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LINEAR INTEGRAL EQUATIONS IN THE SPACE
OF REGULATED FUNCTIONS
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Abstract. In this paper we investigate systems of linear integral equations in the space
G of n-vector valued functions which are regulated on the closed interval [0, 1] (i.e. such
that can have only discontinuities of the first kind in [0,1]) and left-continuous in the
corresponding open interval (0,1). In particular, we are interested in systems of the form

1
() = A0=(0) ~ [ B, fazio)] = 1),

where f € G}, the columns of the n X n-matrix valued function A belong to G}, the
entries of B(t,.) have a bounded variation on [0,1] for any ¢ € [0,1} and the mapping
t € [0,1] = B(t,.) is regulated on [0,1] and left-continuous on (0, 1) as the mapping with
values in the space of n X n-matrix valued functions of bounded variation on {0,1]. The
integral stands for the Perron-Stieltjes one treated as the special case of the Kurzweil-
Henstock integral.

In particular, we prove basic existence and uniqueness results for the given equation and
obtain the explicit form of its adjoint equation. A special attention is paid to the Volterra
(causal) type case. It is shown that in that case the given equation possesses a unique
solution for any right-hand side from G7, and its representation by means of resolvent
operators is given.

The results presented cover e.g. the results known for systems of linear generalized dif-
ferential equations

t
(0 =2(0) - [ [@A@)(s) = 10 - £©)

as well as systems of Stieltjes integral equations
1 t
20— [l =g o o) = [ [AK(el) = 9(0):
0 0

Keywords: regulated function, Fredholm-Stieltjes integral equation, Volterra-Stieltjes
integral equation, compact operator, Perron-Stieltjes integral, Kurzweil integral
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The paper is devoted to linear operator equations of the form
(0.1) - L=/,

where . is a linear compact operator on the space G} of column n-vector valued
functions z: [0,1] — R™ which are regulated on [0, 1] and left-continuous on (0, 1),
and f € G7 is given. Due to Schwabik (cf. [Sch4, Theorem 5] it is known that
% is a linear compact operator on G} if and only if there are n x n-matrix valued
functions A(t) and B(t,s) respectively defined on [0,1] and [0,1] x [0,1] and such
that

(0.2) (Zz)(t) = A(®)z(0) + /01 B(t,s)d[x(s)] for = € G} and t € [0,1],

while the columns of A belong to G} (A € G}*™), the entries of B(t,.) have
a bounded variation on [0,1] for any t € [0,1] (B(t,.) € BV™*™) and the mapping

Mp: te0.1] = Mp(t) = B(1,.) € BY"™*"

is regulated on [0, 1] and left-continuous on (0,1) (i.e. B € J¢**", see Definitions 2.1
and 2.2). The integral on the right-hand side of (0.2) stands for the Perron-Stieltjes
one treated as the special case of the Kurzweil-Henstock integral.

In Sections 3 and 4 we prove basic existence and uniqueness results for the equation
(0.1) and obtain the explicit form of its adjoint equation. An important tool for the
proofs of our main results is in particular the theorem on the interchange of the
integration order for Stieltjes type integrals (i.e. the Bray Theorem). Its proof for
the Perron-Stieltjes integral is given in Sec. 2 (¢f. Theorem 2.13).

Special attention (cf. Sec. 5) is paid to the causal case, i.e. to the Volterra-Stieltjes
integral equations of the form

I(t)-A(t)I(O)—/O B(t,s)d[z(s)] = f(), te[0,1],

where A(0) = 0.

Similar problems in the space of regulated functions were treated e.g. by Ch.
S. Honig [Ho1], (H62], L. Fichmann [Fi] and L. Barbanti [Ba], where the interior
(Dushnik) integral was used.
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1. PRELIMINARIES

1.1. Notation. Throughout the paper RP*4 denotes the space of real p x ¢-
natrices, R® = R™*} stands for the space of real column n-vectors, R"! = R! = R.
Given a p x g-matrix M, its elements are denoted by m;;, i.e. M = (m; ;

,)
T —
1=, e Sl w27

In particular,

n

\1\=Z|Ill for »e€R",

i=1

y7 = (Y, v2,...,ya) and vl = max |y;| for yeR™

Furthermore, for a given matrix M € RP*9, its columns are denoted by mli and
we write M = (771[-"])1-:1,2,”,,(,. Obviously, we have

[M|= max |mb)| forall A €RPX7,
=12,

The symbols I and 0 stand respectively for the identity and the zero matrix of the
proper type. Given an n x n-matrix M, det M denotes its determinant.

If —00 < a < b < o0, then [a,b] and (a,b) denote the corresponding closed and
open intervals, respectively. Furthermore, [a,b) and (a, ] are the corresponding half-
open intervals. The sets d = {to,1,...,t,} of points in the closed interval [a, b] such
that @ = tp <t} < ... < tm = b are called divisions of [a,b]. The set of all divisions
of the interval {a,b] is denoted by D(a, b).

Given M C R, xa denotes its characteristic function.

1.2. Regulated functions. Any function f: [¢,b] = R which possesses finite
limits

ft4) = T () and f(s=) = lim f(r)

for all t € [a,b) and s € (a,b] is said to be regulated on [a,b]. A p x g-matrix valued
function F': [a,b] — R?* is said to be regulated on [«, b] if all its components f; ; (i =
L,2,...,p, 7 =1,2,...,q) are regulated on [a,b]. The linear space of p x g-matrix
valued functions regulated on [a, b] is denoted by G"*%(a,b), G5*%(a,b) denotes the
space of all functions from GP*4(a,b) which are left-continuous on (a,d). It is easy
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to see that any function regulated on [a,b] is bounded on [a,b]. For F' € GP*4(a,b)
we put
[lFll = sup [F(t)].
te[n_b]

1t is well known that both G?*?(a,b) and G%*?(a, b) are Banach spaces with respect
to this norm (cf. {H61, Theorem 1.3.6]). Given F € GP*7(a,b), ¢ € [a,b) and s € (a, ],
we put

ATF(t) = F(t+) - F(t) and A™F(s) = F(s) — F(s—).
A function F € GP*? is said to be a finite step function on [0,1}, if there exist
a division d = {to,t;,...,tm} of the interval (0,1] and real numbers cET]] and dm,
r=12...,m,i=1,2,...,p,j =1,2,...,4q, such that

m

n
Fos@ = 3 e @ + > dlxe @ on [0,1]

=0 T=0

for any component f; ;, i=1,2,...,p, 5 =1,2,...,¢, of the function F. It is well-
known (cf. [H61, Theorem 1.3.1]) that F € G?*7 if and only if there is a sequence
{Fi}32, of finite step functions on [0,1] such that

lim ||Fy, — F|} = 0.
k—oo

1.3. Functions of bounded variation. For a given function F': [a,b] — RP*9
and a given division d = {to,t1,...,tm} of [a,b] (d € D(a,b)) we define

S(F.d) = Y F(ty) - F(ty-)l.
j=1

If
vart F = sup S(F,d) < oo,
d€D(a,b)

we say that the function F has a bounded variation var’ F on the interval [a,b].
BVY?*4(a,b) denotes the Banach space of p x ¢g-matrix valued functions of bounded
variation on [a, ] equipped with the norm
F ¢ BVP*Y(a,b) — ||Fllav = |F(a)| + var’ F.
For a given F € BVP*4(a,b), we define
vp(t) =vart F for t € [a,b].
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It is well known (cf. [Hi, I1.4.7. I1.6.1 and the introduction to Section IL.7]) that the
relations

(1.1) Atvp(t) = ATF(t) forall t€ [a,b)
and

(1.2) A~up(s) = A"F(s) forall s¢ (a,b]
are true.

For more details concerning regulated functions or functions of bounded variation
see [Au], [H61], [Fra] or [Hi), respectively.

1.4. Notation. In the case [a,b] = [0,1] we write simply D, GP*4, GH*?
and BV?*7 instead of D(0,1), GP*9(0,1), G7*7(0,1) and BY?*9(0, 1), respectively.
Furthermore, G**! = G, G}*! = G} and BV™*! = BV".

1.5. Functions of two real variables. If a p x g-matrix valued function K is
defined on [0,1]x [0, 1] and t, s € [a, b] are given, then the symbols K (t,.) and K (., s)
denote the functions

K(t,.): T€[0,1] = K(t,7) € RP*?
and
K(.,s): 7€[0,1] = K(r,s) € RP*9,

respectively. Furthermore, if s € [0,1] and K(.,s) € G?*7, then we put

AT K(r,8) = K(r,s) — K(r—,5) for 7€ (0,1]
and

AfK(1,5) = K(r+,5) — K(7,5) for 7€/[0,1).
Similarly, if t € [0,1] and K(t..) € GF*7, then we put

AFK(t,0) = K(t,o) - K(t,o—-) for o€ (0,1]
and

ATK(t,0) = K(t,o+) — K(t,0) for o€0,1).

1.6. Notation. For given linear spaces X and Y, the symbols .#(X,Y) and
(X, Y) denote the linear space of all linear bounded mappings of X into Y and the
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linear space of linear compact mappings of X into Y, respectively. If X = Y we write
Z(X) and ¥ (X). If & € .Z(X.Y), then R(&), N(&/) and &~ denote its range,
null space and adjoint operator. respectively.

1.7. Integrals. The integrals which occur in this paper are the Perron-Stieltjes
ones. For the original definition, see [Wa] or [Sa]. We use the equivalent summation
definition due to Kurzweil (cf. [Kul], [Ku2], [STV]).

Let the functions f,g be regulated on [a,b]. If the integral j: f(s)djg(s)] has
a finite value, then by Theorem 1.3.4 from [Kul] the function

h:te [a,b]ﬂ/tf(s)d[g(s)] €R

is regulated on [a, b]. Let us note that if both the functions f, g are regulated on [a, b}
and at least one of them has a bounded variation on [a, ], then the integral

b
/ £()dlg(s)]

has a finite value (cf. [Tv2, Theorem 2.8]). In this case the above mentioned Theorem
1.3.4 from [Kul] implies that

h(t+) = h(t) + f®)ATg(t) and R(s-) = h(s) - f(s)A7g(s)
holds for all ¢ € [a,b) and s € (a,b]. Moreover, if g € BV then h € BV, as well.
Further basic properties of the Perron-Stieltjes integral with respect to scalar
regulated functions were described in [Tv2].

Given a p x g-matrix valued function F' and a ¢ x n-matrix valued function G
defined on [a, ] and such that all the integrals

b
[ 5o =12y k=12 g =12,

exist (i.e. they have finite values), then

/ " P i) = (E / e d[ﬂk,;(ﬂ]) '

=

The integrals . ,
/ dF®IGE and / FOACHIEE)
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for matrix valued functions F, G, H of proper types are defined analogously. The
extension of the results obtained in [Tv2] for scalar functions to vector valued or
matrix valued functions is obvious and hence for the basic facts concerning integrals
with respect to regulated functions we will refer to the corresponding assertions from
[Tv2].

In particular, the following lemma follows easily from [Tv2, Theorem 3.8].

1.8. Lemma. & is a linear bounded mapping of G} into R™ if and only if there
exists an m X n-matrix M and an m x n-matrix valued function K(t) of bounded
variation on [0,1] such that

&z = Mz(0) + /1 K(t)d[z(t)] forall ze€GT.
0

Furthermore, for a given m X n-matrix M and an m X n-matrix valued function K (t)
of bounded variation on [0,1], the relation

1
Ma(0) + / KO de()] =0 forall «eG}
0
holds if and only if
M=0 and K(t)=0on [0,1].

By a slight modification of Corollary 2 from [Sch4], we can obtain a result analo-
gous to Lemma 1.8 also for linear bounded mappings of G} into G™.

1.9. Lemma. .2 is a linear bounded mapping of G} into G™ if and only if
there exist n x n-matrix valued functions A € G™*" and B: [0,1] x [0,1] - R™*"™
such that
(1.3) B(.,s) € G™™ forall se0,1],

(1.4) B(t,.) € BV™™ forall te[0,1],
(1.5) there is a (3 < oo such that varb B(t..) <3 forall t€0,1]

and £ is given by (0.2). Furthermore, for given n x n-matrix valued functions 4 €
G™*™ and B(t, s) fulfilling (1.3)-(1.5) the relation

1
A(t)z(0) +A B(t,s)d[z(s)] =0 on [0,1]

holds for all x € G™ if and only if

A(t)=0 on [0,1] and B(t,s)=0on [0,1] x [0,1].
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2. FUNCTIONS OF THE CLASS J¥™X™ AND THE BRAY THRropEM

In this section we shall study the properties of the class "X of 1 o matrix
valued functions which will play a crucial role in our investigations of equations of
the form (0.1).

2.1. Notation. For a given function K: [0,1] x [0,1] — Rnxn gych that
K(t,.) € BV™™ for any t € [0,1], we denote by My the mapping of [0,1] into
BY™ ™ defined by
(2.1) Myc:t€[0,1] » My(t) = K(t,.) € BV**™,

2.2. Definition. We say that a matrix-valued function K: [0,1] x [o, 1] = Rrx»
belongs to the class ™ ™ if it satisfies the following hypothesis:

(Hi) K(t,.) € BY™" for any t € [0,1];
(H2)
(i) for any ¢ € [0,1) there exists a function K = Mg (t+) € BY™ " gych that

lim || () = K |ley =0,
oy
(i) for any ¢ € (0,1] there exists a function K;” = M (t—) € BY™*" gych that
lim [[My(r) = K |ly = 0.
-
2.3. Definition. We say that a matrix-valued function K : [0, 1] x [0, 1] — R"

belongs to the class ™ if K € J™*" and the mapping M : 0,1] —» BV
given by (2.1) is left-continuous on (0, 1), i.e.

Jim 1K () = K(6 oy =0

holds for any ¢ € (0,1).

2.4. Remark. Let a matrix-valued function K : [0,1] x [0,1] — R»*» be such
that J((t,.) € BY™™" for any ¢t € [0,1] and let the mapping My : [0,1] — BY"*"
be defined by (2.1). We say that 9y is regulated on [0,1] if the condition (Hz)
from Definition 2.2 is satisfied. Obviously, (Hz) is true if and only if the following
assertions are true:

(i) for any t € [0,1) and any & > 0 there exists a & > 0 such that
t+8<1 and [[K(m,.)—K(n,.)llev <e forall 7,75 € (¢,¢+0)

and
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(it") for any t € (0,1] and any & > O there exists a 6 > 0 such that
t=6>0 and ||K(7,.) - K(m,)llev <e forall 7,7 € (t—56,1).

The following assertion due to Schwabik (cf. [Sch4, Theoret 4]) has been already
mentioned in the introduction.

2.5. Theorem. .7 is a linear compact mapping of G} into G" if and only if
there exist n X n-matrix valued functions A € G™*™ and B: [0,1] x [0,1] — R**"
such that B € %™ and & is given by (0.2). Furthermore, .# is a linear compact
mapping of G} into G} if and only if there exist n X n-matrix valued functions
A € G}*™ and B: [0,1] x [0,1] — R™*™ such that B € J¢**" and £ is given by
(0.2).

Let us summarize some of the further properties of functions of the class J#mx",

2.6. Lemma. If X € o¢™*", then K(.,s) € G™*" for any s € [0,1].

Proof. Lett € [0,1) and € > 0 be given. By (Hz)(I') (cf. Remark 2.4) there
exists 6 > 0 such that t+ 4 < 1 and

|1 K (r3,.) = K(mi.)|lsy <& forall 7,72 € (t,t+ ).
Consequently, if s € [0,1] and 71,72 € (¢,¢ + ), then

|K(72.8) — K(m1,8)]|
< |K(12,0) = K(m1,0)| + |[K(72,8) = K(71.5) = K(12,0) + K(7,0)|
<K (2, ) = K1, ey <e.

This implies that K'(.,s) possesses a limit Iir}i K(r.s) = K(t+,s) € R™ for any
=

t € [0,1) and any s € [0,1]. Analogously, K(.,s) possesses a limit ’_li’nt]_ K(r,s) =

K(t—,s) € R for any ¢ € (0,1] and any s € [0,1]. [m]

2.7. Lemma. IfK € ™™, then
»:= sup [|K(,. )|y < oo.
te[0,1]

Proof. It follows directly from Definition 2.1 by means of the Vitali Covering
Theorem (cf. also Remark 2.3). 0
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2.8. Lemma. If K € s¢™=™ and My 18 given by (2.1), then

(2.2) Dy (t4) = K (t+,-) € BV forall te(0,1)
and
(2.3) My (t—) = K(t—,.) € BV™™ forall te(0,1].

Proof. Lett€[0,1) be given. By (Hz)(ii) there exists H € BVnxn gych that
lim ||K(r,.)— H|lgy =0,
it
i.e. H =My (t+). In particular, in virtue of Lemma 2.6 we have
K(t+,s) = 1-15]}4. K(r,s)=H(s) forall se(0,1]

wherefrom the relation (2.2) immediately follows. Analogously we can prove that
the relation (2.3) is true, as well. O

As a direct consequence of Lemma 2.8 we have the following
2.9. Corollary. If K € J#™*" then the relations

1’11{?-% K (.} ~ K@+, )sy =0 forall tc(0,1)
and

Jdim J|K(7,.) = K(t—,.)|lsy =0 forall t€(0,1]

are true.

2.10. Lemma. Let I € JVHXm then for any « € G™ the integrals

1
26) [ ®eodsel ten,
1
2.7 /Uff(t+,s)d[m(s)], te0,1)
and
1
(2:8) /01\'@\.,5)(1[1-(5)], t € (0,1]

have sense and the relations

1
(2.9) 33&/0 Ix’(m)d[w(s)]:/ﬁl K(t+,9)d[z(s)] for te0.1)

and
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1 1
(2.10) Jim / K(T,s)d[rr(s)]:/ K(t—,s)d[z(s)] for te€(0,1]
~t=Jo 0

are true.
Proof. All the integrals (2.6)~(2.8) have sense according to Theorem 2.8 from

[Tv2]. The relations (2.9) and (2.10) follow then immediately by [Tv2, Theorem 2.7],
from Corollary 2.9. [m]

2.11. Corollary. If K € ¢ %™, then the integral

/l K(t,s)d[z(s)]
Jo

is defined for any x € G™ and any ¢ € [0,1] and the function h: [0,1] = R™ defined
by

1
Kty = /0 K(t,5)djz(s)]

is regulated on [0,1] (h € G™).
Moreover, if K € J¢**", then h € G}.

2.12. Lemma. If K € J#"*", then the integrals
1
@11) / V) LK (5,8, te[0.1]
0
are defined for any y € BY" and the function h: [0,1] — R" defined by
- 1
(1) =/ VT (5) ol (s, )]
0

has a bounded variation on [0, 1] for any y € BY™.

Proof. a) The existence of the integrals (2.11) follows fromn [Tv2, Theorem 2.8].
b) To prove that h € BY", let us first assume that n = 1, k € #"™*™ and
d = {to,t1,--.,tm} € D. Then for all x; € R, i = 1,2,...,m such that |z;] <1 we
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have by [Tv2, Theorem 2.8] and Lemma 2.7

= ‘/Ol y(s)ds ‘:(i(}"’(s'ti) ~ ]w‘,(S,t,'..l)))JIZ

i)

zlmvm( sup IZ(kszM( tiy))e [)

Z[h(ti) — h{ti_y)]7:

i=1

s€[0,1}
[ENESY
$2|Iyllﬁw( sup (Zlksf)/ (s,ti0)lle |))
s€[0,1} Ni=1
\r.\<1

< 2|lyllsy Sl[lp] (vard k(s,.)) = 2Il¥llev s < co.
s€fo,1
In particular, if we put
v; = sign [h(t:) — h(ti_1)]
for i =1,2,...,m we obtain that the inequality

m

d) =Y [hts) = A(ti-1)] < 2llylly
i=1

holds for any division d = {to,t1,...,tm} € D of the interval [0,1] and any y € BV,
ie.
varg h € 2x|lylley < co for any ¥y € BY.

¢) In the general case of n € N, n 2> 1, we have for any j = 1,2,...,n, any y € BY"

and any ¢ € {0,1]
Z/ () .l (5. 1)

Consequently, by the second part of the proof of this lemma the inequalities

var h (Z ||yzl|w)" = 2|lyllay

are true. It follows easily that i € BV™ for any y € BV™. a

2.13. Theorem. (Bray Theorem) If K € J#™*". then for any * € G™ and any
y € BY" the relation

iz [ o, I K aats)] = | 1 (f o, < (6.9) lato)

is true.
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Proof. a) Both iterated integrals occurring in (2.12) have sense by Corollary
2.11, Lemma 2.12 and [Tv2, Theorem 2.8].

b) Let us first assume 2 = 1. k € #7*™ and y € BV. Let f € G be a finite step
function, i.e. there is a division {to,1,...,tm=} Of the interval [0, 1] such that f is on
[0,1] a linear combination of the functions

{Xtt,1 7= 0,1 my XD J=01,...,m-1}

To show that the relation

(2.13) /01 y(t) de Uﬂl k(t,5)d [f(s)]] = /0l (/01 y(t) de [K(t, s)]) dlf )]

is true for any finite step function f on [0, 1], it is sufficient to show that (2.13) is
true for any function from the set

{Xpraps 7€ 0,1} U {xey 0 € [0, 1)}

If f = X[, i-e- f(t) = 1 on [0,1], then obviously both sides of (2.13) equal 0.
Furthermore, let 7 € (0,1] and f = x{r,1j- Then by [Tv2, Proposition 2.3],

/0 K(t,5) F($)] = k(. ).

/ oy [ / ko) [f(sn} -/ "0 k).

On the other hand, we have by [Tv2, Proposition 2.3],

/Ol (./01 y(t) de [k(t, S)]) df(s)] = /Ol o(t) de K6 7))
as well.

Analogously we would prove that (2.13) holds also for f = X(e,1]» @ € [0,1). Now,
if r € G, let {z,}22, be a sequence of finite step functions on [0,1] such that z,
tends to 2 uniformly on [0, 1} as r — co. By the previous part of the proof, we have

/ o I k) ] = | l (/ ) ke ) 9]

for any r € N. According to [Tv2, Corollary 2.9] it follows that

- /u1 (/01 y(t)de [“(f»s.n) dfe(s)].
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On the other hand, by Lemma 2.7 and by [Tv2, Theorem 2.8] we have for any r € N
and any t € [0,1]

\ / ' kit,)dle (] - / " ke, dla(s)]

- \ / " k(t,s) d s (5) - 2(s)]
0
<2k lew llzr - 2ll < 2l — 2]

and consequently

(] ' e alanton) = | " kit ) dias)

uniformly with respect to ¢ € [0,1]. Thus, making use of [Tv2, Corollary 2.9] once
more, we obtain that the relation

,‘L“;/Ol nor? Uol k(Ls)d[zr(S)]] = /Oly(z)d, Uol k(t,s) d[x(s)]]

is true. It follows immediately that the relation (2.13) is true for any y € BY and
any f € G.

¢) The proof can be extended to the general case n € N, n > 1, similarly as it was
done at the end of the proof of Lemma 2.12. [m]

2.14. Remark. For the proof of the Bray Theorem in the case of the interior
Dushnik integral see [H61, Theorem IL.1.1].

In the following text we shall make use of the following assertion, as well.
2.15. Lemma. Let K € #"*" and let

K(t,s+) for te[0,1] and s€[0,1),
H(t,s) =
K(t,1-) for t€[0,1] and s=1.
Then H € J™*™. Moreover, if K € J"*", then H € J¢"*". as well.

Proof. Analogously as in the proofs of Lemma 2.12 and of Theorem 2.13 it is
sufficient to show that the assertion of the lemma is true in the scalar case n = 1.
Let n=1, k € ¥™*" and
k(t,s4) for t€[0,1] and se€0,1),
h(t,s) =
k(t,1-) for t€[0,1] and s=1.
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a) Let d = {s0,51,...,5m} be an arbitrary division of the interval [0,1] (d € D).

Then

m

S(hyd) =3 |h(t,55) = R(t,55-1)]

m—1

= Z [k(t, s5+) — k(t, s5-1+)] + [k(t, 1=) = k(t, $m—-1+)].

Let § > 0 be such that
Sm—_1+0<1-6

and let us denote

(2:14) g0=0,05=s_1+d for j=1,2,....,m, Omy1 =1—10,0mi2=1.

Then
(2.15) ds = {00,01,...,0m42} €D

and according to (Hy), for any ¢ > 0 sufficiently small we have
m—1
S(k,ds) = k(t,6) = K(1,0)] + 3 [k(t. 55 +6) = k(t, 551 + )|
j=1
+|k(t, 1 — 6) — k(t, sm—1 + )| + |k(t, 1) — k(t, 1 - 0)]
< varg k(t,.) < oo.

Thus
00> lim S(k,ds) = S(h,d) + |AFR(L, ) + A7 k(t, )]
—0+

and consequently the inequality
S(h,d) < varg k(t,.) — |ATK(t,0)] — A7 k(2,1)]
holds for any division d € D. Hence

|k(t, 0+4)| + var§ h(t,.)
< [k(8,0)] + |AT E(t, 0)] + vard k(t,.) — AT E(t,0)] — |AF k(t, 1)
< k(¢ sy,

[tR(t, ey =

i.e. h fulfils (Hi)-
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b) Let £ € {0,1) and € > 0 be given. According to (Hz2)(i') there is a 6 > 0 such
that t + 0 < 1 and

[lk(72,.) = k(r1,- Moy <€

holds for any couple 71,72 € (t.t + &). In particular,
(2.16) S((rs,.) ~ k(m,.),A) < &

for any division A € D and any couple 71,72 € (t,t + ). Now, let an arbitrary
division d = {s0,51,...,8m} € D be given and let § > 0 be such that § < & and
Sm—1+ 8 < 1 — 4. Let us define the division ds = {00,01:-..,0m} € D as in (2.14)
and (2.15). Making use of (2.16) we obtain

S(h(r2,.) = h(r1,.),d)
= [k(72, s14+) — k(r1, 514) = k(72,0+) + k(11,0+)]|
m—1
+ Z [k(r2y85+) = k{71, 85+) = k(r2, 85-14) + (1, s5-14)]
=2
+ k(12,1=) = k(71,1=) = k{72, 8m1H) + k(71 $m—1 )

= 62’& (; [k(r2,0541) = k(m1,0541) — b(T2,05) + k("'lvajﬂ)

= (sl_i*r(x)l+ (S(k(r2,.) = k(r1,.),ds))

— AT (k(72,0) = k(1 0)] = [A3 ({2, 1) = k(ry, D) < ¢

This means that for any couple 11,72 € (£,¢ + 8) we have

1A, ) = h(r1, sy <e,
i.e. h fulfils (Hp)(i'). Similarly we could show that i fulfils also (Hz)(ii). Tlus
he o=t

c) Let My ¢ € [0,1] = k(t,.) € BV be left-continuous on (0,1) and let € > 0 be
given. Then there is a do > 0 such that ¢ — §, > 0 and

(2.17) S(k(t,.) —k(r,.),A) <¢
holds for any 7 € (¢t — &o,t) and any A € D. Let an arbitrary division d =

{s0,81,...,8m} € D be given and let ds = {09,01,...,0m42} € D be given for
5 € (0, min{do, 1_5;‘" }) by (2.14) and (2.15). Then making use of (2.17) we obtain
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similarly as in part b) of this proof

S(h(t,.) = h(7,.),d)

. alj& (; [kt 0541) — k(r, 0541) — k(t, o) + ’c(r,aj)\)
S, (S(kt,-) = k(r, ), dg))
— 187 (R(5,0) = K(r,00)] = |A7 (k(t.1) - k(r, )

N <e,
wherefrom the desired relation
Jim [I2(t, .y~ h(r, ey =0
easily follows.
2.16. Remark. Analogously we could show that if K € onxn 404 if
K({t,04)  for te[0,1] and s=
Hs = or L€l and wo,
K(t,s—) for te0,1] and seg (, 1]

then H € J™*". Moreover, if ' € #**™ then H € KT as well.,

2.17. Lemma. Let K € ™" and let
Hits) = K(t+,5) for te[0,1) and s € [0,1],
K(l-,s) for t=1 and s€(0,1]

and
K(0+.5) for t=0 and s€[0,1],

G(t,s) =
K(t-,s) for te€(0,1] and se€[0,1)
Then H € X "*™ and G € X"

Proof. We shall prove that under the assumptions of the lemma H € ™.
The proof of the latter relation would be quite similar.

Let t < 1 and let d € D be an arbitrary division of [0, 1]. Then for any 6 € (0,1 1)
we have by Lemma 2.7

S(K(t+4..).d) < varg K(t +6..) < 3 < 0.
Letting § — 0+ we immediately obtain that the inequality
S(H{t,.),d) S x <
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is true for any d € D. It means that
veu‘(lJ H{t,.) < % <oo.
Now, let an arbitrary ¢ > 0 be given. By (H2)(i') there is a § > 0 such that
1E (2, ) ~ K (1, sy < §
holds whenever t < 11 < 72 < ¢t + 4. It means that for all ¢t1,t2 € (¢,¢ + %] and any
7 € (0, %) we have
Ktz +7,.) =Kt + 7 )]sy <5.

In particular, we have for any division d € D

|IS (ty +7,0) — K (1 + 7,0)] <

[

and
SE(ta+7,.) K1 +7,.),d) < §

wherefrom we obtain easily that the relation
1H(tz,.) = H(ty, oy <<

is true whenever ¢t < t; <ty <t + %
Analogously we would prove that if ¢ > 0, then for any ¢ > 0 there is a § > 0 such
that
1H (t2,.) = H(ts, sy <e

is true whenever t — £ < t; <ty <t [m]

2.18. Lemma. Let K € #™*™, t;,51 € [0,1). and t2,s2 € (0,1]. Then all the
limits

K(ti+,s1+) = lim K(r,0), K(ti+,s;—)= lim  K(r,0),
(r,0)-+(t1,51) (r.0)=(t1,52)
T>t1,0>51 1,05
K(ta—,514) = lim  K(r,0), K(t2— s:-)= lim  K(r,0)
(=) (t2,51) (1,0)—(tz2,52)
T2, 0>51 T<t2,0<52

are defined in Rnxn,

Proof.  We will restrict ourselves to proving the existence of the limits
K(ti+,s1+) in R**™ for t;,s1 € [0,1). The modifications of the proofs in the
remaining cases are obvious. .

194



Let t; € {0,1) and s; € [0,1) be given. By Lemma 2.15 there exists M € R**"
such that
n!‘f?; K(ti+.0) = nlg?+(7h,\?l‘+ K(r,0)) =M.

Furthermore, since in virtue of Corollary 2.9

i ¢ — | =
TE¥3+||I‘(T”) Kti+,.)] =0,

Iian’ K(r,0) = K(ti+,0) uniformly with respect to o € [0,1],
—rl1

it follows that
lim K(r,0)=M.

(r.0)+(t1,51)
T>t,0>0

2.19. Lemma. Let K € #"*" s¢€ (0,1] and t € [0,1). Then
T]LntlJr K(r,7~) = vlﬂ?Jr K(r,7+) = K(t+,t+),
lim K(r—,7)= lim K(r+,7) = K(t+,t+),
T+ T+

713?— K(r,7—)= 713\;_ K(r,74) = K(s—,5—)

and

Tlln;x_ K(r—,1)= Tl‘_lglﬁK(T“i‘,T) =K(s—,s5-).

Proof. We will restrict ourselves to the proof of the relations
fll>"2+1((7*7_) = K(t+,t+), te€[0,1).

The proofs of the remaining assertions of the lemma would be quite analogous. By
Lemma, 2.18 there exists a § € (0,1 — t) such that

|K(1,0) = K (t+,t4)] < §

holds whenever ¢t < 7 < t+ 6 and ¢ < ¢ < t + &. Furthermore, for any 7 € (t,t + &)
we may choose a o, € (¢,7) such that

|K(r,7=) — K(1,0.)] < &
is true. Thus for any 7 € (t,t + &) we have
|K(r,7=) = K(t+,tH)| < |K(r,7=) = K(7,0,)| + | K(r,07) — K(t+,t4)] < &-
a
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2.20. Remark. A matrix valued function K: [0,1] x [0,1] — R™ " is said to
be of bounded Vitali variation on [0,1] x [0,1] if

Yjo,1] x[o,x](K)

= sup Z | K (ti,85) = K(tiovy85) = K(ti,85-1) + K (8-1,55-1)| < o0,
ij—=1

where the supremum is taken over all net subdivisions
D={0=to<t; <...<t,, =1; 0=50 <51 <... <8 =1}

of the interval [0,1] x [0,1]. A matrix valued function K: [0,1] x [0,1], = R™*" is
said to be of strongly bounded variation on [0,1] x [0,1] if

v{o,1]x[o,1) () + varg K(0,.) + vary K(0,.) < co.

Let us denote the set of n x n-matrix valued functions of strongly bounded variation
on {0,1] x [0, 1] by SBV™*™_ 1t follows from [STV], Corollaries 1.6.15 and 1.6.16, that
SBY™ ™ ¢ ppnxn,

On the other hand, the set G.BV"*" of n x n-matrix valued functions K of the
form

K(t,s) = F()G(s), (t,s)€[0,1] x [0,1],

where ' € G™*” and G € BV"*", provides the simplest example of the class of
kernels which satisfy the assumptions of this paper, but do not belong in general to
the class SBV™*™_ In fact, it is easy to verify that G.BV™™ ¢ J¢™*" holds.

2.21. Lemma. Let K € ™™ andt € [0,1). Then

(2.18) for any € > 0 there exists a § € (0,1 —¢t) such that
varff K(t2,.) <e holds whenever 0 <t <t; <ty <t+6<1.

Proof (duetol. Vrkog). Lette [0,1) be given and let us assume that there is
a7 > 0 and Sequences {t}} and {¢?} of points in (t,1] such that
t<tiy <ti, <ti<t}<1 holdsforany keN,
lim t} = lim &} =t
k=300 k—oo
and
varit K (t5,.) > 27.
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On the other hand, by (Hz)(ii) there is a natural number kg such that
vary(K(t5,.) — K(85",.)) <.
This means that in the case that (2.18) does not hold we obtain

var0 K t;",. z varg 4 K t'““ )

K>ko
"

Z [var'“ K(t5,.) —varti (K(t§,.) - K(t5,.)) } Z ¥ =co.

K>k ' £3Fo

This being impossible in virtue of the assumption (H;), it follows that the assertion
(2.18) is true and this completes the proof of the lemma. ]

Analogously we could prove the following assertion, as well.
2.22. Lemma. Let K € J"*" and te (0,1]. Then

(2.19) for any € > 0 there exists a § € (0,t) such that
VaLrt2 K(ta,.) <& holds whenever 0 <t —6 <t <t2<t.

3. FREDHOLM-STIELTJES INTEGRAL EQUATIONS IN THE SPACE G}

In this section we will consider linear integral equations of the form
3.1 a(t) — A(t)z(0) — /01 B(t,s)d[z(s)] = f(t), t€[0,1],
where A € G}*™ and B e "

3.1. Remark. Let us recall that the operator . given by (0.2), i.e.
(3.2) (L2)(t) = A@D(0) + /01 B(t,s)d[e(s)]. «€GLte01]

is the general form of a linear compact operator on the space G} (cf. Theorem 2.5).
The equation (3.1) may be written as the operator equation

(3.3) z—-Zz=f,
as well.
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3.2. Remark. It is also known (cf. [Tv2, Theorem 3.8]) that the dual space
(G})* to GY is isomorphic to the space BY™ x R™, while for a given couple (y,7) €
BV™ x R™ the corresponding linear bounded functional on G7 is given by

(3.4) z € GY = (x,(y,7)): =~+Tx(0) + /1 y7(s)d[z(s)] € R.
0

The compactness of the operator % immediately implies that the following Fred-
holm alternative type assertions 3.3-3.5 are true.

3.3. Proposition. Let A € G}*" and B € 4}**". Then the given equation
(3.1) possesses a unique solution x € G} for any f € G} if and only if the corre-
sponding homogeneous equation vt — %Lz =0, iLe. :

z(t) — A(t)z(0) - /1 B(t,s)d[z(s)) =0, te€]0,1],
o

possesses only the trivial solution.

3.4. Proposition. Let A € G}*", B € """ and f € G}. Then the equation
(3.1) possesses a solution in G} if and only if

(35) i)+ [ vl =0
holds for any solution (y,7) € BV™ x R" of the operator equation
(3.6) ¥y~ £*(y,7) =0 € BV x R”
adjoint to (3.1).
3.5. Proposition. Let 4 € G}fx" and B € **". Then the relations
dimN (I - ¢) =dimN(] - £*) <

hold for the dimensions of the nyll spaces N (I — %) and N(I — £*) corresponding
to the operator . and its adjoint ¢, respectively.

3.6. Corollary. Let A € G}*" and B € J]"*". Then the given equation (3.1)
possesses a unique solution x € Gy for any f € G} if and only if the corresponding
homogeneous equation

z2-Zz=0
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possesses only the trivial solution.
Making use of the above mentioned explicit representation (3.4) of the dual space

to G7 and of the Bray Theorem we can derive the explicit form of the adjoint operator
L*to L.

3.7. Theorem. Let A€ G}*" and B € J**". Then the adjoint operator £*
to the operator .£ is given by

L0 (y,y) € BV x RY = (27 (y,7), %5 (y,7) € BV x R™,

where N
() O =BT 00+ [ a (B0)u). 1ei
and 0
1
25 = AT+ [ alaT@ v,
0
Proof. Givenz € G,y € BV" and v € R", we have by (3.4) and by Theorem
213

1
(&, () =" (A<o>x<o> + [ Bona mrn)

+ jo Lo, {A(t)a‘(O) + /0 ' B(m)dmsn}
= (a0 + [ e aien )0

+ ./Ul <A,TB(0,t) + /Ol T (s)d, [B(s,t)]> )]

= (H0AEO0 + [ (H DT D)
=&, (L W L M)
wherefrom the proof of the theorem immediately follows.
Proposition 3.4 and Theorem 3.7 immediately yield the following assertion.
3.8. Theorem. Let A € G}*", B € ¢ " and f € G}. Then the equatiou

(3.1) possesses a solution x € G if and only if (3.5) holds for any solution (y.7) €
BYV™ x R™ of the system

y(t) — BT (0, )y — /0‘ ds [BT(s,0)] y(s) =0, tefo0,1],

T [ aTaT( _
v — AT(0)y d[AT(s)] y(s) = 0.

0
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3.9. Remark. Let ys notice that in virtue of Corollary 2.9, for any solution
z € G" of (3.1) on [0, 1] we have

z(t+) =A(H)3;(O)+/1 B(t+,s)d{z(s)] + f(t+) forall te[0,1),
0

a(t~) :A(t~):c(n)+/1 Blt—,s)da(s)] + f(t—) forall te (0,1].
a

In particular, if 4 € G}*™ B € #"*" and f € G}. then any solution z of (3.1) on
[0,1} is left-continuous on (0, 1).

3.10. Example. Let us consider a linear Stieltjes integral equation
1
3.7) 20 - [ d(peslae) =10, teo1]
o

with P € """ and f € G}. Such equations with kernels P of strongly bounded
variation on [0,1] x [0, 1] (cf. Remark 2.20) were treated in [STV].
Let t € [0,1] and = € G7 be given. Let us put

P(t, s+) for s<1,

Q(t's>={P(t,1—) for s=1

and
Z(t,s) = P(t,s) - Q(t,s) for (t,s)€[0,1] % [0,1].

Then .
—-AJ P(t, for s<1,
205) = 3 P(t,s) for s
AFP(t, 1) for s=1.

Since obviously Q(t,.) and Z(t,.) € BV**™, lim+ P(t,o+) = P(t,s+)if s € [0,1)
oors
and 71321_ P(t,o+) = P(t,s—) if s € (0,1], it is easy to verify that

Z(t,s—)=0 forall s€0,1) and Z(¢t,s+)=0 forall se€ (0,1].
Since Z(t,.) € BV™*", this implies that there is an at most countable set W C [0, 1]

of points in [0,1] such that Z(t,s) = 0 holds for any s € [0,1]\ W. Making use of
Proposition 2.13 from [Tv1] we obtain that

1
-/0‘ dJZ(t,9)]x(s) = Z(t,1)2(1) — Z(t,0)2(0).
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This implies that the relation

/ L1, 9e(s)
-/ " 0,10 9Jas) + AF P, 0)2(0) + AT P(t, 1)z(1)
0

is true. Furthermore, according to the integration-by-parts formula (cf. [Tv2, Theo-
rem 2.15]) we have

/1 ds [P(t,s)] z(s)
° 1
=Q(t, 1)z(1) - Q. 0)z(0) */o Q(t,s)d[x(s)]
+ [P(1,04) ~ P(1,0)] 2(0) + [P(t,1) — P(t,1-)] 2(1)

1
= P(t,1)z(1) — P(t.0)z(0) */0 Q(t, s) d[z(s)]
1
= [P(t,1) — P(t,0)] x(0) + /0 (P(t,1) - Q(t, ) d[z(s)]

P(L.1) — Pt 5+).
— [P(.1) ~ P(1,0))4(0) + /{ = pito®) “l}dm 0

P(t,1) — P(t,1-), s=1

and hence . .
[ a1pesnas = ez + [ pg.s)asta),
1] 0
where
O =1+ P(t,1) - P(1,0)
and

Dit.s) = P(t,1) — P(t,s+) for se(0,1),
TP - P1S) for s=1.

Obviously, under our assumptions we have C € GZX" and D € Hpxn (cf. Lemma
2.15). Thus, if P € " and f € G, then the given equation (3:7) may be
transformed to an equation of the form (3.1) with coefficients 4, B and f fulfilling
the assumptions of Theorem 3.8.
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4. THE RESOLVENT COUPLE FOR THE FREDHOLM-STIELTJES INTEGRAL EQUATION

In this section we will consider the special case when the equation (3.1) possesses
a unique solution 2 € G}, for any f € G}. In particular, in addition to A € G}*™,
B € "™ we will assume that

(4.1) dimA(] — &) =0

(cf. Corollary 3.6).

Under these assumptions the Bounded Inverse Theorem (cf. e.g. [Sche, I11.4.1])
implies that the linear bounded operator I — .¢: G} — G7 possesses a bounded
inverse operator (I — 2 G} — G}. Furthermore, as

(- ' =1+U~-2)"'2,

it follows immediately that the inverse operator (I —.%)~! may be expressed in the
form

(4.2) (I-%)y'=I+T

where I” is a linear compact operator (I" € ‘)i/(G’lf, 7)). By Theorem 2.5 there exist
functions U € G}*™, V € J7™™ such that I' is given by

1
43) rife6; 5 U0+ [ Vs o)
0
The following assertion now follows from Lemma 1.9 and Theorem 2.5.

4.1. Theorem. Let us assume that A € G}*" and B € J['*" are such that
(4.1) holds. Then there exists a uniquely defined couple of functions U € G}*",
V € ™™ such that for any f € G} the corresponding solution « € G} to (3.1) is
given by

(4.4) o(t) = F(1) + U £(0) + /O Vit,s)d[f(s)] fort € 0,1].

4.2. Theorem. Let us assume that A € G}*" and B € J¥[**" are such
that (4.1) holds. Then the functions U, V given by Theorem 4.1 satisfy the matrix
equationg

(4.5) Ut) — AU(0) — /1 B(t.7) dU(7)] = At)
0
and
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(4.6) Vit,s)— AV (0,5) — /l B(t,7)d.[V(r,s)] = B(t, s)
0

for all t,s € [0,1].

Proof. Let I' be a linear compact operator defined by (4.2). Inserting (4.2)
into (3.1) we obtain that under our assumptions I" has to satisfy the relation

@7 I'f-—2(I'fy=%f forall feG}.

Inserting (4.3) into (4.7) and making use of the Bray Theorem (cf. Theorem 2.13)
we obtain furthermore that

(U(t) - a0 - [ B d[U(T)]) £0)
+/0 <V(t,s)—A(t)V(O,s)—/0 B(t,r)df[\’(r,s)]) dlf(s)]
= A0SO+ [ Bl

0
has to be true for any f € G}, wherefrom by Lemma 1.9 the assertion of the theorem
immediately follows. g

4.3. Definition. We say that a couple of functions U € G}*", V € 4™ is the
resolvent couple for the equation (3.1) if for any f € G} the unique solution z € G}
is given by (4.3).

5. VOLTERRA-STIELTIES INTEGRAL EQUATIONS IN G}

It is natural to expect that the linear operator cquation (3.3) could possess for
any f € G} a unique solution if the operator . is causal.

5.1. Definition. An operator .2 € .#(G}) is said to be causal if
(1) (£2)(0) =0 forany z € G},
and for a given t € (0,1)
(5.2) (&Lz)(t) =0 whenever = € G} and «(7) =0on [0,t].

5.2. Lemma. IfA € G}*" and B € J¢"*". then the linear operator .£ €
#(G?}) given by (3.2) is causal if and only if

(5.3) A0)=0 and B{t,s)=0 forall te0,1) and s€ [t 1)
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Proof. a)If (5.3) is satisfied, then obviously the relation

1 13
/ B(t,s)d[z(s)] = / B(t, s)d[z(s)]
o 0
is true for any v € G} and any ¢t € [0,1] whence the causality of ¢ immediately

follows.
b) On the other hand, let us assume that .# is causal. Then by (5.1) the relation

1
A(0)z(0) +/ B(0,s)d[z(s)] =0

o

has to be satisfied for any € G}. By Lemma 1.8 this means that the yelations
A(0)=0 and B(0,s)=0 forall sel0.1]
have to be satisfied, as well. Furthermore, if ¢ € (0, 1), then (5.2) is true if and only
if .
/ B(t,s)d[e(s)) =0 forall € G
t
An obvious modification of Lemma 1.8 implies that this may hold only if
B(t,s)=0 forall se€l[t1],

wherefrom the assertion of the lemma immediately follows. a

5.3. Remark. Let us notice that the condition (5.3) does not necessarily imply
that B(1,1) = 0. On the other hand, it is easy to verify that the operator £ € £(G})
given by (3.2) fulfils a somewhat stronger causality properties (5.1) and
5.2y  (Lz)(t)=0forall t€ (0,1} and z € G} such that x(r) =0on [0,¢)
if and only if

A(0) =0 and B(t,s)=0 whenever 0<t<s<1.
In fact, if z(7) = 0 on [0,1), then
(ZL2)(1) = B(1,1)z(1) =0
holds for any 2(1) € R™ if and only if B(1,1)=0.
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5.4. Remark. As noticed in the proof of Lemma 5.2, if the assumptions of
Lemma 5.2 and the conditions (5.3) are satisfied, then the Fredholm-Stieltjes equa-~
tion (3.1) reduces to the Volterra-Stieltjes equation

(5.4) () — A@t)2(0) — /O'B(n,s) dlz(s)) = £(t), te0,1].

To show that the equation (5.4) possesses a unique solution 2 € G% for each f €
G?, it is by Proposition 3.4 sufficient to show that the corresponding homogeneous
equation

5.5) z(t):A(t)z(0)+L B(t,s)d[e(s)], t€0.1]

possesses only the trivial solution z = 0.
Let z € G} be an arbitrary solution of (5.5) on [0,1]. Then obviously z(0) = 0.
Furthermore, since by (5.3) B(0+,s) = 0 whenever s > 0, we have by Lemma 2.10

t 1
z(0+) = tLuglJr/u B(t,s)d[z(s)] = tg%l‘ /0 B(t,s)d[x(s)]

= /1 B(0+, s) d[z(s)] = B(0+,0)A*z(0) = B(0+,0)z(0+),
0

[T - B(0+,0)]z(0+) = 0.

Thus we have z(0+) = 0 whenever
det [1 — B(O+,0)] #0.

Analogously, if we assume that () = 0 on {0, t] holds for a given t € (0, 1), then
1
o(t+) = / B(t+.5)d[a(s)] = B(t+ t)z(i+),
¢

and thus necessarily z(t+) = 0 whenever det [1 — B(t+, t‘)} # 0. Finally, if we assume
that #(7) = 0 on [0, 1), then the equation (5.5) reduces to

[I - B(1,D)]x(1) = z(1).

This indicates that it is possible to expect that the equation (5.5) will possess only
the trivial solution = = 0 on [0, 1] if the relations

(5.6)  det[I~B(1,1)] #0 and det[I = B(t+.t)] #0 forall te€[0,1)
will be satisfied.
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5.5. Theorem. Let A € G}*", B € J[™" and let the condition (5.3) be
satisfied. Then the Volterra-Stieltjes equation (5.4) possesses a unique solution & €
G7 for any f € G} if and only if the relations (5.6) are satisfied.

Proof. First,let us assume that the relations (5.6) are satisfied. We shall show
that then the equation (5.5) possesses only the trivial solution. Indeed, let z € G}
be a solution of (5.5). Then z(0+) = z(0) = 0 and as in Remark 5.4 we have

/t B0+, 5) d[x(s)] = B(0+,0)A*x(0) =0 forall € [0,1].
0

Consequently, the equation (5.5) can be rewritten as

ot
w(0)= [ (B(t.5) = BO+9) Aol
0
In virtue of [Tv2, Theorem 2.8], this yields that the inequality
le(®)] < 21B(t,.) = B0+, . )llg, ( S‘[lup] lz(s)])
s€[0,1]

is true for any t € {0, 1]. Furthermore, by Corollary 2.9 there is a § > 0 such that

{IB(t,.) = B(0+,.)llsv < § whenever ¢t € (0,4)

and hence also

sup |z(s)] < & sup |x(s)|,
te[0,s] te(0,58]

wherefrom the relation
z=0 on [0,0]

follows. Now, let us put
t* = sup{§ € [0,1]: x(t) =0 on [0,4}}.

We know that t* € (0,1} and z(t) = 0 on [0,¢*). Since 2 is left-continuous on (0,1)
(cf. Remark 3.9), it follows that if t* < 1, then z(t*) = z(t*—) = 0, as well. We close
the first part of the proof by showing that ¢t* = 1 and #(1) = 0.

Indeed, if t* < 1, taking into account the hypothesis (5.3) and Lemma 2.10 we

would obtain
¢ i
z(t*+) = 'lgr_u[) B(t,s)d[x(s)] = /{: B(t* +, ) d[z(s)]
= B(t"+,t")x(t"+)
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and consequently
[I = B@t*+,t)]z(t"+) = 0.
Hence according to (5.6) we would have z(¢*+) = 0. By an argument analogous to
that used above for 0 in the place of ¢*, we can get that there exists § > 0 such
that 2(t) = 0 on [0,t* + 6], which contradicts the definition of t*. Finally, as we have
obviously z(t) = 0 on [0,1) and hence also z(1—) = 0, the relation (5.5) reduces to
z(1) = B(1,1)z(1) or
[1-B@,1)]z(1) =0.

wherefrom the desired relation ©(1) = 0 immediately follows taking into account our
assumption (5.6).

To show the necessity of the conditions (5.6) for the unique solvability of (5.4) for
any f € G7, let us assume that the set

Sp:={t€[0,1): det[I — B(t+.t)] =0}

is nonempty. Let us denote
t* = inf Sp.

Then t* is not a point of accumulation of Sg. In fact, if this were not true, then
there would exist a sequence {t,}72, of points in Sg such that t; > t* for any k € N
and k]im t, = t*. Since in virtue of (5.3) we have for any o > t*

—00

e

lim+ B(r,0) =0,

it follows by Lemma 2.18 that

B(t*+,t*+) = i B(r, o) = lim ( lim B(r,0))=0
(rro) (27 oot Tt
>t o>ttt

and consequently
0= lim det[I — B(ty+,tx)] = det[I — B(t*+,t"+)] = det I.
oo

In particular, t* € S and det [I - B(t‘+,t“)] = (). Hence there is a d € R™ such
that there is no ¢ € R™ such that

[I- Bt +,t")]c=d.
Now, let us put

ft)=

0 for t<t7,
d for ¢ >1t*.
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By the first part of the proof, for any possible solution € G of the equation (5.4)
on [0, 1] we have z(¢) = 0 on [0,¢*) and thus

z(t*) = tli{gwm(t) =0.

By an argument analogous to that used above we can further deduce that the limit
z(t*+) of any possible solution z of (5.4) has to verify the relation

[I=B+,t*+)]a(t"+) = f(t'+) = d.

However, by the definition of d this is not possible and consequently the set Sp is
empty. This completes the proof of the theorem. . o

5.6. Corollary. Let A € G}*", B € 4" and let the condition (5.3) be
satisfied. Then the homogeneous equation (5.5) possesses only the trivial solution
z =0 if and only if the relations (5.6) are satisfied.

Proof. It follows immediately from Proposition 3.3 and Theorem 5.5. [m]
Similarly, the proof of the following assertion is an easy consequence of Theorems

4.1 and 4.2 and Corollary 5.6.

5.7. Corollary. Let A € G}*™, B € %**" and let the conditions (5.3) and
(5.6) be satisfied. Then there exists a resolvent couple U € G*™ V € J["*" for
the equation (5.4). The functions U and V satisfy in addition the relations

(5.7) U@©)=0 and V(t,s)=0 forall sel0,1), te0,s],
t
(5.8) ) —/ Blt,7) L, [U(M)] = A) forall te0,1],
0
and

(5.9) Vit s) — /(: B(t,7)d-{V(r,s)] = B(t,s) forall t,s€[0,1].

Proof. Let A€ G}*", B € " and let the conditions (5.3) and (5.6) be
satisfied. Then by Theorems 4.1 and 4.2 and Corollary 5.6 there exists a resolvent
couple U € G7*", V € J¢**™ for the equation (5.4) and the functions U,V satisfy
the matrix equations (4.5) and (4.6). Furthermore, as in virtue of (5.3) we have
A(0) = 0, it follows easily from (4.5) that I7(0) = 0 holds. Consequently, the relation
(4.5) reduces to (5.8).

208



Furthermore, let an arbitrary s € (0, 1) be given. Since by (5.3) we have B(t,s) = 0
whenever t € s, it follows easily that the function V(.. s) fulfils the relation

V(t,s) = A(t)V(0,s) + /l B(t,7)d;[V(r.s)] forall tel0,s].
0

By an argument analogous to that used in the proof of Corollary 5.6 we can deduce
now that V{t,s) = 0 has to be true for any ¢ € [0, s]. Finally, as by the assumption
(5.3) we have B(0,s) = 0 for any s € [0,1], it follows immediately from (4.6) that
V(0,0) =0 on [0,1], as well. Thus the relations (5.7) are true and consequently the
relation (4.6) reduces to (5.9). a

5.8. Remark. It is easy to verify that under the assumption of Corollary 5.7
the resolvent couple (U, V) of (5.4) satisfies in addition to the relations (5.7)-(5.9)
the following relations, as well.

V(,1)=0 on [0,1) and V(1,1)= [l - B(1,1)] ' B(1,1).

To show that the results of this section cover also the Volterra analogue of the
equation mentioned in Example 3.10 the following lemma is essential.

5.9. Lemma. Let K € 2¢™™ and let K* be given by

(5.10) Ko(ts) = { K(t.s) for te[0,1] and s€0,t),
IC(t,t) for te{0,1] and selt,1].

Then K% € o¢™*" Moreover, if I € T and

(5.11) K(t,t=) = K(t,t) forall te(0,1),

then K € g™ as well.

Proof. Lette (0,1] and ¢ > 0 be given. Then by assumption and by Lemma
2.21 there exists a § € (0,t) such that

[ (2, ) = K(t, ey < § and  varp? K(t2,.) < §

whenever 0 € t —§ < #; < t2 < t. Now, let an arbitrary couple ¢1,t; € [0,1] such
that t — & < ¢, <ty <t be given. Then by (5.10) we have

K(ty,8) — K(ty,s) for 0<s<ty,
K%y, s) = K2(t1,s) = { K(ta,s) — K(ty,t1)  for t <s <ty
K (ta, t2) — W (ty, 1)  for tr<s
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and it is easy to see that this implies that

1K (b2, ) ~ K2t )llmy
< (t2,0) = K(t1,0)] + varit (K (t,.) ~ K (t,.)) + vari? (K (ts,.) — K (t1,11))
<K (2, ) = Kty ey + v K(te,.) < ¢

holds for any couple t1,t, € [0,1] such that + — 4 < £, < t, < ¢. Analogously we
would show that for any e > 0 there exists a § € (0,¢) such that

2 (ts,.) = K2(t, iy <e
holds for any couple ti,t, € [0,1] such that ¢ < | < t < t + &, wherefrom the
relation K* € ™ " immediately follows.
Furthermore, if I'® € J¢**™ and (5.11) holds, then we obviously have

Tliﬂutl_ K2~ K2 (7 ey < Yl‘iiltl—_ K@) = K(r,.)lev + fli}ltl_ vart K(¢,.) =0

for any t € [0,1]. [m]

5.10. Remark. It follows casily from Lemmnias 2.18 and 2.19 that if X' € J¢"",
then for any x € G7 the function z(t) given by

v

() = / &K )] als) for tel0,1]
[}
is left-continuous on (0,1) if and only if (5.11) holds.

5.11. Example. Let us consider the linear Volterra-Sticltjes integral equation
t
(5.12) x(t) ~/ A (Kt 9)]a(s) = f(t). tel0.1]
0
with ¥ € " fulfilling the relation (5.11) and f € G}. (Such equations with
kernels K of strongly bounded variation on [0,1] x [0,1] (¢f. Remark 2.20) were
treated in [STV].)

Let us define the function K'2: [0,1] x [0,1] = R"*" again by (5.10). Theu by
Lemma 5.9 we have K'® € ¢#/"*". Obviously,

t 1
(5.13) /ads[l\'(l,a)]x(s):/o d, [K4(ts)] w(s)
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holds for any = € G™. Let t € [0, 1Jand v € G% be given. Analogously as in Example
3.10 we could show that then

(5-14) /; ds [KA(LS)] (s) = A(t)z(0) + ‘/0. B(t,s) d[z(s)],
where

Ay =1+ Ko, 1) — K%, 0) for tel0.1]

and

B(t,s) = {Kﬂ(t' D=Rea(t,s+)  for te[0,1] and se€[0.1),

Ket1) -~ Ke(t1-)  for 1€[0,1] and s=1.

It is easy to verify that A € G} *» and B 2" (cf. Lemma 2.15 and Lemma 5.9)

and
All) =1+ K(t,t) - K(t,0) for tel0.1]
and
K(t.t) — K(t,5+) if 0<s<t<1
Kt ty— K i <t s
Bits) = ’( ) — K(t,t) if 0gtgs<1
K(t.t) — K(t.t) if 0<t<s=1

K(1,1) - K(1.1-) if t=s=1.
In particular, we have
A0)=0 and B(t.s)=0 whenever 0<t<s<1! and t<1.
Furthermore. for an arbitrary + € [0,1) we have
B(t+.t) = 1'11'1}1_#(1&'(74 7))~ K(7.t+)) = K(t+.t+) = N(t+,t+) =0
(cf. Lemma 2.18). It means that under the above assumptions the Volterra—Sticitjcs
integral equation (5.12) may be converted to the causal integral equation of the

form (5.4) whose coefficients A4 and B satisfy the assumptions of Corollary 5.7 if in
addition we would assume that the relation

det[l - (K(1,1) - K(1,1-)] #0

is satisfied.
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