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MATEMATICKO-FYZIKALNY CASQ,Pls,,SAY' 14, Q, 11!?64

ON THE APPROXIMATIVE CONSTRUCTION
OF THE EIGENVECTORS CORRESPONDING
TO A PAIR OF COMPLEX CONJUGATED
EIGENVALUES

IVO MAREK. Praha

INTRODUCTION

In the numerical praxis of the last years there occur more and more non self-
adjoint eigenvalue problems. The solution of practical problems makes demands,
on the one hand, the theoretical analysis of the mentioned problem and, on the
other hand. its numerical analysis. The problem of approximative construction of
the cigenvalues does not seem to be satisfactorily solved yet in any of the directions
mentioned instances, particularly in the case of complex eigenvalues. It is well known
(sce [5)), that for the construction of the eigenvalues of linear operators the iterative
methods are advantageous. However, most papers concerned with the construction
of cigenvalues demand the symmetry of operators considered or at least require the
constructed eigenvalues to be real.

In the recent paper |1] there is considered the problem of the approximative
construction of the eigenvectors corresponding to the pair of complex conjugated
cigenvalues lying on the boundary of the spectral circle of a given real matrix and
the problem of the construction of the eigenvectors mentioned. The absolute value
and the argument of the sought eigenvalues are constructed in [1] step by step by
iterations; the corresponding eigenvectors can, however, be obtained from the
formulae given in [1] only in exceptional cases.

The purpose of our paper is to show in what way the knowledge of the approxi-
mations of the absolute value and the approximations of the arguments of the cigen-
values described above can be used for the construction of the corresponding eigen-
vectors. Contrary to the papers [1], [S] we do not assume that the spaces occuring in
our considerations are finite-dimensional.

Some functional analytical methods, particularly the operational calculus in the
algebra of a lincar bounded operator of a Banach space into itself, are used. The
approximations of the eigenvectors mentioned are constructed with help of iterations.
The convergence of the sequence of iterations follows from the theorems on Cesaro
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iterations of a linear bounded operator. These theorems are published in the paper [3].
In the present paper we also prove some of the statements given in [3] without the
proofs.

I.NOTATIONS AND DEFINITIONS

Let Y be a real Banach space and let X be the complex extension of the space Y.
ie zeX<>z = x + iy, where x,ye Y, i* = —1. The norm in the space Y will be
denoted by the symbol || ||y. We supply the space X with the norm defined by the
following formula

lz]lx = sup |[xcos® + ysind ||y,
0<9<2n

or with some equivalent norm. Further let Y’ be the space of the continuous linear
forms on Y and let [Y] be the space of bounded linear operators mapping Y into
itself. The norms in Y’ and in [Y] are defined as follows:

Iy Iy = sup [y(MI. yeY. yeY’

Tyl =1

HTllgyy = sup {Tylly. yeY, Te[Y]

llyly=1

where | ¥'(y) | is the absolute value of the number y'(y). In cases where it does not
cause a misunderstanding, the indices of the norms will be omitted.

The complex number o we shall write as « = g exp {i¢} so that the complex
conjugated number « has the following form: a = ¢ exp { —ip).

The object of our considerations will be an operator T € [Y] about which we shall
assume that in its spectrum o(7) there lie at least two eigenvalues y,, 1, and that the
relations

Hy = Ha, (Al <uul=1umD (L.1)

hold for Aea(T), A #+ p;, j=1,2.

The operator T € [Y] can be extended from Y onto the whole space X by the formula
Tz = Tx + iTy, where z = x + iy. By the symbol [X] we denote the space of linear
bounded operators mapping X into itself with the norm

| Tllxy = sup || Tx|ly, x € X, Te[X]
[[xllx=1
We denote by the symbol @ the zero-operator and the identity-operator by the sym-
bol I. We assume further that the eigenvalues . p, are simple poles of the
resolvent R(A, T) = (A — T)™! (A — a complex number).
Let

9

R, T) = Z(/ - /lj)kai + Z(/{ - .uj)—kBkjv J=1 (L2
k=1

k=0
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be the Laurent expansions of the resolvent R(4, T) in neighbourhoods of the poles
My, fy. 1t is well known (see [6] p. 306) that

1
T

J‘R()., TYdi, j=1,2, (1.3)

¢
By ;= (T — w;I) By, k=12 ..

where C; = {A]|2 — p;| = ¢;} and the radius g; is such that — with the exception
of y; — there does not lie another point of the spectrum ¢(T) either on C; or in the
interior of Cj.

From the assumptions and from the spectral theorem ([6] p. 304, theorem 5 . 71-D)
the operator 7 can be expressed as

. — | S e s
I = 14By + B, + S f/.R(/., T)d4,
C

where C = {/[ | 2| < @3, 03 < uj assuming that in the interior of C there lies the
set o(T) — {pty, u,}. From the same theorem it follows that for any integer n = 0

§ n “n l N ; (
T'= pGBiy + By o J" R(4, T)dJ. (1.4)

For any n =2 | we put

Let yie Y and x*° e Y be such that

VB ) 0 (1.7)
hold for j =1, 2.

2.AUXILIARY STATEMENTS

In this and in the next paragraphs we denote by symbols ¢,. ¢,, ... the constants
independent of n, where n = 1,2, ...

Lemma 1. There exists a constant ¢y such that

IS5~ Bl S en™' =12 2.1)

Proof. First we prove that the sequence of the operators



1 n1 ;_ k
= — | R(A, T)dA
n = j( [.lj > ( )

converges in the norm of the space [X] to the zero-operator @ when n — «c.
From the assumption it follows that for e C'it holds |4y '| = y; <1, so that

) (‘/)‘ < yohs i
S\ )T S TT =y
and thus
1 ¥ \
Il =+ S Ksup I R(4 T) ] (2:2)

2 n k
, I .
vjn=sin_ wju= Z " ('u >Bl"=

r=1 N k=1 \ Ky
B+ Z # kB (2.3)
= By; n &\, 13— R

Evidently we have

l l | ' n ,l_lj ko
10l 57” Byl |k; (7{7) X

Let us put (ﬁj/uj) = exp {iff;}, where f8;, j = 1.2, are real. We then get

infi; | 2

1 ’1“‘ "
[ I. (2.4)

| |
“ Q.i" H S n | — ,/{ = n T;T;/T:" ” Bl.-“j

From (2.2), (2.3) and from (2,4) there follows (2.1).
Similarly we can prove the following lemma:
Lemma 2. There exists a constant ¢, dependent neither of » nor of s such that
H U;n H = ('271‘, 1 - l’ “~ (25)

Proof. According to (1.4) for a given integer s = 0 we have

1 2 " I\ A
jn LJ'" + Ki"' Li" =7 Z Z < >(ﬂr~> bir
’ H 21 k=« \\" I

U\
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We get easily the estimate

n

Kb 50t s {I RG] 5
AreC k

=5

N
i

i

k
<
;31
15[k 1 & (kN 1\
o= T J B .
L, . kg.\-<s)BU+ ; k;s(5><l‘j> 1,3-j>

so that we obtain the norm-estimate

WLl = m* {11 Byl + 11 Byoz—j 11 }-

The estimates of K;,, L;, lead to the wanted estimate (2.5).
Remark. Lemmas | and 2 hold also if more general assumptions than those made

in the first paragraph are fulfilled. Some simple generalizations are given in the two
following lemmas 3 and 4.

<n o i sup | R(A, T) |-
— 7 aecC

We further have

Lemma 3. Ler us assume that the operator T € [X] has the property that on the
boundary of the spectral circle there lies a finite but otherwise arbitrary number of
simple poles of the resolvent R(4, T). Then the esiimates (2.1) and (2.5) hold.

For multiple eigenvalues we have:

Lemma 4. Ler us assume that on the boundary of the spectral circle of the operator
T e [X] there lie p mutually different eigenvalues p, . ..., p,. Let q,. ..., q, be multi-
plicities of the poles p,.....u, of the resolvent R(4, T). Let 1 <r < p, ¢, 2 g,
for j=1,....p. Then we have
10 T P A log n
H_ Z k qr+l,“r I"I"‘__ '_lii_ﬁ Bq r .§ C}“g_i’
bon o=, (g, —nr n
The proof of the lemma 4 we shall not give, because it is possible to prove lemma 4
in the same way as theorem 4, which is to a certain degree a generalization of lemma 4.

Lemma 5. Letr us assume that for the terms of the sequence {1;,} the following
inequalities

| 2w — 1| S cqn™ ' 7° (2.61

hold for j = 1.2; n = 1,2,..., where 5 > 0. Then the sequence defined as

1 &
= AT (2.7)
n k=1

=

converges in the norm of the space X to the vector X;. Further it holds that

Tx; = px;, x; * 0, (2.8)

—w

Il Njn — X5 | = csn (2.9)
where @ = min (1, J).

o
(e~
—



Proof. Evidently the following expression is true
, 1 3 —k _ ,
Xjn = X; = (8, — 31_;)9‘(0) + w Z (Aink iy k) T*x.
k=1

From lemma 1 it follows that

[ 8jx'® — By x| < %’— x|, (2.10)

. . . | R -
so that it suffices if we consider the vectors - > (A0 = n; Ky T*x©, or the opera-
K=1

tors

" = Z (/{j" - :“j_k) Tk'

According to the assumption (2.6) we have | 4;, | = ¢, > 0. There exist the functions
¢j7 = ¢j-(n) such that
Iy
o

Jn

=1+ - 17(71) . "'»,’7(’1)'

1+J

IIA

Cg.

From this expression it follows that
A k
() v (F) i (5) 50+
Jn n n

I ¢ k () ——
fgz ( ) ‘1171}.))IIA7A:

—

so that

1s=1
1 i’ Ga(n) &k -
B 7;;-‘\.:1 n-\'(i +0) A; P I .
According to lemma 3
- 8 _ —om—1
” 7’" l A;l ‘;".\-(fi{ o can’ = ey hd‘ ‘ 7. I[f Cght J <egn?

which together with the estimate (2.10) gives the estimate (2.9).

To prove (2.8) it is sufficient to remark that from (1.7) there follows the relation
B, x'" £ 0, so that the vector x; = B, ;' is an eigenvector of the operator T
corresponding to the eigenvalue g, . Since, according to (1.1) we have

(T — ) x; = (T — ;1) By X' = B, x'" =0 (since B,; = O).

The validity of (2.8) is proved and thus the proof of lemma 5 is accomplished.
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3.ITERATIVE PROCESSES

The purpose of this paragraph is the proof of the convergence of some iterative
methods for the construction of the eigenvalues uy, u, = /_11 and the eigenvectors
Xy, X, corresponding to these eigenvalues.

Let

X =X =12, .., (3.1)

45 = D) = vy )y (3.2

The elements of the sequences
yix'), yixD), ... (3.3)

are real numbers according to our assumption that Te[Y], x'” e Y, y,eY'.
According to [1] we define the-indices n] as follows: The symbol nj, j = 1,2;
k = 0,1, ... denotes the index of such clement of the sequence (3.3) for which the
relations sign yi(x"~ ") = —1, sign y(x™) = +1 hold for the k-th time. Among the
numbers (3.3) there can occur the null-elements. In that case the corresponding zero-
element has the same sign as the first non-zero element, which follows after it.

We define further ([1])
Pi=nj, —ni, j=12: k=01,.. (3.4)

With the help of (1.4) we get for the vector x™ the following expression

X" =iy oy + ow ™, 3.5)

where v = B0 vy = Box'® w'™ = (1/2mi) [ A'R(4, T) dix'”, so that
¢

(R (3.6)

where 03 = g, 0 < ¢ < 1 is the radius of the circle C.
The cigenvalues g, i, can be expressed in the following form
iy = pe'’, o = pe ', 0 <o <2nm G.7
Further let be
)‘_;‘(-"1) = }'jemj: “'};'(r\"z) = )’j"w e (3.8)

Theorem 1. Let us assume the validity of (3.8). Then there exists a constant ¢, such
that
gt |
j"’j_" - .“2 1 S cenq's j=12 (3.9)
A" |
J !
Proof. We evidently have
VX" = 'y exp {ing + iy} + p'y;exp {—ing — oy} + .
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where 7;, = yi(w™), so that

[ 7| £ cpap’q". (3.10)
Easily we get that

y}(x‘"’) = 2v;u" cos (no + a;) + n;,. (3.11)
From this expression it follows that

A% = 4y *" sin’e + (. (3.12)
where

Cin = Mo + 4v20, €05 (np + ;) — 20" M0 piy cos ln — 1) @ + 2] —
= 20" e cos [(n+ D)@ 4 o] — M-

Thus there exists a constant c¢;5 with the following property

[Cinl S cpap®q”,  j=1,2. (3.13)
The identities
g n+1
AL
AIH—I o 4V2 2"+25ln2([)
1 L4 in

4v2;12"sm )

follow from the relations (3.12) and the estimates are then consequences of the
inequalities (3.13).

Corollary 1. The fuvllowing inequalities hold:

ciaq”, j=1,2: n > g (3.14)

<
P
& r'f_u
|
=
1/\

a1

) ¢, and where ny denotes some positive integer.

where ¢, = SUP<A,.+1

Proof. According to (3.9) we get
n.+1
Sz >0

i

for n sufficiently large. say n > n, and thus according to the identity

n+1 nt+1 » n+l -1
\/A P #) = (’4"7“ — K >( I u)
\V 47 / A’ v A .
we obtain (3.14) ‘vith ¢,, = sup (w%—):c, L
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Theorem 2 [1]. The relations
L Y oPi=""+ c,6(n)i (3.15)
n J @ n
hold for the sequence {P%} of the numbers P defined above, where | ¢is(n)| 2 ¢, ;.
The proof can be carried out in the same way as the proof of the corresponding
theorem in the case of the finite dimensional space. In this case yj(x) can be, for
example, the value of one of the coordinates of the finite dimensional vector v =
= (x{, ..., x)). The mentioned proof is given in paper [1].
Combining theorems 1 and 2 and lemma 5 we obtain the following theorem:

Theorem 3. The sequence of the numbers {1;,}, where ;, = w;,exp {ip;,} and

where -

AI{#‘I 21[

Hjn = \/_J_;, > Pjin =~ (3.]6)
Aj

converges to the eigenvalue y; of the operator T and we have the estimate

, 1 .
|/~j,,—,uj|§c,871--, j=1,2. (3.17)

The sequence {x;,}, where

1 n X X
- ~k rk,.(0)
v\j" = Z A.jnz [ X v
n o=y
cenverges in the norm of the space X to the eigenvector x; corresponding to the eigen-
value yi, of the operator T.

Proof. It is sufficient to prove the validity of the inequalities (3.17). From corol-
lary 1 it follows that | u;, — u| £ ;49" or pj, = 4+ O(¢q") and from theorem 2
we can obtain the expression

i . 2ni |
Hjn €XP {l(pjn} = [,Ll + O(q )] exp ‘ ——

el

S . , 1
where P; = lim " Y P4 In other words 4, = ;s exp {ip;,} = pexp lip] + 0<7>
n-on k=1

and thus the validity of the estimate (3.17) is proved.
From (3.17) it follows immediately that

N . N —2
l /“jnz — HEXp {I([)} i = Cigh
so that according to lemma 5 with § = | the sequence {x;,},
[ = kk (0)
= — Z /_j,,z X a

285



converges in the norm of the space X to the vector x; and the relations Tx; = y,x;.
j = 1,2 are valid.

Let us once more turn to the case, where there lie on the boundary of the spectral
circle an arbitrary but finite number, in general, of multiple poles of the resolvent
R(4, T). We shall assume that gy, ..., u, are these poles and that ¢, ..., ¢, are the
corresponding multiplicities. If the value p,, 1 < r < p is known, not only approxi-
mately but exactly and if s = ¢; for j = 1, ..., p, j % r, then similarly as in lemma 5
it is possible to obtain the correbpondmg eigenvector using the formula

[ -
Ny == 3 kT TETRO) (3.18)
n o=

We assume that
B,x{" 0, B, x”=0. (3.19)

where B,,, B, 1., are defined by the Laurent expansion

sro

/‘7 Z ( - .“r)kar + Z Bkr()' - ll;-)_A<
k=1

k=0

Theorem 4. The sequence (3.18) converges in the norm of the space X to the eigen-
vector x, corresponding to the eigenvalue u, of the operator T. i.e.. TX, = j,x,.

Proof. According to the assumption of the theorem:

| " —s+1 1 ) P 10]1
¢ o=y kT N H T+ —— | [ =) R(A. T)dix;
Nrn n k;[ {/ I‘[‘“ ]\r + i 1, (/ ) 4 J

where the interior of the circle C = {A||2]| = |u,|¢. g <1} contains the sct
O-(T) - {Nl W /lp}~
I 0\
Hp;, T] = — || —- 7. T)da.
i 71 27i J‘< [l,) Rz
Cj o
where C; = {A| |4 — p;| = g;} and g; is such that neither in the interior of C;

not on the C; there lies another point of the spectrum (7)) besides ;.
Evidently we have

qj j(h*l)(“}
H. "'lv — Jk JIk ) B .,
oo 1= 2 Sy B

where fi(2) = i) fi0G) = (did2) f4 (A |2, . Thus

qj —h+1 ) A—=h~-1
Hly, T1= B+ 3 Mk =D (k= 2)(—21_—1—,~.<ii’-> B,,.



From this expression there follows according to (3.19) and according to that s = q;.

J # r the validity of the expression

e ety qujﬂ 1 k—s+1 ©
kP H [ T] =k JGr_—_l_)_' <71L B, x4z,
J * r

where AJ,\, contains the elements wj, for which || w; || £ O(k™"). Since || zj || <

< ¢,ok” ' with some constant c¢;q lndependent of k, we get the estimate

Finally we obtain the expression

1 < L _(y.)""”l e el
X, = — fostas [ i W g :())+ B, +U
n ’\'Zl {1211 I (q, - |)' ll,l (S - 1)' X

j*r

1 1 2\
Y = — L ) T)dAx(D%
Cn = k; { L} 2ni (;t )R(/ ) dx,
C

r

o1 504 toen).

Z o Z ks+q,-<£j_)k_dj+l #"_TTLB ~5X(0)§] <
i

Thus

We further have

RS [ (q; — D)t 7
Jekr
| ‘ " (ll.)k‘qj+l‘ 1 #v‘,jﬂ .‘
= - : ) I — iy : OO
= n jgl 112'1 Hy I (a; — 1)! ‘ H ;% ” =
e
< .l_ i ; K ,U,"qj+l ‘ H A0
T on ,1‘51; ?‘}(qf_l)!l 0 Xr ||

jr

where exp {i¢;} = u;/u,.
From (3.20) and (3.21) we obtain the estimate

K p ot ol 1
‘w Xy — —t e B X ‘% <0 o logn},
1 . N

which shows the validity of the first part of theorem 4.
It remains to be proved that

—s+1

Hy (0)
X,=——— B
V" (S — 1)! sr)‘r

(3.20)

(3.21)
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is an eigenvector corresponding to the eigenvalue u, of the operator T. But this asser-
tion follows immediately from (3.19), since

-s+1

(T - llrl) Xp = T;u_r__m' Bs+1,rx1('0) =0.

Remark. The eigenvalues can be considered as known, if we know that they are
solutions of a known algebraic equation which can be solved exactly. This is for
instance the case of the cyclic kernels (see [4] p. 152) or the case of the stochastic
matrices (see [2] chapter XII). In these cases the mentioned eigenvalues lie on the
unit circle and are the roots of the binomial equation

~

M —1 =0,

where d is so called index of imprimitivity ([2], p. 345).

REFERENCES

[11 BrownK. M., Henrici P., Sign Wave Analysis in Matrix Eigenvalue Problems, Math. of Comp./6
(1962), 79, 291—300.

[2]) FauTtMmaxep ®. P., Teopus mampuy, Mocksa 1953.

[3] Marek 1., C-convergence of Iterations of Linear Bounded Operators, Comment. Math. Uniyv.
Carol 2, 3 (1961), 22—24.

[4] CapbimcakoB T. A., Ocuossl meopuu npoyeccos Maprosa, Mocksa 1954.

[5] Stiefel E. L., Kernel Polynomials in Linear Algebra and their Numerical Applications, NBS Appl.
Math. Ser. 49 (1958), 1—22.

[6] Taylor A. E., Introduction to Functional Analysis, J. Wiley publ., New York 1958.

Received August 13, 1963. Matematicky ustav Karlovy university. Praha

O NPUBJINXKXEHHOM INOCTPOEHUMN COBCTBEHHbLIX BEKTOPOB
COOTBETCTBYIOIINX IMAPE KOMIITEKCHO-COITPSAXEHHbIX
COBCTBEHHbBIX 3HAYEHUN

MBo Mapek
Pesiome

B cTaTbe NPUBOOMTCA METOA MPUBIIMIKEHHOTO TOCTPOEHUS COOCTBEHHbIX BEKTOPOB COOTBETCTBY IO~
KX [1ape KOMIJIEKCHO-COMPSDKEHHBIX COOCTBEHHbIX 3HAYEHHH JIMHEHHOTO OrpPaHUYCHHOTO Orepa-
Topa T, OTOOPAKAIOLIErO HEKOTOPOE DAHAXOBO MPOCTPAHCTBO B CeOSI, JIEKALUIMX HA TPAHULE KPYra

'A] £ K(T), rae r(T) — criekTpasibhblii pagnyc otobpaxeHus 7. MeTOA OCHOBAH Ha HEKOTOPBIX
n
CBOHCTBAX MOC/NEN0BATENBLHOCTH OMNEPATOPOB {7 ! Z pn KTk} rae g wekotopbic npuGiike:
k=1
HUS OIHOTO U3 OTMEYEHHbBIX COOCTBEHHBIX 3HAUCHHH.
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