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Matematický časopis 20 (1970), N o . 2 

ON DUAL SEMIGROUPS 

D O R O T A K R A J N A K O V A , Brat i s lava 

The notion of a dual semigroup has been introduced in [1] by St. S c h v a r z , 
who has also given a description of the structure of such semigroups. Based 
upon these results, N u m a k u r a has investigated in [2] the properties of 
F-classes in such semigroups. Using these properties he has proved Theorem 
3,1 of paper [1] under weaker assumptions. 

The purpose of this paper is to show that if some further properties of 
F-classes are used, also Theorems 3,3; 3,4; 3,4a; 3,4b of [1] can be proved 
under wreaker assumptions. These results are formulated in Theorems 2, 3, 
4, 4a below. 

The notations and terminology in this paper are the same as in paper 
[1]. The notions not explicitly defined are the same as in Clifford-Preston 
[5] and Ljapin [6]. 

Definition 1. Let A be a non-vacuous subset of a semigroup S with zero. The 
left [right] annihilator L(A) [R(A)] of A is the set of all xe S with xA = 0 
[Ax = 0]. 

Definition 2. A semigroup S =j= 0 is called dual if for every left ideal L of 8 
we have 

(1) L[R(L)] = L 

and for every rig hi ideal B of S we hawe 

(2) R[L(R)] = B. 

We shall use the following lemmas (see S c h w a r z [1] Lemma 1,4, p. 204, 
Lemma 1,3, p. 203, Lemma 1,6, p. 204). 

Lemma 1. Let S be dual. Then 

(a) L(8) = R(S) = 0; L(0) = R(0) = 8. 

(b) Let {Lv | v e A} [{Bv \ v e A}] be a collection of left [right] ideals of S. 
We then have 
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R( nLv) = KJ R(LV); L( n J?,.) = U L(Br). 
veA veA VGA veA 

Lemma 2. i / S is dual, then x e xS and x e Sxfor every x e S. 
Green [3] has defined an F-class of a semigroup S as the set of all elements 

x, which generate the same principal two-sided ideal of S. We denote the 
F-class containing a by Fa. If $ is dual, then the principal ideal generated 
by a is a U SaKJ aS u SaS = SaS. 

Lemma 3. ( N u m a k u r a [2]). Let S be a dual semigroup without nilpotent 
ideals and Fa, Fb two F-classes of S. We have: 

(a) If Fa + Fb, then FaFb = 0. 

(b) Ifbe Fa, then there exist c, c' e Fa such that b = be = c'b. 

(c) For any a e Fa, a =# 0, Fa U {0} is a minimal two-sided ideal of S. 

Lemma 4. / / S is a dual semigroup without nilpotent ideals, then every two-
sided ideal M =f= 0 of S contains at least one minimal two-sided ideal of S. 

Proof. Let M 4- 0 be a two-sided ideal of S. Choose a e M, a 4= 0. Accord­
ing to Lemma 3 Fa U {0} is a minimal ideal of S. The intersection 
M n (Fa U {0}) is non-empty since it contains a t least the elements {0}, 
{a}. Since Fa U {0} is a minimal ideal, we have 

0 + I n f t u {0}) = Fa u {0}. 

Hence M contains at least one minimal two-sided ideal, namely Fa U {0}. 

Lemma 5. If for a two-sided ideal J of a dual semigroup we have Fa n J 4= 0, 
then Fa c J . 

Proof . Let beFanJ. Then beFa=> SbS = SaS. Further b e J => SbS c 
c= J . Hence a E £ a $ = #&$ c: J . Since a is any element e Fa, we have Fa c: 
c J , q.e.d. 

Analogously we have: 

Lemma 6. Let S be a dual semigroup without nilpotent ideals. Then every 
two-sided ideal of S is contained in a maximal two-sided ideal of S. 

R e m a r k . Lemma 6 trivially holds if there is a unique F-class different 
from {0}. Then S — {0} is an F-class, M*^ = {0} and S is a simple semigroup 
with zero. 

Proof . The semigroup S can be expressed as the union of disjoint F-classes. 
We may suppose that there exist at least two F-classes different from {0}. 
Let M be a proper two-sided ideal of S. Then there exists a t least one class 
Fa with M n Fa = 0. We prove that the set S — Fa is a maximal two-sided 
ideal of S. 
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We first show that S — Fa is a two-sided ideal. Write S = U (F$ U {0}). 
us 

Then S(S - Fa) = S[\J (F$ U {0})] = U S(F$ U {0}) = u (F$ U {0}= £ - FV 
$=ta £=(-« £±a 

Analogously (£ — .F0) £ = S - Fa. 
Here we used the fact tha t F$ U {0} is a minimal two-sided ideal of S. 
To prove that S — Ka is a maximal two-sided ideal of S suppose that M' 

is a two-sided ideal of S such that S — Fa c M' c fif. Since I ' n ^ + 0 
by Lemma 5 we have Fa c J f '5 hence .AT = $. This proves our assertion. 

Theorem 1. ( N u m a k u r a [2]). Let S be a dual semigroup without nilpotent 
ideals. We then have S = U Mv, where MaMfi = 31a n Mp = 0 for oc =t= /? e A 

VGA 

and 31v are simple dual semigroups. 
The converse statement is given by 

Theorem 2. Let {Mv \ v e A} be a collection of simple dual semigroups with 
31 a n 31 p = 0 for a =f= fi e A. Let us identify the zero elements of all Mv, 
v 6-1. The set S = U 31 v with the multiplication * defined as follows 

VGA 

I ah if a, b belong to the same Mv, 
a*b = / 

\ 0 if a e Mj,, b e 31 p, oc * p £ A, 

is a dual semigroup without nilpotent ideals. 
The proof that S is dual is given in paper [1], Theorem 3,2, p.210. The 

fact that the semigroup S has no nilpotent ideals is evident from the con­
struction of the semigroup S. 

Combining Theorem 1 and Theorem 2 we get: 

Theorem 3. Let S be a semigroup with zero and without nilpotent ideals. Then 
S is dual if and only if S is the union of its minimal two-sided ideals and each 
of these minimal ideals is a dual semigroup. 

Another criterion for the duality of a semigroup is given in Theorem 4. 
To this end we need the following lemma: 

Lemma 7. Let M* be a maximal two-sided ideal of a semigroup S. Then 
S — 31* is an F-class. 

Proof . Let x be any element e S — M* and Fx the corresponding F-class. 
We have Fx n M* = 0, for otherwise we would have Fx c: M*? in particular 
x G 31*, contrary to the assumption. 

Take any element y e S — 31*. Then [y] = y U Sy U yS U SyS is an ideal + 
4= 31*, hence with respect to the maximality M* U [y] = S. Therefore 
a* e [y] and this implies [x] a [y]. Sy metrically we can prove [y] c [x]. Hence 
M ~ [y] and therefore Fx = Fy, q.e.d. 
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R e m a r k . If AS is a dual semigroup without nilpotent ideals and J /* is 
a maximal two-sided ideal of S, then by Lemma 3 (AS — J/*) u {O} is a mini­
mal two-sided ideal of S. 

Lemma 8. (Schwarz [1], Theorem 2,1, p.206). Let S be a dual semigroup 
and J a two-sided ideal of S which does not contain a nilpotent subideal of S. 
Then J and R(J) are dual semigroups. 

Theorem 4. Let S be a semigroups with zero and without nilpotent ideals. Sup­
pose that there exist at least two maximal two-sided ideals of S. Let {M*x | a e .1} 
be the set of all maximal ideals of S. Then S is dual if and only if 

(a) n M*x = 0; 
<xeA 

(b) Every semigroup J/*, a e A is dual. 

Proof. 1. Suppose that AS is dual. Condition (b) is satisfied according to 
Lemma 8. The duality implies according to Lemma 4 that every two-sided 
ideal J of AS contains a minimal two-sided ideal of AS. By Theorem 1 we have 
AS = U Mv, where {Mv \ v e A} is the set of all minimal two-sided ideals of AS. 

veA 

Now, since AS is dual, we have O = R(AS) = R( U MV) = n R(MV). The set 
veA veA 

{R(MV) | v e A} is exactly the set of all maximal two-sided ideals of AS. Hence 
the first part of our Theorem is proved. 

2. Suppose that the conditions (a) and (b) are satisfied. We show that AS 
is dual. According to [1] Lemma 3,1c we can write AS = M* U L(M*X) with 
M*x n L(M*a) = 0. The two-sided ideal L(M*) is contained in a maximal two-
sided ideal M*> of AS; L(M*X) is also a two-sided ideal of M*p. According to Lem­
ma 8 L(M*J is therefore a dual semigroup. The condition (a) implies (see 
[1] Lemma 3,Id) that AS is a union of minimal two-sided ideals of AS, each of 
which is a dual semigroup. According to Theorem 3 AS is dual. 

This proves our Theorem. 
Similarly we can prove: 

Theorem 4a. Suppose that the suppositions of Theorem 4 are satisfied. Then S 
is dual if and only if 

(a) n M*x = 0; 
oceA 

(b) There is a pair of two-sided ideals Mi, J/2 which are themselves dual 
semigroups and for which we have S = Mi U J / 2 with J/1M2 = 0. 

Theorem 4b. Let S be a semigroup with zero and without nilpotent ideals. Let 
{M*x I a G A} be the set of all maximal ideals of S. Then S is dual if and only if 

90 



(a) n M'x = 0. 
<xeA 

(b) Kac/i O/ lhe semigroups L(M*X) is dual. 
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