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Summary. In this paper a combinatorial result concerning pairs of projective intervals
of a modular lattice will be established.
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1. PRELIMINARIES

The recent papers dealing with combinatorial questions concerning partially or-
dered sets are rather frequent (cf., e.g., (2], [3], [4])-

Let L be a modular lattice. We denote by 2 the collection of all systems D =
(a1, a2, a3, u,v) of distinct elements of L such that

u=aj; Aaz = a; Aasz = az Aag, v=a;Vaa=a; Vaz =ayVas.

An interval [a;, a3] of L will be said to be an m-interval if there is D € 2 such that
(under the above notation), [a;, a3] is projective to [u, a;].

Let o = [b1,b2] and B = [c1, ¢3] be distinct projective intervals of L. Assume that
a is nontrivial (i.e. by # bz); then B is nontrivial as well.

There exists a least positive integer n such that for some ap, a,...,a, in L the
following conditions are satisfied:

(i) ao = @ and a, = B; .
(ii) for each i € {1,2,...,n}, the interval a; is transposed to the interval a;_;. We
denote p(a,f) = n. ‘

Let S(a) be the collection of all systems (yo,%1,¥2, - - yUm) With by = yo <y <

Y2 < ... < Yym = ba. The collection S(B) is defined analogously. For each i €

{1,2,...,m} let k(i) be a positive integer.
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_ A system of distinct intervals
(1) Bij)i=1,2,...,m;j=1,2,...,k(i))

will be said to be a p-system for the intervals o and 8 if the following conditions are
satisfied: :
(i) there are Y = (yo0,¥1,.--,¥n) € S(a) and Z = (2),23,...,2,) € S(B) such that

for each i € {1,2,...,m} we have 81 = [yi—1,41] and Bi s, = [2i-1, zi];

(ii) for each i € {1,2,...,m} and each j € {1,2,...,k(i)} the interval §; ;_; is
transposed to f; ;. The collection of all p-systems for a and # will be denoted
by p(a, B). For A € P(a, ) (where A is as in (1)) let Ag be the of all §;; € A
such that §;; fails to be an m-interval. We put

v(A) = card A,
vo(a, B) = min{v(A): A € P(a,B)}.

In this note it will be proved that we always have
(2) Vo(a, ﬂ ) < 3

and this estimate cannot be sharpened in general.
The estimate (2) is a consequence of the following result:

(A) Let a = [b1,b3] and B = [c1,¢3] be nontrivial intervals of a modular lattice L.
Assume that « is projective to 8. Then there exist elements zy, 1, ..., Tm, Yo,
Y1, .-+ Ym in L such that the following conditions are satisfied:

) hh=z0<z1<...<2Zm=0b3,c1 =y <Y1 <...< Ym = ¢z and for each
i € {1,2,...,m} the interval [z;_,, z;] is projective to [yi—1, yi];

(ii) there is i(1) € {1,2,...,m} such that [z;_1, ;] is an m-interval for each i €
{1,2,...,m}\ {i(1)}, and either [z;(1)_1, Zi(1)] is an m-interval, or there is an
interval [tl,tﬁ] C L such that [z;1)-1, zi1)] is transpoqed to [t1,12) and [t1,12)
is transposed to (y;(1)-1, ¥i(1)]-

THE PROOF OF (A)

We will apply the notation from Section 1. Again, let a and 3 be distinct nontrivial
intervals of a modular l&t@ioe L. Assume that o and § are projective. A p-system
A for o and 3 will be said to be reduced if (under the notation as above), whenever
i€ {1,2,...,m} and j € {1,2,...,k(s) — 1}, then §; ;_, fails to be transposed to
ﬂid +1-

The following lemma is easy to verify.
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2.1. Lemma. Let A € P(a, ). Then there exists A’ € P(a,B) such that A’ C A
and A’ is reduced.

Let [c1, c2] and [d1, d3] be transposed intervals of L; themrwe have either

(l) caAdy = ¢, ca Vdy = dy,
or

(ii) daAcy=dy, d2Ver=e.
If (i) is valid, then we write [c1,¢2] / [d1, d3]; the validity of (ii) will be recorded by
writing [cl, 02] N\ [dl, dz]. ‘

2.2. Lemma. Let A € P(a,B) and assume that A is reduced. Let A be as in
(1). Ifi € {1,2,...,m}, j € {1,2,...,k(3) - 1}, @i j-1 / aij, then a;j \, aij41
(and dually).

The proof is trivial.

Let A € P(a,B) be asin (1). Let i € {1,2,...,m}, zis € L, zi—11 < zi1 <
zi1. We define elements z;3, zs, ..., z k() by induction as follows: if 2 ;1 (j €
{2,...,k()—1}) is already defined and if a; j_; / a; j, then we put z;; = z; j_1Vdy,
where d, is the least element of a; ;; on the other hand, if a; ;-1 \, @i j, then we set
Zij = 2 j—1 A dg, where dj is the largest element of a;;.

Consider - the system A’ which we obtain from the system A if the i-th row
(@i,1,5,2,...,a;ix)) of A is replaced by the rows

’ ’ '
@1 X2y - ey O (k)
II H "
Qi1 A2y ooy UGy,
where
’ — .. * ’ . ,’ a—— e * . .
ai,j—{teau'tszt,:}: aij-{tEa,,.t)z.,J}.

Then we obviously have:

2.3. Lemma. A’ is a p-system for the intervals a and 8.

The system A’ will be said to be generated by the system A and by the element
Zi1.

Let y,z € L, b) < y < b2, ¢1 < z < ¢3. Suppose that [by,y] is pro_]ectlve to [e1, 2]
and that [y, b,] is projective to [z, ¢3].

2.4. Lemma. Let A € p([b1,4), [¢1,3]). (We apply the same notation as in (1)
with the distinction that we now havey and z instead of b; and c3.) Let fm41,i (i = 1,
2, ..., k(m + 1)) be intervals of L such that fm41,1 = [§,83], Bm+1,k(m+1) = [5, €3]
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and for each i € {2,3,...,k(m + 1)} the interval fm41,i-1 is transposed to Bm41,i.-
Let A’ be the system

(Bij(i=1,2,...,m+1;j=1,2,...,k(i)).

Then A’ € p(a, f).

Proof. This is an immediate consequence of the definition of p(a, 8).
The assertion dual to 2.4. is also valid. a

2.5. Lemma. Let z, y and z be elements of a modular lattice L. Assume that
the relations

[zAy, 2] /'[y,zVvy] and [y,zVy \ [yAz,2]

are valid. Then the sublattice L, of L generated by the elements z, y and z is a
homomorphic image of the lattice on Fig. 1.

Fig. 1

Proof. If we consider the free modular lattice with three free generators (cf.
e.g. [1}; Chap. III, Theorem 8) z, y and z, and if we take into account that in our
case we have z Vy = y V z, then we obtain the assertion of the lemma. a

Theorem. Let o and B be nontrivial distinct intervals of a modular lattice L.
Assume that « is projective to f. Then there is A € P(a, B) such that (under the
notation as in (1) the following condition is satisfied: there is i(1) € {1,2,...,m}



such that, whenever i € {1,2,...,m}\{i(1)} and j € {1,2,...,k(3)}, then B;; is an
m-interval; next, either Bi(1),1 is an m-interval, or k(i(1)) < 3.

Proof. Under the notation as in Section 1, let y(a, 8) = n. We have n > 1. If
n = 1, then the assertion obviously holds (it suffices to consider the system (ap, a1)).
Suppose that n > 2 and let us apply induction with respect to 5. First we consider

the system
(ax) (k=0,1,2,...,n)

which obviously belongs to p(a, ). Without loss of generality we may assume that
this system is reduced. Next, we can suppose that ag / a1 \|, a3 is valid (in the
case ap \, a1 /" ay we apply a dual procedure).

Let z, y and z be the greatest element of ag, the least element of a; and the
greatest element of a3, respectively. (Cf. Fig. 1.) Then

ag=[zAy,z], ai=[y,zVy, az=[zAz2].

At the same time, zVy =y V 2. Put 2/ = (z Ay) V (z A z). We have obviously

/

zAygz <2

From z A y < z we infer that either zAy <z’ orz’ < z.
Let us distinguish the following cases.

(a) Let z Ay = z'. Then a = ag = [z',z]. In view of Fig. 1, ap is an m-interval;
therefore a1, ay, ..., an are m-intervals as well. Now it suffices to put a = (o)
(i=0,1,2, ... n).

(b) Let ' = z. Then a = ap = [z Ay,z]. Next, az = [y A z,t], where t =
(A 2)V(yAz). Denote aj = [z AyAz,zAz]. We have (cf. Fig. 1)

ag \, a1 /a3
Thus the system A’ consisting of the intervals
Qay, a’lx Qz, a3, ..., Qn

belongs to P(a, 8). Since az / ds, according to 2.2 the system A’ fails to be
reduced. Thus in view of 2.1 there exists a system

ﬂlh pl» ceey pl

which belongs to P(a, f) such that I < n. Therefore by the induction hypothe-
sis, the assertion of the theorem is valid for a and B.
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(c) Let zAy < 2’ < z. Let A; be the system
(i) (1=0,1,2,...,n)

and let A; be the system generated by A; and the element z’. Then (under the
notation as in Lemma 2.3) the system A consists of intervals ‘

ag, ay, ..., o,
o, of, ..., ol
where
ag=[zAy 2], o) =[yAzt],
ap = [/, 2], ah =t, z].
Since ay is an m-interval, all ! (i = 1, 2, ..., n) must be m-intervals. Next,

by the same argument as in (b) we can verify that there exists a system As
consisting of intervals

ﬁov ﬂl) ey ﬂl

with 1 < n such that A3 € p([z’, z], [, 2]). Hence by the induction hypothesis,
the assertion of the theorem is valid for the intervals [z’,z] and [t,2]. Now it
suffices to apply Lemma 2.3. O

Theorem (A) in Section 1 is obviously a consequence of (in fact, equivalent to)
Theorem 2.6.

2.7. Example. Let L be as in Fig. 1 Consider the intervals a = [z A y, '] and

B = [yAz,t]. It is easy to verify that po(a,3) = 3. Hence the estimate (2) cannot
be sharpened in general.
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