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Summary. In this paper a combinatorial result concerning pairs of projective intervals 
of a modular lattice will be established. 
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1. PRELIMINARIES 

The recent papers dealing with combinatorial questions concerning partially or­
dered sets are rather frequent (cf., e.g., [2], [3], [4]). 

Let L be a modular lattice. We denote by 9 the collection of all systems D = 
(ai, a2,03, ti, v) of distinct elements of L such that 

ti = ai A a2 = ai A 03 = 02 A a3, t; = a\ V 02 = a\ V as = 02 V 03. 

An interval [ai, 02] of L will be said to be an m-interval if there is D 6 ® such that 
(under the above notation), [01,02] is projective to [ti,ai]. 

Let a = [61,62] and /? = [c\, C2] be distinct projective intervals of L. Assume that 
a is nontrivial (i.e. 61 ->- 62); then /? is nontrivial as well. 

There exists a least positive integer n such that for some a0i ot i , . . . , an in L the 
following conditions are satisfied: 

(i) a 0 = a and an = /?; 
(ii) for each t € { 1 , 2 , . . . , n}, the interval a,- is transposed to the interval a,-_i. We 

denote /i(a, /?) = n. 

Let 5(a) be the collection of all systems (y0j y\, jfc,.. . , ym) with 61 = y0 < yx < 

V2 < • • - < Um ~ *a- T h e co-action 5(/J) is defined analogously. For each i € 

{ 1 , 2 , . . . , m} let k(i) be a positive integer. 
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A system of distinct intervals 

(1) (Ai)(t-= 1 ,2 , . . . ,m; i = 1,2,...,*(•)) 

will be said to be a p-system for the intervals a and /? if the following conditions are 
satisfied: 

(i) there are Y = (jfo, y i , . . . , yn) € 5(a) and Z = (z\, z2 , . . . , zn) 6 S(/3) such that 
for each i € {1,2,.. . , m} we have fa = [yt-i, yi] and A,*. = [*f_i, z,]; 

(ii) for each i € {l ,2 , . . . ,m} and each j 6 {1,2,.. .,i(i)} the interval /%j-i is 
transposed to /?t- j . The collection of all p-systems for a and /? will be denoted 
by p(«, /?). For A € P(a, /?) (where .A is as in (1)) let A0 be the of all fa E -4 
such that fa fails to be an m-interval. We put 

u(A) = card Ao, 

i/0(a, /?) = min{i/(A): .A € P(a, /?)}. 

In this note it will be proved that we always have 

(2) fo(a , /?K3 

and this estimate cannot be sharpened in general. 
The estimate (2) is a consequence of the following result: 

(A) Let a = [6i,t2] and /? = [ci,c2] be nontrivial intervals of a modular lattice L. 
Assume that a is projective to j3. Then there exist elements a?o, x\f ..., xm) yo, 
yii • • •> Urn ifl L such that the following conditions are satisfied: 

(i) b\ = x0 < x\ < ... < xm = 62, ci = y0 < yi < . . . < ym = c2 and for each 
t € {1,2, . . . . m} the interval [*t-i, xt] is projective to [yt-i, yt]; 

(ii) there is i(l) 6 {1,2, . . . ,m} such that [art-i,xt] is an m-interval for each i G 
{1,2,. . . , m} \ {i(l)}, ancf either [xt(i)_i, £t(i)] is an m-interval, or there is an 
interval [*i,*2] C L such that [a?t(i).-i,xt(i)] is transposed to [*i,t2] and [*i,*2] 
is transposed to [yt(i)-i,yt(i)]. 

THE PROOF OF (A) 

We will apply the notation from Section 1. Again, let a and /? be distinct nontrivial 
intervals of a modular lattice L. Assume that a and /? are projective. A p-system 
.A for a and /? will be said to be reduced if (under the notation as above), whenever 
i € {1,2, . . . ,m} and j € {1,2,.. . , i(i) — 1}, then foj-i fails to be transposed to 

The following lemma is easy to verify. 
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2.1. Lemma. Let A € P(at0). Then there exists A' € P(ottp) such that A' C A 
and A' is reduced. 

Let [ci, c2] and [d\t <f2] be transposed intervals of L; theiip*e have either 
(i) c2Arfi = ci, c2Vrfi = rf2, 

or 
(ii) d2 A ci = d\, c/2 V ci = c2. 

If (i) is valid, then we write [ci, c2] / [d\t rf2]; the validity of (ii) will be recorded by 
writing [cx, c2] \ [d\, d2]. 

2.2. Lemma. Let A € P(ottP) and assume that A is reduced. Let A be as in 
(1). Ift € { l ,2 , . . . ,m} , j 6 { l ,2 , . . . , t ( t) - 1}, otij-i / a , j , tien at | i \ a u + 1 

(and dually). 

The proof is trivial. 
Let A G P(ottfi) be as in (1). Let t € { l ,2 , . . . ,m}, *ii € X, *<-lfl < z,i < 

a?ii. We define elements z,-2, zt3, ..., -*«,*(,•) by induction as follows: if *i,>-.i (j € 
{2 , . . . , Jb(t)~l}) is already defined and if a ltj-i / a ,j , then we put z^ = Zi,>-i Vcfi, 
where di is the least element of a%j\ on the other hand, if a i j - i \ a%jt then we set 
Zij = *ij-i A d2, where d2 is the largest element of a,;-. 

Consider the* system A' which we obtain from the system A if the t-th row 
(<*itu

 a«\2, • • •, ai,i(k)) of _A is replaced by the rows 

«.,1> «.,-> • ••> a í , i ( * ) 

< 1 > < 2 > •••><„. 

where 
û f í j ^ O Є a y i t ^ Ą j } , <, = o 

Then we obviously have: 

2.3. Lemma. A' is a p-system for the intervals a and /?. 

The system A' will be said to be generated by the system A and by the element 
*ii. 

Let yt z € Lt b\ < y < h, c\ < z < c2. Suppose that [6lf y] is projective to [clt z] 
and that [y, 62] is projective to [zt c2]. 

2.4. Lemma. Let A € fK(6i,»], fa-,*])* (We apply the same notation as in.(l) 
witA the distinction that we now have y and z instead of 62 and c2.J Let /?„ (t = 1, 
2, ..., Jb(m +1)) be intervals of L such that ^m+i,i = [l/» Mf /Wi,*(m+i) * [*>*2] 
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and for each j € {2,3, . . . , k(m + 1)} the interval /?m+i,i-i is transposed to /?m+i.i • 
Let A' be the system 

(ÄДІ = 1,2,. . . ,m + l ; i = 1,2,. ..,*(•)). 

ThenA'€p(a}/3). 

P r o o f . This is an immediate consequence of the definition of p(a, /?). 
The assertion dual to 2.4. is also valid. • 

2.5. Lemma. Let x, y and z be elements of a modular lattice L. Assume that 
the relations 

[xf\y,x]S[y,xVy] and [ y , i V y ] \ [ y A : , z ] 

are valid. Then the sublattice L\ of L generated by the elements x, y and z is a 
homomorphic image of the lattice on Fig. 1. 

zWy—yУг 

Ғig. 1 

P r o o f . If we consider the free modular lattice with three free generators (cf. 
e.g. [1], Chap. Ill, Theqrem 8) x, y and z, and if we take into account that in our 
case we have xVy = yVz, then we obtain the assertion of the lemma. D 

Theorem. Let a and f3 be nontrivial distinct intervals of a modular lattice L. 
Assume that a is projective to p. Then there is A £ P(a,0) such that (under the 
notation as in (1) the following condition is satisfied: there is j(l) € {1,2,. . . , m} 
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such that, whenever t € { 1 , 2 , . . . , m}\{ i ( l ) } and j € { 1 , 2 , . . . , *(*)}, then fly is an 
m-interval; next, either #(i), i is an m-intervsd, or k(i(l)) -$ 3. 

P r o o f . Under the notation as in Section 1, let /i(a, /?) = n. We have n ^ 1. If 
n = 1, then the assertion obviously holds (it suffices to consider the system (ao, ai)) . 

Suppose that n *£ 2 and let us apply induction with respect to n. First we consider 
the system 

(a*) (Jb = 0 , l , 2 , . . . , n ) 

which obviously belongs to p(a,/?). Without loss of generality we may assume that 
this system is reduced. Next, we can suppose that ao / a\ \ a* is valid (in the 
case ao \ a i / a2 we apply a dual procedure). 

Let x, y and z be the greatest element of ao, the least element of a\ and the 
greatest element of a2, respectively. (Cf. Fig. 1.) Then 

ao = [x A y, x], a i = [y, x V y], a2 = [x A z, z]. 

At the same time, x V y = y V z. Put x' = (x A y) V (x A z). We have obviously 

a: Ay ^ x' ^ x. 

From x A y < x we infer that either x A y < x' or x' < x. 
Let us distinguish the following cases. 

(a) Let x A y = x'. Then a = ao = [x',x]. In view of Fig. 1, ao is an m-interval; 
therefore a i , a2, . . . , a n are m-intervals as well. Now it suffices to put a = (a,) 
(t = 0, 1,2, . . . , n). 

(b) Let x' = x. Then a = ao = [x A y,x]. Next, a 2 = [y A z,t], where t = 
(x A z) V (y A z). Denote a[ = [x A y A z, x A * ] . We have (cf. Fig. 1) 

* o \ < * i / a 2 . 

Thus the system A' consisting of the intervals 

<*o, «i , or2, a3, . . . , a n 

belongs to P(a ,£ ) . Since a 2 /* ds, according to 2.2 the system A' fails to be 
reduced. Thus in view of 2.1 there exists a system 

A>> A i •••> 0i 

which belongs to P(otf0) such that / < n. Therefore by the induction hypothe­
sis, the assertion of the theorem is valid for a and /?. 
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(c) Let x A y < x' < x. Let A\ be the system 

(on) (t = 0 , l , 2 , . . . , n ) 

and let A% be the system generated by A\ and the element x'. Then (under the 
notation as in Lemma 2.3) the system Ai consists of intervals 

a'0, a; , . . . , a'n, 
-ji -ji -ji 

a 0 , a l f . . . , a n , 

where 

<*o = [*Ay,*'], a n = [yAz,i] , 

a'0 '= [*',*], afi = [«,*]. 

Since a 0 is an m-interval, all aj- (t = 1, 2, . . . , n) must be m-intervals. Next, 
by the same argument as in (b) we can verify that there exists a system As 

consisting of intervals 

A>, A , ..., A 

with 1 < n such that .A3 € p([s', *],[*,*])• Hence by the induction hypothesis, 
the assertion of the theorem is valid for the intervals [x',x] and [*,-?]. Now it 
suffices to apply Lemma 2.3. D 

Theorem (A) in Section 1 is obviously a consequence of (in fact, equivalent to) 

Theorem 2.6. 

2.7. Example. Let L be as in Fig. 1 Consider the intervals o = [xAy,x'] and 

P = [y Az , t ] . It is easy to verify that fi0(a,/?) = 3. Hence the estimate (2) cannot 

be sharpened in general. 
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