isotonity of/"1. To finish the proof, let (y', y") <: 
= (Xi> Xi) a n d X" = Y> Xi = ° I n(Jfef). Take yi and aj = <J> U yi as in the 
case 2), and y as in the case 1). Then f(y) = (y', y"), /(oci) = (y l5 yx) 
and since y 5g yi, y ^ a i . This completes the proof. 

Theorem 4.3. @(P(31)) ^ Si X #2, wAere #1 is the lattice of normal ideals 
in J ( T ) and S2 is the lattice of normal dual ideals in II (31). 

Proof . By Theorem 4.2 0 ( P ( M ) ) ^ 0 ( J ( T ) ) X 0(II(i>/)). J(VF) is a Boolean 
algebra (Theorem 4.1), hence Q(J(Y)) ^ Si (by Theorem 1.3). I t is evident 
tha t G(Yl(M))^S2 (see Theorem 1.1). 

R e m a r k 4.2. Using Theorems 1.3, 1.1 and 4.2, and Lemmas 4.2 and 4.3 
we get the correspondences in the isomorphism of Theorem 4.3: given a e 
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G @(P(M)) we set Jx = J(a) n J (T ) , J j = J'(oc) n II(Jf) to obtain the cor­
responding couple (J1,j'1)eS1xS2- Conversely, given a couple (Jl9J[), 
we construct the congruence relation 8 on P(M) with J(8) = J\ (R = R'(d) 
if and only if T KJ R = T\J R' for a T e J i ) and the congruence relation 77 
on P(ilf) with the dual ideal J[ (rj = O if J{ = II (if) and rj = Y if j j = {.fl™}). 
Then the congruence relation on P(M), corresponding to (J1,J[), is (3 = 
= S U y ] . 

R e m a r k 4.3. If ilF is infinite, then any congruence relation of ®(P(M)) 
need not have a complement. We shall construct such congruence relation £. 
We denote £#., yi the least congruence relation with R1 = T1. 2M ^ J OF) 
is also infinite and we can take an infinite sequence 0 = R1 < T1 < . . . < 
< JB« < T* < . . . < i2° of elements of J (T ) . Then by Lemma 13 [6, p. 160] 

00 

and Lemma 15 [6, p. 161] the congruence relation f = V £-«*, T1 ̂ a s n o 

complement in 0(P(Jf)) . 
i = l 

Lemma 4.5. .Le£ *Fi e [A, Y] . Tften xFi Aas a complement $1 in [A, N] 1/ a?ifZ 
onZ</ if^Yi has a complement W\ in [A, XF] and ®i = W\ U $ . TAe dna£ theorem 
also holds: Let $1 G [O, N]. T^en $1 H,as a complement Yi in [A, N] if and only 
if $1 Aa8 a complement 0i in [O, N] and T i = T n $ i . 

P roof . Since the lattice @(P(M)) is distributive [7], then by Remark 2.3 
the Lemma follows immediately. 

Definition. We shall say that a lattice L is discrete if and only if any bounded 
chain in L is finite. 

Theorem 4.4. The lattice of all congruence relations on P(M) is a Boolean 
algebra if and only if M is finite. 

Proof . By Theorem 4.2 and Theorem 1.1 it is sufficient to find out when 
0(J(MO) is a Boolean algebra. J (Y) ^ 2M (see Theorem 4.1) ,thus J(Y) is dis­
tributive. By the theorem of H a s h i m o t o [7] 0(J (T)) is a Boolean algebra 
if and only if J(XF) is discrete. But 2M is discrete if and only if M is finite. 

Theorem 4.5. No couple of mutually complemented congruence relations 
on P(M) is permutable except the couple (A, N). 

P roof . Let ®i, xFi e Q(P(M)) be mutually complements and permutable. 
Each of the congruence relations Y i , $1 belongs precisely to one of the inter­
vals [A, Y] , [O, N] (Remark 2.3). Both Yi and ®i cannot be simultaneously 
contained neither in [A,Y], nor in [<£, N], since Yi and ®i are mutually 
complements. Let e. g. Yi e [A, Y] , ®i e [O, N]. Suppose Yi =t= A. The greatest 
partition Rm (on M) forms a block of the congruence relation Yi because 
Rm == #(Yi) => Rm = R(XY) => Rm = R. If Y i , ®i are permutable, then 
the block {Rm} is incident with any block of the congruence relation ®i (see 
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the assertion in section 1) and then also with a block {R :0 = I?(®i)}. I t follows 
tha t Rm = O(Oi), tha t is <J>i = N, which is a contradiction to the assumption . 

Corollary 4.1. The lattice P(M) cannot be decomposed into a cardinal product 
in a nontrivial way. 

Proof . Otherwise there exists a nontrivial couple of mutually comple­
mented and permutable congruence relations in @(P(M)) (see [1, Th. 5, 
Chapter VII.]) , which is a contradiction to Theorem 4.5. 

Theorem 4.6. Let A be a partition in M, and let {Ar : y e T} be the set of all 
its blocks. Then the interval [0, A] is isomorphic to the direct product X {P(Ay) : 
:yeT} = Q. 

Proof . With any B e [0, A] and any y e F we associate a partition Bv 
in Ar consisting of all blocks of B contained in Ar. (If no block of B in Ay 

exists we set Bv = 0.) Then Bt e P(Ay) and the mapping / : [0, A] -> Q given 
by (f(B))y = Bvis surjective. I t is evident tha t B <: B' if and only if By ^ B'y 
for every y G T. 

R e m a r k 4.4. I t can be proved similarly tha t an analogous theorem holds 
for the lattice II(ilf) (it suffices to replace P by II). 

Lemma 4.6. Let A e U(M). Then the interval [A, Rm] of the lattice U(M) 
is isomorphic to the lattice 11(^4). 

P r o o f (cf. [10]). With any C e [A, Rm] we associate the partition C* on A 
defined as follows. Given blocks A\, A% of A, A\C*A% if and only if A\ and A2 

are contained in the same block of C. I t can be easily shown tha t the assignment 
C -> C* is an isomorphism of the lattices [A, Rm] and 11(^4). 

Corollary 4.2. Any interval [A, B] of the lattice II (if) is isomorphic to a direct 
product of symmetric partition lattices. More precisely, if B — {Br : y e F}, 
and if for any y e Y,My denotes the set of all blocks of A contained in Br, then 
[A,B]^X{U(My):yer}. 

R e m a r k 4.5. On the lattice P({1, 2, 3}) (see Figure 1) it can be seen tha t 
Lemma 4.6 and Corollary 4.2 do not hold for intervals of the lattice P(M). 

Theorem 4.7. Let card M ^ 4. The congruence relation <D G @(P(M)) is the 
least one for which the quotient lattice P(M)j<$) is modular. More precisely, for 
all congruence relations Oi ^ O the lattice P(M)j^)\ is a Boolean algebra and if 
*Pi ^ O does not hold, then P(M)/XF± is not even modular. 

Proof . I t follows from Theorem 4.1 tha t P(M)/$> is a Boolen algebra. 
I f T i ^ O , then T i ^ T (Remark 2.3). If P(M)/X¥1 were modular, then 

. its homomorphic image P(M)jy¥ ^ 11 (M) would be modular too, which 
is a contradiction. 

152 



REFERENCES 

[1] B i r k h o f f G., Lattice theory, 3. Ed., New York 1967. 
[2] B o r ů v k a O . , Theorie rozkladů v mnozine, Spisy Příгodověd. fak. Univ. Brno, 

No 278 (1946). 
[3] B o r ů v k a O., Grundlagen der Gruppoid- und Gruppentheorie, Berlin 1960. 
[4] C o h n P. M., Universal algebra, New York 1965. 
[5] D r a š k o v i č o v á H., The lattice of partitions in a set, Acta Fac. rerum natur. Univ. 

Comenianae Math. 24 (1970), 37-65. 
[6] G r ä t z r G., S c h m i d t E. T., Ideals and congruence relations in lattices, Acta ma th . 

Acad. scient. hung. 9 Q958), 137-175. 
[7] H a s h i m o t o J., Ideal theory for lattices, Math. japon. 2 (1952), 149—186. 
[8] H e r m e s H., Einführung in die Verbandstheorie, 2. Ed., Berlin 1967. 
[9] Or O., Theory of equivalence relations, Duke Math. J . 9 (1942), 573 — 627. 

[10] D u b r i l P . , D u b r e i l — J a c o t i n M . L., Théorie algébrique des relations ďequivalence, 
J . ma th . pur s t appl. (9) 18 (1939), 6 3 - 9 5 . 

Rec ived August 18, 1969. 
Katedra numerickej matematiky 

Prírodovedeckej fakulty 
Univerzity Komenského 

153 


		webmaster@dml.cz
	2012-07-31T17:59:53+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




