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ON CERTAIN EDGE-CRITICAL GRAPHS 
OF A GIVEN DIAMETER 

FERDINAND GLIVIAK 

1. Introduction. The graphs considered in this paper are undirected, finite, 
without loops or multiple edges. A graph G is said to be edge-critical (briefly 
critical), if the deleting of an arbitrary edge from G increases its diameter. 
Critical graphs were studied in [5], [4], [8], where many problems appeard 
to be more simple for the graphs of diameter d > 2 with a girth at least d + 2 
called cod-graphs. Special classes of co^-graphs are studied in [2], [3], [7], [9]. 

Here we shall prove t h a t for an integer d > 2, and for any graph G of 
a girth at least d -f- 2 there exists an co^-graph containing G as an induced 
subgraph. Then we shall prove estimates of the minimum degree, the maximum 
degree and the number of edges of co^-graphs, respectively. For proving these 
assertions we use notions of a ^-covering and a i>(&)-extension. 

2. Notations and notions. Let G be a graph. Then V(G) will denote the vertex 
set of G, E(G) the edge set of 6?, &G(U, V) the distance between vertices u,ve V(G) 
in G, d(G) the diameter of G, 6G(U) the eccentricity of a vertex u in G, degc u 
the degree of a vertex u in G, 6(G) the minimum degree of G, A (G) the maximum 
degree of G and NG(U) the neighbourhood of a vertex u (the set of vertices 
adjacent to u) in G. (Sometimes these symbols are abbreviated to d(u, v), e(u), 
deg u and N(u).) 

In addition, we denote by x(G) the vertex-connectivity of G, by \A\ the 
cardinality of a set A, by [x] the greatest integer not exceeding a real number x, 
by Pr (for an integer r > 2) the graph generated by a path of the length r — 1 
and by Cr (r > 3) the graph generated by a circuit of the length r. Definitions 
of notions not included here can be found in [6]. 

The girth of a graph G containing a circuit is the length of a shortest circuit 
in G and the girth of an acyclic graph is defined as oo. If K is a circuit of G 
of the length r and if dG(x, y) = dx(x, y) for every two vertices x, y of K, 
then K is called an exact r-angle of G. The graph G is called irreducible if 
N(a) -^ N(b) for every a, b e V(G), a ^b. (This notion arose from studying 
extensions of co^-graphs by one vertex, see [5].) Finally, we define a ^-covering 
and a i>(&)-extension of graphs. 
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Definition 1. Let k > 2 be an integer. A k-covering of a graph G is defined 
as a set A of vertices of G such that; 

1) d(a, b) >k for every a,b e A, a ^ b; 

2) for every x e V(G) there exists y e A such that d(x, y) < k. 

Definition 2. Let k > 2 be an integer. By a v(k)-extension of a graph G 
[through a set A] we mean a graph Q that arose from G by adding one new vertex 
adjacent to every vertex of a k-covering A of G. 

One can see that the notions of a 2-covering and of a kernel of a graph 
are equivalent. The fc-covering and the i>(fc)-extension of a graph of diameter 
k > 2 were studied in [5]. 

Lemma 1. Let G be an cor-graph (r > 2) and let u be its vertex. Then the set 
NG(U) is an r-covering of the graph G — u. 

Proof . For every x,y ENG(U) we have dG-u(%, y) > r, because in the 
reverse case the graph G would contain a circuit of a length k < r + 1. For 
every x e V(G — u) — NG(U) there exists z e NG(u) such tha t d(x, z) < r, 
because otherwise it would be dG(u, x) > r, which is a contradiction. The 
lemma follows. 

Corollary 1. The neighbourhood of every vertex of an coz-graph G is a 2-covering 
ofG. 

3. Existence theorem. 

If a graph G is an induced subgraph of some cod-graph, d > 2, then the girth 
of G is at least d + 2. In this part we shall prove the converse implication. 

Theorem 1. Let d > 2 be an integer and let G be a graph of a girth at least 
d + 2. Then there exists an irreducible (Da-graph containing G as an induced 
subgraph. 

Corollary 2. Any graph without triangles is isomorphic to an induced subgraph 
of a graph of diameter two without triangles. 

Now we prove two lemmas and then Theorem 1. 

Lemma 2. Let k, d > 2 be given integers. Let G be a graph of diameter d and 
let G\ be its v(k)-extension through a k-covering A. Then we have; 

'k + 2" 
< d(Gx) < d. &) if 2 < k < d, then 

b) if 2 < d < k, then \A\ = 1 and d < d(G\) < d + 1. Moreover if we denote 
A = {a}, then d(G±) = d + 1 if and only if the eccentricity of a, ec(«) = d. 
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Proof . Let w = V(G±) - V(G). 
a) I t is clear tha t d0l(x, y) < dG(x, y) for every x, y e V(G). Further, 

d0l(w, x) < k holds for every x e V(G), because either x e A and then 
d0l(w, x) = 1 or x $ A and then there exists z e A such that A?(3, x) < k — 1 
so tha t d0i(w, x) < k < d. Hence d(G±) < d. 

If 1.41 = 1, then d(Gi) = d, because d0l(x, y) = dG(x, y) for all x,y e V(G) 
and moreover d0l(w, x) < k < d for any x e V(G). If \A\ > 2, then G± contains 
a t least one exact s-angle, s > k -f- 2, because it is a r(k)-extension of G 

\s] \k + 2] 
through A. I t follows tha t d(G\) > — > and a) holds. 

L 2 J "" L 2 J 
b) Let a e A. Then da(a, x) < d < k, for every x e V(G). Hence | 4 | = 1, 

so that dG(x, y) = d0l(x, y), for every x, y e V(G). Thus we have d < d(G±) < 
< d -f- 1. I t is clear that es(a) < d. If eG(a) < d, then d(Gi) = d, because 

d0l(w, x) < d for every x e V(G). If eG(a) = d = d(a, z), then d(G\) = d + 1 = 
— d(w, z). The lemma follows. 

Lemma 3. Let k > 2 be an integer. From any (irreducible) graph an (irre­
ducible) graph of diameter k can be obtained by a finite number of v(k)-extensions. 

Proof. Let d(G) > k. Let us construct a sequence of graphs 

(1) G = G1,G2,...,GS 

(where s is a natural number) in the following manner: C7i+iisav(fe)-extension 
of Gi through a ^-covering Xi of Gi, 1 < i < s — 1. This fc-covering Xi of G% 
is constructed in such a way tha t Xi contains at least one pair of vertices a, b 
of Gi such tha t d0i(a, b) > k. If such a pair does not exist, then we put s = i 
and the sequence (1) is constructed. 

The set Xi, 1 < i < s — 1, is not the neighbourhood of a vertex of Gi, 
because in the reverse case d0i(x, y) < 2 for every x,y eXi. Thusif Gs is 
irreducible, then Gs is irreducible, too. According to Lemma 2 and the con­
struction of sequence (1) we have d(Gi) > d(Gi+i), 1 < i < s — 1, and 
d(Gs) < k. If d(Gs) = k, then the lemma holds. If d(Gs) = d(u, v) = r < k, 
then we get the required graph Q of diameter k by joining the vertex u with 
one endpoint of a new path of length k — r — 1, which can be done by k — r 
suitable r(k)-extensions, too. Thus we proved the par t of Lemma 3. 

If d(G) = k, then the lemma holds. If d(G) = r < k, then we construct 
the required graph analogously as in the case of d(Gs) = r < k. The lemma 
follows. 

P r o o f of T h e o r e m 1. If G is an irreducible graph, then we put G\ = G. 
If N0(u) = N0(v) for some vertices u^vofG, then we join one of them with 
a, new vertex. By a successive application of this procedure we obtain an 
irreducible graph Oi containing G as an induced subgraph. 
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Let us construct to 6/1 a sequence of graphs Gi, G2, . . . , Gs and then we 
construct to Gs the graph Q of diameter d in such a way as in the proof of 
Lemma 3, by v(d)-extensions. 

The graph Q is irreducible according to Lemma 3, because G?i is an irreducible 
graph. Directly from the construction of Q it follows tha t G is an induced 
subgraph of Q. The graph Q is an C^-graph, because the girth of G is at least 
d + 2 and by v(d)-extensions a circuit of a length r < d + 1 does not arise. 
Hence the theorem holds. 

4. Estimates of the minimum and the maximum degree 

We shall prove here that if G is an co^-graph (d > 2) with p vertices, then 

1 < d[G) < I — J . I t is well known that 2 < A(G) <p — d+\, for any 

cod-graph with p vertices and these bounds are attained. In Theorem 3 we shall 
prove stronger estimates of the maximum degree of irreducible co^-graphs. 

Lemma 4. Let d>2 be an integer and let G be an coa-graph with p vertices 
and minimum degree m. Then we have; 
a) If m = 1, then p > d + 1. 
h) If m= 2, then p > 2d. 
c) If m > 3 and d = 2, then p > 2m. 

m(m — l)k"-l — 2 
d) If m > 3 and d > 3, then p > 2 + x, where 

m — 2 
( l ~ - l - -
\m(m — 2) (m — l)LsU if m is odd; 
—2(m — 1)V-V* if m is even. 

Proof . Parts a) and b) hold, because Pa+i and Cm are the smallest co^-graphs 
with minimum degrees 1 and 2, respectively. 

c) Suppose that for u e V(G) we have deg u = m. Every vertex w e N(u) 
is adjacent to at least m — 1 vertices not belonging to N(u) u {u}, because G 
does not contain a triangle and deg w >m. Thus p > 2m. 

d) Let us put Ai(z) = {x\x e V(G) A d(z, x) = i}9 where z e V(G) and 
i = 1, 2, ..., d. Let d(a, b) = d for a, b e V(G). Then the sets Ai(a) a n d At(b) 
are non-empty for i = 1, 2, ..., d and moreover |-4i(a)| > m and |-4i(b)| > rn. 

\d] 
We have \At(z)\ > m(m — 1)*_1 for z = a,b and for i = 2, 3, ..., — , because 

any vertex from A%-\(z) is adjacent to at least m —- 1 vertices of the set Ai(z) 
and in addition different vertices of At-i(z) to different vertices of Ai(z), since 
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t-a [-n-» 
the girth of G is at least eZ + 2. Therefore the sets U ^ * ( a ) and U Ai(b) are 

i-1 i=l 

disjoint, as d(a, 6) = d. Hence 

[2] K ] - 1 rd". 

p>\ U -4*(a)| + | U ^ ( 6 ) l > 2 ( l + m + m ( m - l ) + . . . + m ( m - l ) U J " ) + 
i«=l i-1 

+ m(m — l ) ^ _ 1 = / ( m , d ) . 

Let d = 25 + 1, 5 > 1. Then 
(Z 

5 and |-4.s+i(a)| > (m — 1) \A8(a)\ > 
2 

> m(m — 1)*, since G does not contain a circuit of length k < 2s + 2. I t 
Я-1 

follows that «4«+i(a) n ( U -4*(&)) = 0, because d(a, 6) = 25 + 1. Thus we can 
І-1 

add the number m(m -— 1) to the foregoig estimate and then we have 

m(m — l ) s —• 2 
P >f(m, d) + m(m — l ) s = 2 + m(m — 2) (m — l ) * - 1 . 

m —- 2 

5. Every vertex w e As(a) is adjacent 

Thus the assertion of the Lemma holds. 

\ d 

Let d = 25, where 5 > 2. Then — 
L 2 J 

to a t most one vertex from the set As-i(b), because in the reverse case G 
contains a circuit of length k < 25. Thus the vertex u is adjacent to at least 
m —- 2 vertices of As+i(a) not belonging to As-i(b). Let W be the set of vertices 
from As+i(a) not counted so far. Obviously there exist a t least (m — 2)|J.5(a)| > 
> m(m —- 2) (m — l ) s - 1 edges with one endpoint in the set As(a) and the 
second in W. Every vertex x e W is adjacent to a t most m vertices of the 
set As(a), because otherwise G would contain a circuit of length k < 25. 
Hence \W\ > (m — 2) (m — 1)«-1 and then we have 

m(m — 1)« — 2 
p >f(m, d) + (m — 2) (m — l ) s - 1 = 2 — 2(m — l ) * - 1 . 

m — 2 

This completes the proof. 
These estimates are reached e. g. for d = 2, m > 2 in the complete bipartite 

graph Kr,r (r>2). 

Theorem 2. Let G be an coa-graph, d > 2 natural, with p vertices and minimum 

degree m. Then 

(2) 1 < m < i~V + 1 . 
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Proof . I t is clear that m > 1 and the equality holds in any tree of diameter d. 
Now we prove the upper estimate. If d = 2, then from Lemma 4 it follows 

P 
tha t m < — + 1. 

2 
Let d > 3. If m = 2, then p > 2d according to Lemma 4. If we write 

(/ \ 2 
PVa ! 

— I + l -= (d + x)d + 1 > dd + 
2 2 

+ 1 > 1 + 1 = 2, because d* = ed" > 1 for an integer d > 3. Thus the 
assertion of Theorem holds. 

Let m > 3 and d = 2s, where s > 2. Then according to Lemma 4 we have 
p m(m — l)s — 2 2(m — 1)* — 2 
— > — (m - l)*"1 = (m- l)s + ( m _ l ) S - i > 
2 m — 2 m — 2 
> (m — 1)*, because the inequality 

2(m — l)s — 2 
(3) — - (m - l)«-i > 0 

m —- 2 

holds. Hence — > (m — l)2 and then m < — + 1 . 
2 \ 2 / 

Let m > 3 and d = 2s + 1, where s > 1. Then according to Lemma 4 we 
m(m — l)s — 2 

have-p > 2 h (m(m — 2) (m — l)*-1 = 2(m — l)s + 
m — 2 

2(m—l)s — 2 
+ m(m — 2) (m — l ) s _ 1 + 2 — . Consequently we have 

m — 2 
(m — l)s — l 

(4) p > (m — I)*"1 (m2 — 2) + 4 • 
m —- 2 

(m — 1)* — 1 
I t can be easily verified that m2 — 2 > (m — l)e and also > 1. 

m — 2 
d+X d+1 

Thus we have^ > (m — 1)*+- + 4 == (m — 1)a + 4 . I f m > 5, then (m — 1)"»~ + 

4 > 2(m - - l)2 and thus p>2(m— 1). 
If m = 3 or 4, then from the formula (4) it follows tha t 

(m — 1)« — 1 i*+3 * 
p >(m— l)8-1 (m — 2) + 4 > 2(m — 1) - = 2(m — l)2 . 

m — 2 

Therefore TO < I — I + 1 and the Theorem holds. w 
R e m a r k 1. The estimate (2) can be improved in some cases: 
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a) If d > 4 and even, p > 10, then m < I 1 . The proof of this 

estimate is the same as in Theorem 4, but we use the inequality 
2(m — 1)*— 2 
— — (m — l)*-1 > 4 instead of (3). 

m —- 2 
2 

b) If d > 3 and odd, then m < (p — 4)d+1 + 1. This upper estimate follows 
d+l 

directly from the inequality p > (m — 1)8 + 4 , proved in Theorem 4. 
Now we prove an estimate of the maximum degree of irreducible co<rgraphs. 

Lemma 5. Let d > 2 be an integer. Let G be an irreducible coa-graph with 
p vertices and the maximum degree n. Then we have d-\-n— l-\-c<p< 

d 

< 1 -f n 2 (^ — I)*-1? where 
i=i 

(0, if d = 2, n = 2; 
3, if d= 2, n > 3; 
max (0, n — 2), £/ cZ = 3; 

;max (0, n — 3), i / d > 4. 

Proof . Obviously, the upper estimate holds and is reached in the Moore 
graphs. We shall prove the lower estimate. 

Let deg u = n for u e V(G). Let us pu t A = N(u), B = V(G) - ( i u {u}). 
We have n > 2, because d > 2. If d = 2 and T& = 2, then obviously -p > 
> l + n = 3. 

Let cZ = 2, n = |.4| > 3. Then B -7-= 0, because 6? is an irreducible graph. 
If B = {x}, then there would be NG(X) = NG(U), what is impossible. Hence 
\B\ > 2. 

Let B = {x, y}, x -^ y. If (#, 1/) eE(G), then every vertex a e .4 is adjacent 
to exactly one vertex from the set {x, y}, because G is an co2-graph. Thus 
either x or y is adjacent to at least two vertices of A (because \A\ > 3) and 
then their neighbourhoods will be equal, which is impossible. If (x, y) $E(G), 
then G contains the edges (a,x) (a,y) for every aeA, because d(G) = 2, 
and then NG(X) = NG(y)9 which is impossible. Hence |J3| > 3 and then p > 
> 1 +n > 3. 

Let d > 3. I t is obvious tha t p>l-\-n=\A\j {u}\. The graph G contains 
a t least one path P(x, y) of the length d such tha t dG(x, y) = d. This path 
contains a t most three vertices from the set A \j {u}, the vertex u and two 
vertices adjacent to them. Hence p>l-\-n-\-(d-\-l — 3) = d -\- n — 1. 
The set A contains at most one vertex of the degree one because G is irre­
ducible. At most two vertices of A tha t belong to P(x, y) can have the degree 
greater than one. Consequently, if n > 3, then at least n — 3 vertices of A are 
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adjacent to some vertices of the set B and moreover different vertices of A 
are adjacent to different vertices of B, because G does not contain any 4-angle. 
I t follows t h a t p >d + n — 1 + max (0, n — 3). 

If d = 3, then at most one of the vertices of A belonging to P(x, y) has 
the degree greater than one. Thus the proved estimate can be improved by 
one, because G is irreducible. Hence we have p >d + n — 1 + max (0, n — 2). 
This estimate is reached in a tree whose construction is clear from the text. 
Q.E.D. 

Lemma 6. Let T be an irreducible tree of diameter d > 4, with p vertices and 
maximum degree n. Then we have; 

(n(n— l)s— 2 
f + n(n - l)*- 1, if d = 2s; 

n — 2 
d + 2n— 4: <p << 

— \n(n— \)* — 2 
+ (n* + n — 3) (n —1)«-2, if d = 2s + I. 

n — 2 

Proof. The lower estimate follows directly from Lemma 5. We shall prove 
the upper estimate. Let A C V^) be the center of T and let a eA. Then 

d] 
the degree of every vertex x e V(T) such that dr(a, x) < — — 2 can be 

equal to n. 
Let d = 2s. Then deg x = 2 for every vertex x of G such t h a t d(a, x) = s — 1, 

because T is irreducible and deg x = 1 for every vertex x of G such that 
d(a, x) = s, because d(T) = 2s. Hence we have 

8 

Ъn-
n(n — l)s — 2 

p < 1 + n . > (n — ly-1 + n(n — l)*- 1 = + n(n — l)«-i. 
n — 2 

í - i 

Let d = 2s + 1. Then the centre A of T consists of adjacent vertices, accord­
ing to [6], Theorem 4. 2. Let A = {a, b}. The branch of the tree T tha t contains 
the vertex b and does not contain a has the length 8. The endpoints of this 
branch have the degree one; the vertices adjacent with these endpoints have 
the degree two and all other vertices of this branch can have the degree n. 

8 

By adding these vertices we obtain the formula p<l+n^(n— l ) i _ 1 + 

n(n — l)s — 2 
+ n(n — l)*-1 — (n — 1)*~2 + 2(n — l)«-i = — + (n* + 

n — 2 
+ n — 3) (n —- l) s~2 . Obviously this estimate can be attained. The Lemma 
follows. 
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Theorem 3. Let d > 2 be an integer. Let G be an irreducible wa-graph different 
from the graphs Pa+i, C2d, CWfi, with p vertices and the maximum degree n. 
Then ice have 

<V — 4, if d=2; 

(p\d ) - , if d=3; 

p — d + 4 
— , if d>4. 

( p\l p — d + 4 
— I + 1 < n < . 
4 / ~~ 2 

Proof . One can easily verify that if G is not isomorphic with Pa+i, Cza and 
C2d+i then n > 3. 

a) The estimates in a) follow from Lemma 5. If d = 2, then n + 4 <p 
and hence n < p — 4. If d = 3, then 2n < p and thus 

p p — d + 4 
n < . If d > 4, then cZ + 2?i — 4 < p and thus n < . 

2 2 
w(w — 1)^ — 2 n 

Further we have p < < (n — 1)<* < 3(n — 1)^, be-
n — 2 n — 2 

n (p\d 
cause n > 3 and < 3. Thus we have I — I + 1 < n. 

n— 2 ~~ \ 3 / 
b) If G is an irreducible tree of diameter d, different from Pa+i, then 

p — d + 4 
d(G) > 4. Therefore the inequality n < follows from a). 

Let d = 2s, s > 2. Then from Lemma 6 it follows that 

n(n — l ) s — 2 n 
p < + n(n — I)8'1 < . (n —l)s + (n —l)s < 4(n — l)s, 

n — 2 n — 2 
n (p\l 

because for n > 3 we have < 3. Hence n > \ — \ + 1 . 
~~ n — 2 — \ 4 / 

d— 1 
Let d = 2s + 1, s > 2. Then s = and from Lemma 6 we obtain 

2 
n(n — l)s — 2 n *r-

p < + (n* — n — 3) (n + l)s~* < (n — 1) 2" +(n — 1) X 
n — 2 w — 2 

1 / ™ n2 + n — 3\ 
X(n* + n-3) = (n - l ) 2 . n / . H < (» - l)2" x 

y n — 1 \ n — 2 n - l ) ~ x 
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1 / 3 I 

X ,, 13 + 1 + I < 4(n — l) 2 , where we used the inequalities 
[/ n — 1 \ n — ' 

n tp\i 
n > 3 and < 3. Consequently, — + 1 < n. This completes the 

n —- 2 \4y 
proof. 

5. The estimate of the number of edges 

The maximum number of edges among all graphs with p vertices and no 

triangles is — , according to the well-known Turan's theorem. I n this section 
4 

we shall prove that the number of edges of an co^-graph (d > 2) with p vertices 

(p2 PiP-l)\ 
is at most min — , . First of all we given an estimate of the cardi-

[ * ' d J 
nality of a fc-covering (k > 2) of a graph t h a t will be useful later. 

Obviously, the cardinality of a k-covering of a graph G is at least the number 
of components of G and at most the number of vertices of G. If d(G) < k, 
then any vertex of G forms a k-covering of G. 

Theorem 4. Let k, d be given integers such that 2 < k < d. Let A be a k-covering 
of a graph G of diameter d. Then we have; 

( 2p — 2 
if k is even; 

a) 1 < ИI < 
j 2j> 
U + l 

if k is ođd. 

b) If moreover K(G) > 2, then 

fP — 2 

if k is even; 
I /c — l 

1 < \A\ < 
\ v 

if k is odd. 

Proof . Obviously \A\ > 1. This estimate is reached (in both cases) in 
a graph t h a t arises from the graph Cr, r > 4, by adding one new vertex w 
adjacent to every vertex of Cr. I t is clear t h a t G is a connected graph and 
- p > c Z + l > k + l > 3 . Let A = {a±, #2,..., <x>s} be a k-covering of G. 

a) If s = \A\ = 1, then the estimate holds, because 
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2 ^ — 2 2(k + 1) — 2 2p 2(k + 1) 
> > 1 and also > > 1. 

k k k+1 ~ k+1 

Let s > 2. Let P(ai, aj) be a path between the vertices at, a? e A in G. I t s 

length is at least k. P u t 

Z(ai) = \ x є V(G)\x e P(ai, a2) л d(aІ9 x) < 

Z(at) = \x e V(C7)|a; eP(al9 ai) A d(aÍ9 x) < 

~k+ г 

2 

k + Г 
2 

- 1 

— 1 

where i = 2, 3, ..., s. We have Z(ai) n Z(aj) = 0, for i ~^j, 1 < i, j < s, 
\k+ 1 

because otherwise it would be d(ai,aj) < k. Obviously \Z(ai)\ 

k+ 1 
for i = 1, 2, ..., s. Thus we have p > \ ( J Z(at)\ = s 

k+l 2p 
If k is odd, then p > s and hence s < . If k is even, then 

* - 2 " k+l 
k 

the vertex w of the path P(a±, a2), such that d(a±, w) = —, does not belong 

to any set Z(ai), where 1 < i < s, because in the opposite case either d(a±, a2) < 
sk 

< k or d(aj, a{) < k, where j = 2, 3, . . . , s. Hence p > — + 1 and then 

2p— 2 
s < . This bound is reached in the graph in Fig. 1 and Fig. 2 if & is 

o Q ' o°-
o 

Qr o л o 
>Q/ çQ2 - . 

î " 

J-1 . - - - / 

Fig. 2 
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even and odd, respectively. In both examples r > 1 is an integer, A — 
= {aj, a%, . . . , aj?} and the subgraph induced by the set {a[, ..., a\) is complete, 

b) Let x(G) > 2. The vertices u, v of G such that d(u, v) = d belong to some 
circuit of the length at least 2d, because p > 3, d(G) = d and x(G) > 2. 
Hence p > 2d. If s = \A\ = 1, then the estimate holds, since 

p — 2 2d — 2 2d — 2 p 2d 
> > > 1 and also — > > 1. 

k— 1 k— 1 cZ — 1 & k 
Let s > 2. Let O(a*, %), where i =£j be the circuit of G containing the 

vertices a%,aj of A. I ts length is at least 2k. Pu t 

X(a\) = \XE V(G) I x E C(ax, a2) A d(a±, x) < 

X(ai) =\x E V(G) | x EC(ai, at) A d(at, x) < 

where i = 2, 3, . . . , s. Then at E X(ai) and | K ( ^ ) | = 2 

'k + 1 

2 

~к+ l" 

2 

— 1 

— lj 

k+ 1 
1 for 

i = 1, 2, ..., s. Moreover, X(ai) n X(aj) = 0 for i ^ j , 1 < i, j < s, as other-

/ \k + 1 
wise there would be cZ(^ ,aj) <k. Hence we havep > | ( J X(a^) | = s 2 — 

i=i y 2 
\ i> 

— 1 I. If k is odd, then p >sk and then s < —. Let kbe even and let w±, w2 

I h 

be two vertices of the circuit C(a\, a2) such that d(a±, w±) = d(a±, w2) = — . 

The vertices w\, w2 do not belong to any set X(ai), i = 2, ..., s, because in 
8 

the reverse case there would be d(ai, a±) < k. I t follows t h a t p > | [J X(at)\ + 

+ 2 = (k — 1)5 -f 2 and then s < 
p 

к 
This upper estimate is reached 

for k even in the graph in Fig. 3 and for k odd in the graph in Fig. 4, where 
A = {a[, a\,..., al

r} and the subgraphs induced by the sets AQ and A2t are 
complete. This completes the proof. 

Corollary 3. Let A be a k-covering of a graph G of diameter d with p vertices, 
2(p - 1) 

where 2<k<d. Then \A\ < ; . In addition, if x(G)>2, then 

к 

W< 
p — 2 

2 6 0 



Proof . The corollary follows from Theorem 4, because we have p > k + 1 

and then 
2p 

k 
> 

2p 

p — 2 p 
have > —. 

k— 1 k 

k+ 1 
If K(G) > 2, then p > 2d > 2k and then we 

фa{ фaj K 

A 
'л 

Fig. з Fig. 4 

Corollary 4. Ze£ C? be an w^-graph (d > 2) with p vertices and q edges. Then 
we have; 

p(p— 1) 
a) if x(G) > 2, then q < 

b) if x(G) > 3, then q < 

ã 
p(p - 2) 

2(d - 1) 
Proof . The neighbourhood NQ(U) of any vertex u of G is a cZ-covering of 

G — u} according to Lemma 1. If x(G) > 2, then the graph G — u is connected 
and d(G — u) > d(G) = d. According to Corollary 3 we have \NG(u)\ = 

2(p-l) p - 2 
= deg u < and then deg u < according to Corollary 3. Hence 

d 
p(p — 2) 

we have q < . Q.E.D. 
2(d - 1) 

d 
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Next, the following lemma, proved in [8], will be used. 

Lemma 7. In an edge-critical graph there exists at most one block containing 
a circuit. 

Theorem 5. Let d > 2 be an integer. Let G be an coa-graph with p vertices and 

(p* p(p-l)\ 
c edges. Then q < min 

4 ' d 
p* 

Proof . The inequality q < — holds, see e. g. [5]. One can verify that G is 
4 

an edge-critical graph and according to Lemma 7 it has at most one block 
containing a circuit. If G is a tree, then the estimate holds, because q = p — 1 
and p > d + 1 > 3. Let B be a block of G containing at least one circuit. 
Let po = \V(B)\, qo = \E(G)\. The number r = p — po > 0 is equal to the 
number of vertices of G not belonging to B, i, e. the number of vertices of all 
acyclic branches of G and hence r is equal to the number of edges of G not 
belonging to B. 

Let u G V(B). Then \NB(U)\ > 2 holds, because B is a block. The neigh­
bourhood NG(U) is a rf-covering of G — u, according to Lemma 1. One can 
verify that the set NB(U) is a ^-covering of B — u. The graph B — u is con­
nected and moreover d(B — u) > d, because dB-u(%, y) = dG-u(%, y) > d for 
every x, y e NB(U), X ^ y. According to Corollary 3 of Theorem 4 we have 

2(#>o — 1) Po(po — 1) 
\NB(U)\ < and then q0 < . We have 

d d 
^po(po-l) (po + r)(p0 + r— 1) p(p - 1) 

q = qo + r < +r < - = . 
a d d 

The theorem follows. 
p* 

The proved estimate is for d > 4 better than the estimate q < —. I t is 
4 

reached for an integer r > 2 in the complete bipartite graph Kr,r. 
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