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0-1 SEQUENCES HAVING THE SAME NUMBERS OF 

(l-l)-COUPLES OF GIVEN DISTANCES 

ANTONIN LESANOVSKY, JAN RATAJ and STANISLAV HOJEK, Praha 

(Received September 25, 1990) 

Summary. Let a be a 0-1 sequence with a finite mumbfr of terms equal to 1. The 
distance sequence 6^*' of a is denned as a sequence of the numbers of (l-l)-couples of given 
distances. The paper investigates such pairs of 0-1 sequences a, b that a is different from 
b and *W = 6^h\ 

Keywords: 0-1 sequence, distance sequence, uniform distribution, set covariance. 

1. INTRODUCTION 

Consider sets 

j2/n = {a; a = {a t }£ 0 , a0 = l ,a , € {0,1} for i € N, max{i; i € N 0 ,a t = 1} = n} 

for each n E N0 , where N is the set of all positive integers and N0 = N U {0}, and 

oo 

=̂u<-
n=0 

For any a 6 si and j € N0 , put 

n(a) = max{i; i € N0 , a* = 1}, 
00 

t=0 

and 

« (a ) = {«Ja))i°-o-
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The value of 6j expresses the number of pairs of elements of the sequence a such 
that both are equal to 1 and that their distance is j . We shall call 6(a) the distance 
sequence generated by the sequence a. 

It can be easily seen that the sets si/n, n £ No, are disjoint and that the following 
relations are true for any a € s/\ 

a€^5i(a), 

(1) 4 m ) = card{ i ; t€N 0 , a,- = 1}, 

(2) C = 1. 
* < a ) € { 0 , l , . . . , n ( a ) - j + l } if i € { 0 , l , . . . , n ( a ) } 

and 

(3) 4 m ) = 0 if ->€N' i >"(•)• 
Let a € j . / and define a sequence rW = {»$ }£L0 by 

rt*a) = fln(a)-t for t ^ n(a), 

and 
rja ) = 0 for i > n(a). 

We observe that n(a) = n(rW) and that the finite subsequences 

<«,}!*? and { r i - ) } ^ 

are mutually centrally symmetric. We write a ~ b for a, b 6 s/ if b = a or if b = r̂ a^ 
The relation ~ is obviously an equivalence on each of the sets sif, s*/0i sf\, Note 
that the set 99+ of all elements of sz/ which are ^-equivalent to a has either one or 
two elements for each a € - ^ . Denote by sf (S/Q, S/\ , . . . ) the factor-set si/ j ^ (&/Q/„ , 
M/~» * • Of *-e- ^ e ^ °f ^-equivalence classes of &/ (si/ot &/\, . . . ). In the sequel, 
we shall treat any class from s/ as replaced by one of its elements, i.e. as a sequence 
from si/. Note that the mapping a —> tfW is ^-invariant. 

The aim of this paper is to characterize those pairs of sequences a, b £si/ which 
satisfy 

(4) *(a) = *(b) and a / b. 

The restriction to the factor-sets together with the assumption that do = 1 for 
a 6 ^ makes it possible to formulate the assertions without the usual appendix "up 
to translation and central reflection". 
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H. Rost found an example (see [4]) of a pair a,b € ^ 5 such that (4) holds, 
i.e. the distance sequence #(*) does not determine in general the "parent" sequence 
a uniquely. We shall show how to construct all pairs a,b £ *t satisfying (4) in 
Section 3. By (2) and (3), we find that for such a pair n(a) = n(b) is true, i.e. 
there exists an n € No such that a,b £ s/n. This n plays an important role in our 
investigation. Section 4 provides, for each n € No, some estimates of cardinality of 
the sets 

{{a,b}; a , b G < a ^ b,«« = 6™} 

and 

{b; b € < , < ( a ) = « ( b )} for a 6 i r ­

respectively. Section 5 is devoted to the structure of those a , b G ^ which satisfy (4). 

2. TWO EQUIVALENT FORMULATIONS OF THE PROBLEM IN QUESTION 

Let a 6 ^ , put 
A = { t ; i G N 0 , a l = l } 

and consider two independent random variables X and Y having the uniform distri­
bution concentrated on the set A. Then the distribution of Z = X — Y is by (1) 

(5) p(z = j) = 5>(x = *+-W = 0 = £>•*. (.3-y)' = ^(T®)2 

for any j G No and 

P(Z = .;) = P(Z = -j) for any integer j . 

R. Pyke posed in [3] the following question: 

Let X and Y be independently distributed uniform random variables over the 
same closed subset of the real line. Given the distribution of Z = X — Y, can 
one determine B (up to translation and reflection)? 

We observe that if only the sets £ C No were considered (as a matter of fact, 
the Rost's example in [4] has this property) then it would require by (5) to decide 
whether the distance sequence 6^ determines a G sf uniquely or not. 

Another situation in which this problem appeared concerns stochastic geometry. 
A compact set K C Rd is characterized in [1] by the volumes of its dilations by 
compact sets C, i.e. the values of 

*c(K) = ti(K®6) 
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are considered, where /* is a translation invariant measure on Rd with p(K) < oo 
(usually the Lebesgue measure or the counting measure), $ denotes the Minkowski 
addition of sets and 

d = {-z;xeC). 

Assume that $c(K) is known for each set C C Hd containing at most two elements. 
Thus, the function 

•*(*) = £ (-l)c a r d C + 1*c(A:) fof»€R' 
CC{0,y} 

is known as well and, moreover, 

*?{v)=M(Kn(K®{-y})). 

Note that the function ¥ * is called the set covariance ttf /if and is widely used 
in mathematical morphology and automatic image analysis—see [5]. It is proved 
in [2] that the values {¥*(y); y € R2} determine a planar convex polygon up to 
translation and central reflection. On the other hand, the paper [1] shows that their 
knowledge is not sufficient to determine each compact subset of Rd (up to translation, 
central reflection, and symmetric difference of ^-measure zero) even for d = 1. In 
[1], /i is the Lebesgue measure on R1 but it can be easily seen that the essence of the 
example given there is to consider the above mentioned problem for sets K C No 
with fi being the counting measure on R1. To observe the connection with the 0-1 
sequences discussed in the introduction, let /i be the counting measure on R1, let 
a € & and let 

tf = { i ; i € No, a,. = l} . 

Then 

* f (j) = «« for j e No. 

Note that the two examples given in [1] and [4] are not identical. Moreover, the 
corresponding pairs of sets (or, equivalently, sequences) are elements of different sets 
tfn because n = 11 in the former case and n = 15 in the latter one. Their structure 
is, however, analogous—:cf. Section 5. 

274 



3. THE POLYNOMIAL APPROACH 

This section shows how to find ail pairs a, b G sf satisfying (4). Let n G No and 
let a G stfn- The sequence a determines a polynomial 

p(a>(*)=i>*'=!>-•'• 
1=0 t = 0 

For each polynomial h of a degree k G No we put 

A(x) = x* . fc(aT1)-

The values of 6j appear in the product 

,C)(x) = pC)(x).p(-)(.-)= J2 4 l V + n -

Thus, the relation (4) is equivalent to 

(6) , « = ,(»», 

(7) pC>*pO» 

and 

(8) pW^pW. 

The polynomial p<a) can be written as a product 

of two polynomials. Further, put 

/•»>-...«, 

so that 
p<a> = 6 • U 

and 
p(b) = i -u . 

Thus, the relation (6) is fulfilled and the conditions (7) and (8) are equivalent to 

(9) « -i u 
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and 

(10) 8 ф 8. 

Conversely, if two polynomials s and u are taken in such a way that (9) and (10) hold 

and that the products 8 • u and 8 • fi are polynomials all coefficients of which belong 

to {0,1} then we get a, b G si satisfying (4) by puting pW = s • u and p(b) = s • u. 

Since each of the polynomials p(*\ pW, p(b) and p ( b \ for any a , b G ^ , contains 

obviously the absolute term 1, the polynomials « and u have the same property as 

well. Many pairs a , b G ^ satisfying (4) can be obtained by using polynomials s 

and u such that all their coefficients belong to {0,1}. The two examples presented 

in [1] and [4]—see also Tables 1 and 2 below—use the polynomials 

8(x) = 1 + x + x 4, 

u(x) = 1 + x2 + x7 

and 

s(x) = l + x 4 + x 1 2 , 

u(x) = 1 + X + x3, 

respectively. 

ť 0 1 2 3 4 5 6 7 8 9 10 11 ^ 12 

Oi 1 1 1 1 1 0 1 1 1 0 0 1 0 

bi 1 1 0 0 1 1 1 1 1 1 0 1 0 

9 6 5 5 5 4 3 3 2 1 1 1 0 

ТаЫе 1 

ť 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ^ 16 

<J. 1 1 0 1 1 1 0 1 0 0 0 0 1 1 0 1 0 

bt 1 0 1 1 1 0 1 1 0 0 0 0 1 0 1 1 0 

tf» = Í ( Ь ) 9 4 4 4 3 2 2 2 3 2 2 2 3 1 1 1 0 

ТаЫе 2 
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4. THE QUANTITATIVE RESULTS 

All pairs a, b € s/n were investigated for n = 1,2,..., 14,15 with the use of PC 
Olivetti M 28. There are no pairs a,b € */n satisfying (4) for n ^ 10. Table 3 
contains the list of the pairs a,b € */n satisfying (4), the corresponding sequences 

n 
{Ыř-,0 

K*ЃУU = {-ftø-o *(*) «(«) 

11 

111000101001 
110000110101 

622112211111 1 + x + x\ + X3 

+ X* + X9 
1 - x3 + ar5 

11 
111110111001 
110011111101 

965554332111 í + x + x* l + *a + x7 

12 

1101001110001 
1100011101001 

7322233211011 \-xг + x3 1 + ï + x\ + X3 

+ X7 + X + X9 

12 

1110010101001 
1100010110101 

7232231311111 1 + x + x\ + X3 

+ x* + x* + x7 \-x3 + x* 

12 

1111011101001 
1101111100101 

9555444312111 l + x + x7 l + x2 + x5 

12 
1111101011001 
1100101111101 

9555434232111 í + x + x* 1 + X2 + X3 
12 

1101110101101 
1101011011101 

9455443323111 l + x + x3 \ + xь + x9 

12 

1111010110011 
1110111001011 

9544443322221 \-x3 + xь \ + x + x3 + x3 

+ 2x* + xь + xв + x7 

Table 3 

^(a) = £(b) and the polynomials s and u for n = 11 and n = 12. The number of such 
pairs for n = 11,12,13,14,15 is given in Table 4. (There is no group of more than 
two elements of $fn with the same distance sequence for those n's—cf. Proposition 
2). Since the cardinality of the set j*/n grows exponentially in n there is a litle chance 
to get such complete information for larger n. A lower bound for the number of pairs 
a ,bG^ n satisfying (4) can be obtained for any n ^ 11 as follows: Put 

s(*) = l + * + xm, 

u{x) - 1 + x2 + xn~m 

for any m £ N such that 4 t $ m ^ H-_3_ if n ^ 11 and 

*(*) = l + *2 + *m. 
ti(a) = 1 + x + xn"m 
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for any m € N such that 5 < m ^ £j2 if n ^ 12. Since these polynomials s and 
u generate in total J 2 ^ ] + f 2 ^ ] = n - 10 disjoint pairs {a, b} C s/n with a, b 
satisfying (4), where [y] means the integer part of y, we have the following estimate. 

Proposit ion 1. There exist at least n — 10 disjoint pairs {a ,b} C */n with a, b 
satisfying (4) for any n 6 N, n ^ 11. 

We know that the distance sequence #(*) defined in the introduction does not 
determine in general the "parent" sequence a 6 ^ uniquely. All the examples given 
in Table 3 have a common feature that just two elements of */ correspond to the 
same distance sequence. It seams to be useful to demonstrate that more than two 
elements of sf can have the same distance sequence. Put 

s(x) = 1 + x + a?3, 

ti(a,) = l + *4 + s 9 , 

u;(*) = l + * 1 3 + a,27 

and 

p( a ) = 8 • U ' U/, 

p(b) = 8 - u • w, 

p(°) = s - u • u;, 

p(d) = « . tk • w. 

The reader can easily verify that all the coefficients of the polynomials p(a), p(b), p(c) 
and P^d) belong to {0,1}, that a, b, c, d are different elements of J2/39 and that 

*(•) = «(*>) = «(*) = *W. 

proposit ion 2. Let n 6 N and * € N be such that 

*+- . 
n > £ 3V 

TAen t/iere exist at least V different elements ofn/n having the same distance se­

quence. 

p r o o f . In a similar way as above, we put 

m = n - £ 3* 

af = i (3 f - 1) for i € N, 

A = 31 for i € N 

278 



and form the polynomials 

X 

(l + x + x3) JJ(1 + xai + **)*•(! + **<+1 + J')1'" 

x (l+xa'+l+xm)*'+l(l + x m - t t *+ l + gm)l-'»+* 

for all (jfe,..., yz+1) 6 {0,1}*. These polynomials generate V different elements of 
s/n having the required properties. D 

n 11 12 13 14 15 

number of unordered pairs 
a, b Є s/n which satisfy (4) 2 6 12 16 37 

ТаЫе 4 

5. THE STRUCTURE OF THE PAIRS a , b 6 ^ SATISFYING (4) 

To any finite subset A C R w e attach the uniform probability measure PA over 
A with respect to the counting measure. We shall say that such a subset A has a 
property 9 if there exist two non-empty finite subsets 5,(/CR such that 

( Ц ) 

and 

(12) 

S,Uф {0} 

Pл = Ps * Pv, 

where * denotes the operation of convolution. Further, we shall say that a sequence 
a £ JZ/ has the property 9 if its support set 

(13) A = {i;ai = l} 

has the property £*. It can be easily seen that the property 9 is "-invariant so that 
we can deal with the elements of the factor-set si. 

R. Pyke posed in [4] a question which can be re-formulated as follows: Consider a 
pair a , b 6 i / satisfying (4). Have a and b necessarily the property 91 The answer 
is negative, as can be found considering the first example given in Table 3 for n = 11. 
In this case, the support sets—cf. (13)—corresponding to those"!, b € s/n are (up 
to central reflection) 

(14) A= {0,1,2,6,8,11} 
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and 

(15) S = {0,1,6,7,9,11}. 

Suppose that the set A given by (14) has the property & and let S, U be the finite 
nonempty subsets of R such that (11) and (12) hold. Since min S+min U = min A = 0 
and 

(16) maxS + maxl/ = maxv4 = 11 

we can assume without loss of generality that min S = min (7 = 0 and that maxS ^ 
maxU, i.e. 

(17) maxC/>6. 

This implies S U U C -4. Since all the three measures in question are uniform, 
Sf\ U = {0} holds. Finally, there are three possibilities by (17): 

1) if maxU = 6 then maxS = 5 by (16) but 5 g A\ 
2) if maxtf = 8 then maxS = 3 by (16) but 3 g A\ 
3) if maxU = 11 then maxS = 0 by (16), i.e. S = {p}, which contradicts to (11). 

Thus, the set A given by (14) cannot have the property 5*. Similarly, the same 
result is obtained for the set B given by (15). We conclude that none of the elements 
a, b of the set M l given in the first row of Table 3 has the property &. 

The example just discussed concerned the particular case of n = 11. General n's 
are considered in 

Proposition 3. For any integer n ^ 11, there exists a pair a , b G ^ n satisfying 
(4) and such that neither a nor b has the property 0*. 

P r o o f . It remains to deal with n ^ 12 only. Use the polynomials 

s(x) = 1 + x + x2 + x3 + x n - 5 + xn"4 + xn"s 

and 
u(x) = 1 - x 2 + x3. 

The sequences a, b € *fn corresponding to pW = * • u and p<b) = s • ti have the 
support sets 

(18) i4 = {t;a t = l} = { 0 , l , 3 , 6 , n - 5 , n - 4 , n } 

and 

(19) fl = {t;6 t = l} = { 0 , 3 , 5 , 6 , n - 5 , n - l , n } . 
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Following the ideas applied in the example above, we find that the sets .A, B given 
by (18) and (19) cannot have the property 9*. (In the cases of 

max 5 = maxU = 6 if n = 12, 

or 
max£/ = n — 5 and max5 = 5 

if the set B is considered, the second greatest elements of 5, U should be discussed 
to find the contradiction to (12).) D 

6. OPEN PROBLEMS 

1) In spite of the fact that the number of elements of sf having the same distance 
sequence is not bounded—cf. Proposition 2, no example that this number equals 3 
is known to the authors of this paper. This problem seems to be associated with 
the question whether there exist a, b £ J./ satisfying (4) such that card^?a = 1 
and card^b = 2 (the set 59a has been introduced in Section 1). In the words of 
polynomials, these conditions can be expressed by pW = p(«) and p(b) ^ p(h\ 

2) A question whether there exist 5 different elements of si having the same 
distance sequence seems to be much harder than the problem 1. 

3) Proposition 2 provides an upper bound for the minimum of those n 6 N that 
there exist at least V = 2, 4, 8, . . . different elements of s/n having the same distance 
sequence. What is the minimal n with this property for each z € N? Note that the 
upper bound is equal to 12 and 39 for z = 1 and z = 2, respectively, but it is possible 
to take n = 11 for z = 1 and n = 35 for z = 2—see Tables 3 and 5, respectively. 

IчJfti 110100111011110011100011101001110001 

OiЖo 100011100111101110010111000111001011 

Ыйo 100101110011110111000111001011100011 

{*)ëo 110001110111100111010011100011101001 

ИPlSo for 
e = a, b, c,d 

21,12,9,8,10,13,13,11,8,8,9,9,9,9,6,6,7,7,7,6,4,4, 

5,7,4,3,2,2,3,3,2,1,1,0,1,1 

Table 5 

4) The computer search study shows that the number SQ of Vs in the sequences 
a € s/n for which there exists b € s/n such that the pair a, b satisfies (4) is as 
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follows: 

*om )€{6,9} for 11=11, 

*o a ) e{7 ,9} for n = 1 2 , 

Sim)€ {6,7,8,9} for n = 13, 

*oa )e {6,7,8,9,10} for n = 14 

and 

6(a) € {7,8,9,10,11,12} for n = 15. 

b it possible to state that the distance sequence determines the "parent" element of 
M/ uniquely if SQ is small enough or large enough (compared to n)? And if it is so 
what are the limits for a given n E N? 

5) When looking for the polynomials 8 and u (cf. Section 3) such that the pair 
a ,b £ sf corresponding to pW = s • u and p(b) = s • u satisfies (4), the following 
basic problem appears to be of interest: For which polynomials s exists there such a 
polynomial u (both s and u having arbitrary coeficients) that all the coefficients of 
the product polynomial s • u are from {0,1}? 
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