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Abstract. In the present paper we deal with sequential convergences on a vector lattice
L which are compatible with the structure of L.
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In this paper we will investigate the system Conv L of all sequential convergences
in a vector lattice L. The analogously defined notions of sequential convergences in
a lattice ordered group or in a Boolean algebra were studied in [3]-[12].

The following results will be established.

The set Conv L is nonempty if and only if L is archimedean. Let L be archime-
dean. Then Conv L has the least element (it need not have, in general, a greatest
element). Each interval of Conv L is a Brouwerian lattice. If L is (Ro, 2)-distributive,
then Conv L is a complete lattice. There is a convex vector sublattice Ly of L such
that (i) Conv L, is a complete lattice; (ii) if Ly is a convex vector sublattice of L such
that Conv L, is a complete lattice, then Ly C Li. Let X; (i = 1,2) be archimedean
vector lattices; if X and X, are isomorphic as lattices and if Conv X, is a complete
lattice, then Conv X is a complete lattice as well. If L is a direct sum of linearly
ordered vector lattices, then Conv L is a complete lattice and has no atom. Some
further results (concerning orthogonal sequences and strong units) are also proved.
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1. PRELIMINARIES

The notion of a vector lattice is applied here in the same sense as in [1], Chap. XV.

(In [16], the term “Riesz space” is used; in [13] vector lattices are called K-lineals.)

Let L be a vector lattice and let N be the set of all positive integers. The direct

product [] Ly, where L, = L for each n € N, will be denoted by LV . The elements
N

nef
of LM are denoted, e.g., as (Zn)nen , OF simply (z,,); instead of n, sometimes other
indices will be applied. (z,) is said to be a sequence in L. If z € L and z, = & for
each n € N, then we denote (x,) = constz. The notion of a subsequence has the
usual meaning.

If « C LN x L, then instead of ((2,),z) € a we also write €, —q T.

If the partial order (as defined in L) is not taken into account, then we obtain a
linear space which will be denoted by ¢(L); similarly, if we disregard the multiplica-
tion of elements of L by reals, then we get a lattice ordered group; we denote it by
G(L).

The set of all reals will be denoted by R. The symbol 0 denotes both the real
number zero and the neutral element of L; the meaning of this symbol will be clear
from the context. For (a,) € RY and ¢ € R the symbol a, — a has the usual
meaning.

1.1. Definition.  (Cf., e.g., [15].) A nonempty subset « of LN x L will be said
to be a convergence in £(L) if it satisfies the following conditions:
(i) If zn =4 z and if (y,) is a subsequence of (z,), then y, =4 .
(ii) If zn o z and Tn 2o y, then z =y.
(iii) If Zn —o « and yp, =4 ¥, then z, +yn 2o v +y.
(iv) If £, =, z and a € R, then az, =4 az.
(v) Ifz € L, (a,) € RV, a € R and a, = a, then a,x =4 az.

The system of all convergences in ¢(L) will be denoted by Conv, L.

1.2. Definition.  (Cf. 3].) A nonempty subset & of L™ x L will be said to be
a convergence in G(L) if it satisfies the conditions (i), (ii), (iii) from 1.1, and if also
the following conditions are fulfilled:

(11) If ((zn),z) € LN x L and if each subsequence (=) of (z,) has a subsequence
(2n) such that z, =, z, then z, —, .
) If z € L and (z,,) = constz, then z, =4 .
(iih) If 2, =4 z, then -z, =, —a.
) 2y 9o 2 and y, =4 ¥, then 2, Ayn o 2 Ay and 2, Vy, 24 zVy.
) 2, =a 2, yn —=a 7, (24) € LY and z, < #n < Yn for each n € N, then
2p a .
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The system of all convergences in G(L) will be denoted by Conv, L.

Let us remark that in the paper [14] the Urysohn property (i1) (which will be
systematically applied below) was not assumed to be valid when investigating a
sequential convergence in a lattice ordered group.

We denote by d the system of all elements ((z,),z) € LN x L having the property
that there is m € N such that z,, = z for each n > m. It is casy to verify that
d belongs to Conv, L, hence Conv,y L is nonempty. The system Conv, L will be
considered to be partially ordered by inclusion. It is obvious that d is the least
element of Conv, L.

Let us remark that the conditions (i), (i), (iii), (i1), (ii1) and (ii,) define a con-
vergence group in the sense of {18] or a FLUSH convergence on the corresponding
group (cf. {17]).

1.3. Definition. A nonempty subset a of L™ x L will be said to be a convergence
in L if a € Convy LN Convy L. The system of all convergences in L will be denoted
by Conv L. If Conv L # @, then the set Conv L will be partially ordered by inclusion.

The vector lattice L is said to be archimedean if, whenever x,y € Land0 S nz < y
for each n € N, then z = 0.

1.4. Lemma. Let L be non-archimedean. Then Conv L = {.

Proof. There exist z,y € L such that 0 < nz < y for each n € N. By way of
contradiction, assume that a € Conv L. Because £ — 0 in R, in view of 1.1, (v) we
infer that 1y —4 0. Since 0 < z < Ly for each n € N, according to (i) and (vi)
of 1.2 the relation z, —4 z is valid, where (z,) = constz. Thus in view of (ii;) and
(ii) we have arrived at a contradiction. [m]

1.5. Lemma. Let a € Conv, L. Then « satisfies the condition (iv) from 1.1.

Proof. Let z, =4  and let a € R. There is m € N with |a| < m. We have

Tp Do &= |Ta — 2| =240,
whence in view of (iii) and by induction we get m|z, — x| —, 0. Since
0 < |azy — az| = |a |zn — 2| < M|z, — 2,
according to (vi) we obtain |az,, — az| =4 0, thus az, =4 az. a

1.6. Corollaty. Let a € Conv, L. Then a € Conv L if and only if a satisfies

the condition (v) from 1.1.

If L # {0}, then the element d of Conv, L does not satisty the condition (v) of
1.1. Hence if L # {0}, then Conv, L fails to be a subset of Conv L.

The positive cone {z € L: > 0} of L will be denoted by L*. Under the inherited
partial order and the operation +, LT is a lattice ordered semigroup.
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1.7. Definition. A convex subsemigroup 8 of (L+)¥ will be said to be a
0-convergence in G(L) if the following conditions are satisfied:
(I) If (gn) € B, then each subsequence of (g») belongs to 3.
(1) If (9n) € (L) and if each subsequence of (g,) has a subsequence belonging
to (), then (g,) belongs to 3.
(III) Let z € L*. Then constz belongs to 3 if and only if + = 0.

The system of all 0-convergences in G(L) will be denoted by 0-Convgy L. Let do
be the set of all (z.) € (L*)V such that ((z.),0) € d. Then do € 0-Conv, L. Hence
0-Conv, G # @. The system 0-Conv, L is partially ordered by inclusion.

Let a € Conv, L. Put

1) w1(a) = {(lan — 2l): Tn —a 7}
Conversely, let 8 € 0-Conv, L. Denote

2 @2(B) = {((zn),7}: (|20 — z[) € B}

1.8. Lemma. (Cf. [4], Lemma 1.4 and Theorem 1.6.) ¢, and ¢, are inverse
isomorphisms of Conv, L onto 0-Conv, L, or of 0-Conv, L onto Conv, L, respectively.

1.9. Definition. A nonempty subset 8 of (LT)V will be said to be a
0O-convergence in L if 3 € 0-Conv, L and if, moreover, the following condition is
satisfied:

(IV) Ifz € L and a, — 0 in R, then (a,z) € 8.

Let 0-Conv L be the set of all 0-convergences in L. If this set is nonempty, then it
will be considered to be partially ordered by inclusion.

Now let & and 3 run over the set Conv L or 0-Conv L, respectively, and let ¢; and
2 be defined as in (1) and (2). Then by a routine proof and by using 1.5 we obtain
the following result which is analogous to 1.8:

1.10. Lemma. (i) ConvL =@ & 0-Conv L = . (ii) If Conv L # @, then ¢, and
o are inverse isomorphisms of Conv L onto 0-Conv L, or of 0-Conv L onto Conv L,
respectively.

As we remarked in the introduction, we are interested in studying the partially
ordered system Conv L. Now, in view of 1.10, it suffices to investigate the sys-
tem 0-Conv L. Next, according to 1.4, it suffices to consider the case when L is
archimedean.
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2. REGULAR SETS

In what follows we assume that L is an archimedean vector lattice.
Let @ # A C (Lt)V. The set A will be said to be regular with respect to G(L) (or
L, respectively) if there is & € 0-Convy L (or a € 0-Conv L) such that A C .

2.1. Lemma. Let® # A C (L*)N. Then the following conditions are equivalent:
(i) A fails to be regular with respect to G(L).
(i) There exist 0 < z € L, positive integers m, k, elements (yL),...,(y%) of A
and subsequences (z1) of (yL),...,(z%) of (y%) such that

z<mzlvalv...vak) foreachneN.

Proof. The implication (ii)=(i) is obvious. Let (i) be valid. In view of the
results of [4] (cf. also [10], Proposition 2.1) there exist 0 < z € L, positive integers
my, k, elements (y1),...,(y%) of A and subsequences (zL) of (y1),...,(z%) of (y¥)
such that

2 < my(zh + 22 +...+25) foreachn € N.

Hence according to Lemma 2.4, [10] there is m € N with
z<m(zh vzl v...vzk) foreachneN.

o

Let Ag be the set of all sequences (z,,) in L having the property that there are
0<z ¢ Land (a,) € (RT)V such that a, — 0in R and z,, = a,z for each n € N.

2.2. Lemma. The set Ao is regular with respect to G(L) and also with respect
to L.

Proof. By way of contradiction, assume that A, fails to be regular with respect
to G(L). Then the condition (ii) from 2.1. holds for Ao. .

For eachi € {1,2,...,k} there are 0 < z* € L and (a’,) € (R*)N such that a’, - 0
in R and

i i i

zh =aLz' foreachn eN.

For n € N we put a, = max{a,a?,...,ak}. Then an = 0 in R and

n?

m(zl vad V.. vak) = mlake' V... aka®)

0<zg
< mu,.(:c' V...vzF) foreachn€eN.
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Next, for each n € N there is n(1) € N such that man(1y < %, hence
0<z<i(@'v...vek) foreachneN.

Thus nz < z'V...vz* for each n € N, which is impossible, because L is archimedean.
Thus there is @ € 0-Convy L with Ag C a. Then « fulfils the condition (IV), hence
a € 0-Conv L. o
2.3. Theorem. Let L be an archimedean vector lattice. Then Conv L # §.
Proof. Inview of 2.2 there is a € 0-Conv L with Ag C a. Hence 0-Conv L # §.
Thus according to 1.10 we have Conv L # §. [m]
2.4. Lemma. Let a € 0-Conv L. Then Ay C a.
Proof. This follows immediately from the fact that o satisfies the condition

(IV) of 1.9. n]

2.5. Corollary. Let I be a nonempty set and for each i € I let a; € 0-Conv L.
Then @ # (] a; € 0-Conv L.
iel

Let us denote by d° the intersection of all a; € 0-Conv L with Ag C a; (such «;
do exist in view of 2.2). According to 2.4 and 2.5 we obtain:

2.6. Corollary. d° is the least element of 0-Conv L. If o € 0-Conv L, then the
interval [d°, ] of the partially ordered set 0-Conv L is a complete lattice.
2.7. Proposition. d° = 4,.

Proof. In view of the definition of d° we have Ag C d°. Let (2n) € d°. Then
in view of [10], Proposition 2.1, and according to 2.4 there are m,k € N, elements
(5h),- - (4%) of Ao and subsequences (z}) of (4L, ..., (z%) of (4%) such that

zy Mz, V...V Th).

For each i € {1,2,...,k} there are z* € L™ and (a,) € (R*)" such that o}, — 0 in
R and = = aia® for each n € N. Put a, = max{al,...,ak}. Hence a, = 0in R
and

zn € an(mzl V...Vmz®).

Thus (zn) € Ao and therefore d° C Ao- o
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For each X C (L*)V let us denote by X* the set of all (z,) € (L*)V such that
each subsequence of (z,) has a subsequence which belongs to X.

Let Ay be the set of all (x,) € (L*)N which have the following property: there
exist 0 < z € L and m € N such that z, < %z for each n > m.

Another constructive characterization of d° is given by the following lemma.

2.8. Lemma. d° = Aj.

Proof. Since 4; C A, we clearly have A} C d°. Let (z,) € d°. In view of 2.7
there are z € L* and (a,) € (R*)N such that @, = a, for each n € N. Let (y,) be
a subsequence of (z,) and let (b,) be the corresponding subsequence of (a»); hence
yn = byx for each n € N. There exists a subsequence (¢n) of (b,) such that ¢, < %
for each n € N. Put 2, = cpx for each n € N. Then (c,x) is a subsequence of (yn)
and (c,z) € A;. Hence (z,) € A} and thus d° C A} m}

2.9. Proposition. There exists an archimedean vector lattice L such that
0-Conv L has no greatest element.

Proof. It suffices to apply an analogous example as in [3], Section 5 (with
the distinction that the real functions under consideration in the example are not
assumed to be integer valued). ]

2.10. Theorem. Let L be an archimedean vector lattice. Suppose that L is
(Ro, 2)-distributive. Then 0-Conv L possesses a greatest element.

Proof. Thisisaconsequence of 2.6 and of the fact that 0-Conv, L has a greatest
element (cf. [12]). 0

Lemma 1.10 and Lemma 2.6 yield that each interval of the partially ordered set
0-Conv L is, at the same time, an interval of 0-Conv, L. Hence in view of [5], Theorem
2.5 we obtain:

2.11. Proposition. FEach interval of 0-Conv L is a Brouwerian lattice.

3. THE SETS OF THE FORM a U Ay

Let § 3 o C (L*)N be such that « is regular with respect to G(L). We shall
investigate the problem whether the set a U A is regular with respect to L.

First we shall deal with the case when L is a projectable vector lattice. (Projectable
lattice ordered groups and vector lattices were studied by several authors; cf. e.g.,
[2] and [16].)

For the sake of completeness we recall the following notions.
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Let L be a vector lattice and X C L. We put

X={yeL:|ylAlz] =0 foreachze€ X}.

Then X¢ is said to be a polar of L. The vector lattice L is called projectable if for
each z € L, the set {x}? is a direct factor of L.

An element e € L is called a strong unit of L if for each x € L there is n € N such
that z € ne

Since each strong unit of an archimedean vector lattice L; is, at the same time, a
strong unit of the Dedekind completion of L1, we have

3.1. Proposition. (Cf, e.g., [19], Theorem V.3.1.) Let L, be an archimedean
vector lattice having a strong unit. Then there is a set I such that there exists an
isomorphism of L into the vector lattice [] R:, where R; = R for each iel.

el
3.2. Lemma. Let a € Convy L. Then the following conditions are equivalent:

(i) The set a U Aq fails to be regular with respect to G(L).
(ii) There aret,z € L and (z,) € a such that 0 < z < t and

z=2z,V(zALt) foreachneN.

Proof. Accordingto 2.1, (il)=>(i). Suppose that (i) is valid. Thus in view of 2.7
and 2.8, the set o U A; fails to be regular with respect to G(L). Hence the condition
(ii) from 2.1 holds, where A = a U 4;.

If (z1),...,(z%) € o, then a would not be regular with respect to G(L), which is
a contradiction. If (z1),...,(2%) € A;, then we obtain a contradiction with respect

to 2.2. Hence without loss of generality we can suppose that there is k(1) € N with
1 < k(1) < k such that

(@), @A) €a and @), (oh) € Ay,
Put z, =m(zl V...V 250} for each n € N. Then (z,) € a.
For each j € {k(1) +1,...,k} there are 0 < y? € L and (a},) € (RT)V such that
af, = 0in R and yJ, = aly’ for each n € N. Denote
an =max{aiVF, ek}, t=yfOF v vk
There is a subsequence (n(1)) of the sequence (n) such that
Mln() < % for each n € N.
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Hence we have

R(1)-+1

Mm@y V.. Vakg) < &t foreachn €N.

Therefore
0<z< 2y Vit foreachn €N.

n

Becuase (2n(1)) € @, it suffices to write 2, instead of Zu(1)- Thus
(1) 2=2A(za Vi) = (2Az.) V(2 A Lt) foreachn € N.

If zAt =0, then z A %t = 0 for each n € N, whence z < z, for each n € N and
thus « fails to be regular, which is a contradiction. Therefore z At > 0 and then,
without loss of generality, we can take z At instead of z; hence we have z < t. Next,
(2 A z,) € a, thus without loss of generality we can take (z A z,) instead of (z,).
Hence in view of (1) we infer that (ii) is valid. a

3.3. Proposition. Assume that L is projectable. Let « € 0-Convy L. Then
aU Ag is regular with respect to L.

Proof. In view of 2.7 it suffices to verify that a U Ap is regular with respect to
G(L).

By way of contradiction, suppose that a U Ag fails to be regular with respect to
G(L). Then the condition (ii) from 3.2 is valid. There exists m € N such that
z ¢ Lt. Thus

() L =(z- Lt >0

Let us denote by P the polar of L generated by 2°; i.e, P = {z°}¢¢. Since L is
projectable, P is a direct factor in L. For each g € L let g(P) be the component of
g in P. In view of the condition (ii) of 3.2 we have

(2) 2(P) = za(P) v (2(P) A L1(P)) for each n € N.

If z(P) = 0, then 2° = 29(P) = 0, which is a contradiction. Thus z(P) > 0. Next,
from z < t we infer that 2(P) < ¢(P).

Let L, be the convex ¢-subgroup of G(P) generated by the element #(P). Then
t(P) is a strong unit of L; and L, is a linear subspace of L. Let I and ¢ be as in 3.2.
For each i € I we have p(2(P))(i) 2 0. According to the definition of P we obtain

(z- Lt~ e P*
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whence (z — £t)(P) = z0(P). In view of (11),

(3) ' 0<2%=20%P) = 4(P) - Lu(P),

m

hence the set I = {i € I': p(2(P))(i) > 0} i5 nonempty.
Let i € I; and n > m. According to (3),

) P(2(P) () 2 §ptP) ().

Also, in view of (2),

@(2(P)) (@) = ¢(za(P))(i) V (0(2(P)) (&) A La(¢(P))(2))

= max{p(z:(P)) (i), min{0((P))(5), Lo(t(P)) (i)} }.
Thus according to (4),
@(2(P)) (i) = max{p(z.(P) (i), Lo(t(P))(i)}.
By applying (4) again we get
©(=(P))(@) = ¢(zn(P)) (D)
Therefore (z(P))(i) = w(zn(P))(i) for cach i € I. Hence
(5) 0< 2(P) = z,(P) for each n > m.

Since zn,(P) < 2z, for each n € N and since (z,) is regular with respect to L, we infer
that (z,(P)) is regular with respect to L. Thus in view of (5) we have arrived at a
contradiction. O

Now let us drop the assumption that L is projectable. We denote by L' the
Dedekind completion of L. It is well-known that L' is projectable.

3.4. Lemma. Let® # a C (L*)N. Assume that « is regular with respect to
G(L). Then a is regular with respect to G(L').

Proof. By way of contradiction, assume that « fails to be regular with respect
to G(L'). Then the condition (ii) from 2.1 holds (with the distinction that z € L’ and
A is replaced by ). There exists 0 < z; € L with 23 < z. But by applying 2.1 again
we infer that « fails to be regular with respect to L, which is a contradiction. jm]

3.5. Lemma. Let () # o C (LT)N. Assume that o is regular with respect to
G(L). Then o is regular with respect to G(L).

Proof. This is an immediate consequence of 2.1. [}
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3.6. Theorem. Let 0 # o C (L*)V. Assume that « is regular with respect to
G(L). Then aU Ap is regular with respect to G(L) and with respect to L.

Proof. In view of 3.4, a is regular with respect to G(L’). Because G(L') is
projectable, according to 3.3 we obtain that o U Ay is rogular with respect to G(L').
Thus 3.5 yields that a U Ay is regular with respect to G(L). Now it follows from 2.7
that a U Ag is regular with respect to L. [m]

3.7. Corollary. Let a € 0-Convy L. Then aV d°® does exist in 0-Convy L and
in 0-Conv L.

3.8. Proposition. The following conditions are equivalent:

(i) 0-Conv L has the greatest element.
(ii) 0-Conv, L has the greatest element.

Proof. We obviously have (ii)=>(i). Let (i) hold and let 3 be the greatest
element of 0-Conv L. Let a € 0-Conv, L. According to 3.7, the element ¢ Vv d°
does exist in 0-Conv L. Thus @ € oV d® < 3. Hence 3 is the greatest element of
0-Conv, L. [m]

3.9. Corollary. Let 0-Conv L have the greatest element. Then 0-Conv L is a
complete lattice and 0-Conv L is a principal dual ideal of 0-Conv, L generated by
the element d°.

Let us remark that if L; is a convex ¢-subgroup of G(L), then it is a linear subspace
of L.

3.10. Theorem. There exists a convex {-subgroup L, of G(L) such that the
following conditions are satisfied:
(i) Conv Ly is a complete lattice.
(ii) If Ly is a convex {-subgroup of G(L) such that Conv L, is a complete lattice,
then Ly < Ly.

Proof. This follows from 3.8 and from [10], Theorem 5.5. ]

Let Ly be a vector lattice. If neither the operation + nor the multiplication of
elements of Ly by reals is taken into account, then we obtain a lattice which will be
denoted by LY.

3.11. Theorem. Let L; (i =1,2) be archimedean vector lattices. Assume that
the lattices LY and L3 are isomorphic and that Conv Ly possesses a greatest element.
Then Conv L, possesses a greatest element as well.
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Proof. According to 1.10, 0-Conv L; possesses a greatest element. Then in
view of 3.8, 0-Conv, L has a greatest element. Since L{ is isomorphic to L3, by
applying [10], Theorem 3.5 we conclude that 0-Conv, L, has a greatest element as
well. Now according to 3.8 and 1.10, Conv Ly possesses a greatest element. a

4. DISJOINT SEQUENCES

A sequence (z,) in L will be said to be disjoint (or orthogonal) if T, Az, = 0
whenever n and m are distinct positive integers.
The following assertion follows from the results proved in [4].

(A) Assume that L possesses a disjoint sequence all members of which are strictly
positive. Then there exist infinitely many elements «; of 0-Conv, £ such that
each a; is generated by a disjoint sequence.

4.1. Lemma. (Cf. [4].) Let (z,) be a disjoint sequence in L. Then the set ()
is regular with respect to G(L).

4.2. Lemma. Let (z,,) be a disjoint sequence in L. Then the set {(z,)} U Ag is
regular with respect to G(L) and with respect to L.

Proof. Thisis a consequence of 4.1 and 3.6. m]

If (z,) € (LT)Y and the set {(x+)} is regular in G(L) then the least element o of
0-Conv, L satisfying the relation {(zn)} U Ag C a will be denoted by a(zx).

Let (xn) be a disjoint sequence in L such that z, > 0 for each n € N. Then
(xn) ¢ do. On the other hand, (x») can belong to d® (cf. Proposition 4.6 below).

4.3. Lemma. Let (z,) and (ya) be disjoint sequences in L such that TnAym =0
for each m,n € N. Let y, >0 for each n € N and (y») ¢ d°. Then (yn) ¢ a(z,).

Proof. By way of contradiction, assume that y, € a(z,). Then in view of
[10], Lemma 2.3 there are m,k € N and (2}),...,(z%) € (L*)¥ such that each (z})
(i =1,2,...,k) is a subsequence of a sequence belonging to {(z»)} U Ao and

0<y, <m(zlVv...vzF) foreachneN.

n

Since (yn) ¢ Ao, without loss of generality we can assume that (21),..., (251} are
subsequences of (z.) and that (z%) is a subsequence of (Lz) for some 0 < z € L.
Thus

0<yn < (mzpVv...vmzi~lyv Lo’ foreachn €N,
where 2’ = mz. But y, A (mz) V... vmzk=1) = 0, whence y, < 12’ for each n € N.

Since (yn) ¢ d°, we have arrived at a contradiction. n)
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4.4. Theorem. Assume that L possesses an infinite orthogonal subset. Next,
suppose that no disjoint sequence (z,) in L with z,, > 0 for each n € N belongs to
d°. Then 0-Conv L is infinite.

Proof. In view of the assumption there are disjoint sequences (z%) (¢ € N) in
L such that zi > 0 for each n,i € N, and zi, A ¢f, = 0 whenever m,n,4,j € N and
i# j. In view of 4.2 we have (%) € 0-Conv, L for each i € N. Let 7, j be distinct
elements of N. According to 4.3, a(z%) # a(z?). ]

For a relevant result concerning convergences in a lattice ordered group cf. [4].

4.5. Theorem. Assume that L possesses no infinite orthogonal subset. Then
0-Conv L is a one-element set.

Proof. The case L = {0} is trivial; let L # {0}. The system 0-Conv, L was
described in [4], Section 6. According to [4], if & € 0-Convy L and (12) € a for each
0 < z € L, then « is the greatest element of 0-Conv, L; hence only this greatest
element of 0-Convy L can belong to 0-Conv L. a

4.6. Proposition. Assume that L is orthogonally complete. Then each disjoint
sequence in L belongs to d°.

Proof. Let (zn) be a disjoint sequence in L. Then (nz,) is disjoint as well.

Since L is orthogonally complete, there exists z = \/ na, in L. For each n € N we
nen
have 0 € z, < Lz, whence (z,) € d°. [m]

4.7. Corollary. The assertion (A) does not hold in general if 0-Conv, L is
replaced by 0-Conv L.

4.8. Proposition. Assume that L # {0} has a strong unit and that (z,) is a
disjoint sequence in L such that z, > 0 for each n € N. Then there is a sequence
(@n) with an € N for each n € N having the property that (ant,) ¢ d°.

Proof. Let e be a strong unit in L. Since L is archimedean, for each n € N
there is an € N such that

&) auante

By way of contradiction, assume that (anZ») € d°. Hence in view of 2.8 there is a
subsequence (b,yn) of (anz,) such that (bayn) € A;. Thus there are m € N and
0 < z € L such that b,yn < %1- for each n 2 m. Next, since e is a strong unit in L,
there is k € N with z < ke. Thus

k
bayn < ne for each n > m.
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Hence for n > max{m, k} we have bnyn < e. But in view of (1) the relation by, ;ﬁ_ e
is valid for each n € N, which is a contradiction. a

4.9. Proposition. Assume that L has a strong unit. Then (A) is valid with
Conv, L replaced by Conv L.

Proof. This is a consequence of 4.3 and 4.8. a

5. DIRECT SUMS OF LINEARLY ORDERED VECTOR LATTICES

Let us denote by S the class of all archimedean vector lattices which can bhe
expressed as the direct sum of linearly ordered vector lattices. Next, let £ be the
class of all linearly ordered vector lattices.

In this section it will be shown that if L € S, then 0-Conv L is a complete lattice
which has no atom.

The case L = {0} being trivial, we assume in the present section that L is a
nonzero archimedean vector lattice which can be represented as

@) L=Y"Li, whereL;€ L foreachi€l.
i€l

Also, without loss of generality we can suppose that L; # {0} for each i € I.

5.1. Proposition. 0-Conv L is a complete lattice.

Proof. From (1) it follows that L is completely distributive. Hence in view of
2.10, 0-Conv L possesses a greatest element. Thus 0-Conv L is a complete lattice. O

5.2. Lemma. Let (z,) be a disjoint sequence in L such that z, > 0 for each
n € N. Then (z,) is not upper-bounded in L.

Proof. Thisis an immediate consequence of (1). [m]

In view of 5.2 and 2.8 we obtain
5.3. Corollary. Let (z,,) be as in 5.2. Then {x,,) does not belong to d°.

5.4. Proposition. Let I be finite. Then 0-Conv L is a one-element set.

Proof. From (1) we infer that L has no infinite orthogonal subset. Hence in
view of 4.5, 0-Conv L is a one-element set. a
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5.5. Proposition. Let I be infinite. Then 0-Conv L is infinite.

Proof. According to (1), L possesses an infinite orthogonal subset. Then 4.4
and 5.3 yield that 0-Conv L is infinite. a

5.6. Lemma. Leta € 0-Conv L. Assume that (z,) S o, 2, > 0 foreachn € N,
and that the sequence (z,,) is disjoint. Then « fails to be an atom of 0-Conv L.

Proof. Consider the sequences (22,) and (22,41). In view of 5.3, (z2,) & &°
and (T2n41) ¢ d°. Hence by applying the notation from Section 4 we have

&P <alz) <o, @ <alimm)<a

Next, according to 4.3, a(22n) # @(%2n41). Hence a cannot be an atom of 0-Conv L.
]

For z € L and i € I, let 2(i) be the component of 2 in L;. We put Supz = {i € I:
z(i) # 0}. If (x,,) is a sequence in L, then we denote

Sup(zn) = U Sup zp.
nenN

5.7. Lemma. Let (z,) € (LT)V be such that {(z.)} is regular and suppose
that Sup(z,,) if finite. Then o) = d°.

Proof. In view of the assumption there is a finite subset I(1) of I such that

xn € L(1) = % L;foreachn € N. Then according to 4.5, (z,,) belongs to the least
i€l(1)

element of 0-Conv L(1). Next, in view of 2.8, (z,,) belongs to d°. Hence afz,,) = .

]

5.8. Lemma. Let (2n) € (LT)N besuch that {(x.)} is regular and suppose that
Sup(x,,) is infinite. Then a(z,) contains a disjoint sequence with strictly positive
elements.

Proof. Since Sup(#,) is infinite and (1) holds, there is a subsequence (y,) of
(2n) such that for each 7 € N, Supy,, is not a subset of the set

Supyi U...USupyn—1-
Therefore the sequence (y,) is disjoint and belongs to a(z,). 0

5.9. Theorem. Let L €S. Then 0-Conv L has no atom.

Proof. By way of contradiction, assume that « is an atom of 0-Conv L. Then
there is (z,) € (L)Y such that @ = a(zn). If Sup(zn) is finite, then 5.7 yields
a contradiction. If Sup(zn) is infinite, then by means of 5.8 and 5.6 we arrive at

a contradiction. o
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