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Summary. It is shown that any power A", n > 2, of a finite k-element algebra A, k > 2,
has factorable tolerances whenever the power A*%*-3E hag the same property.
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In 3] R. Willard proved that congruences on any power A", n > 2, of a finite k-
element algebra A, k > 2, are factorable whenever the power AF¥’+¥*=F hag the same

property. The aim of this paper is to find an adequate exponent for factorability of
tolerances on powers of a finite algebra.

Definition 1. Let Cj, ..., Cyn, n > 2, be algebras of the same type. We say that
the product B = Cy X ... x C, has factorable tolerances if for any tolerance T on B
we have T =T} x ... x T, where T; is a tolerance on C;, i < n.

Notation 1. Let Ci, ..., Cn, n 2> 2, be algebras of the same type, B =

z

Cy X ... x Cy. The elements of B are denoted by x, u, v, ..., ie. x =
Zn
U1 n
u=|:|,v= , ..., where z;, 4, v; € C;, i < n. Let I, J be disjoint index

Un Un
sets such that JUJ = {1,...,n}. If

u foriel
F= v forieyg

u
then x can be expressed in the form x = [v;]
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Notation 2. Let z, ¥, 4, v be elements of an algebra B. The symbol
Ts((z,y) , (u, v)) denotes the least toletance on B containing the pairs (z, y), (u,v) €
B2

Notation 3. Let Ci, ..., Cn, n < 2, be algebras of the same type, B =
Ci x ... x Cy. Denote '

e(B) = {{a,b,c,d,e,f) € B®; Vi< n either (ai,b) = (ci, d:)
or (a, bi) = (es, fi) }

and, further,

7(B) = {({a,b,c,d,e,f) € B%: Vi< n either (ai, b)) = (ci,di) ,di=e; = f;
orag=b;=d.-=c.-= [

ora;=b;=¢=f;, c; =d;

or (aivbl') - (et')fl')) bi =6 = dl'}*

Lemma 1. LetCy, ..., Cn, n > 2, be algebras of the same type, B = Cyx...xChp.
The following conditions are equivalent:
(1) B has factorable tolerances;

(2) (e, d), (e, f) € T implies <[:’], [;’ > €T for any elements c, d, e, f € B,
J J
an tolerance T on B and any disjoint index sets I, J, IUJ = {1,...,n};

3) <[:’]’ [;I]> € Tg((c,d),(e,f)) holds for any elements ¢, d, e, f € B and
J J
any digjoint index sets I, J, IUJ = {1,...,n};

(4) (a,b,c,d,e,f) € ¢(B) implies (a,b) € Tg({(c,d),(e,f)) for any elements
a,b,c,d,e,f € B;
(5) (a,b,c,d,e,f) € 7(B) implies (a,b) € Tg((c,d),(e,f})) for any elements
a,b,c,d,e,f €B.

Proof. (1)= (2): Suppose that (c,d), (e,f) € T for a tolerance T on B. By
hypothesis T = T; x ... x T, for some tolerances T; on C;, i < n. Then (c;,d;),
(el'tfi) € T‘ii i g n, and so (cirdi) € Tvl', i€ I’ (el'!fi> € T;'; i€ J: for any disjomt
index sets I, J, IUJ = {l,...,n}. In other words, we have <[:I], ;’]) €

J J
T X..,XT,.:T.
(2) = (3) is trivial.
(3) = (4) follows from the definition of ¢(B).
~ (4) = (5) is evident since T(B) C ¢(B).
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(5) = (4): Let (a,b,c,d,e,f) € ¢(B). Then

esennn=([SLLEMELEMED

for some disjoint index sets I, J, IUJ = {1,...,n}. If I = @ or J = @ then the
conclusion of (4) holds trivially. In the opposite case we proceed as follows:

(GMalEHEMEH ] erm

(D= () D aD) -
o ({[z] ) enen

yields

(ii) further, from

<[f1] [ ] [d.r [:; ] [ ])e 7(B)
(RIAEI(HEAAIANE

| =T «[z_'[:ﬁ]))srg((c,d»,

MERCIAAIOIO B
([EL D e KL EDALEL ) -

| = (o] [2]) =mwens

()LL) e
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D e (DAL -
= (([o]-[2]) emem

by (iii);
(v)
LG 2 ) e
and so

o= (3] [lyem (B DS D) -
=5 (5] [21) = (5] []) <

c TB((" d)) v TB((e: f)) = TB((C’ d) ) <ea f));

by (ii) and (iv).
(4) = (3): See again the definition of ¢(B).
(3) = (2): Let T be a tolerance on B and let (c,d), (e,f) € T. Then evi-

dently Tg({c,d),(e,f)) C T and further <[:’] ) [;I]> € Tg({c,d), (e, f)) for
J J
any disjoint index sets I, J, IUJ = {l1,...,n}, by hypothesis (3). Altogether,

<[c1], d’]>ETasclaimed.
es )’ Lfs
(2) = (1): Let T be a tolerance on B = C} x...x Cy. Denote by T; the projection

of T on C;, ie. T; = {(zi,s) € C?; (x,y) € T for some x, y € B}, i < n. The
inclusion T C T} x ... x Ty, is trivial. Conversely, let (u,v) € T} x ... x T,. Then
there are pairs (c, d), (e, f) € T such that (u;,v;) = (c1,d1) and (uz,v3) = (e, f2).
Choose index sets I = {1}, J = {2,...,n} and apply the hypothesis (2) to the

c1 dl
assumption (c, d), (e, f) € T. Then we have <[:’I] , [;;]) = < 8:2 , f:2 > =
. €n Ia

u1 "
uz vz
< N > € T. Repeating this process we find that (u,v) € T, as required.

€n fn
The proof is complete.
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Lemma 2. Let B, C be algebras of the same type, ¢ a homomorphism from B
to C. Then (a,b) € Tg({c,d), (e, f)) implies

(p(a), p(b)) € Te({p(c), p(d)) , (p(e), (£)))
for any elements a, b, ¢, d, e, f € B.
Proof. The assumption (a,b) € Ts({c,d), (¢, f)) can be rewritten to
a=t(c,de, f,by,...,0m),
(+) b=1t(d,c,f,ebi,...,bm)

for some elements by, ..., b € B and a (4 + m)-ary term t, see e.g. [2]. Applying ¢
to the above equations (*) we immediately get

p(a) = t(p(c), p(d), p(e), o(£), p(b1), - .., p(bm)),
o(b) = t(p(d), p(c), p(£), p(e), p(b1), - .., (b)),
which means that (p(a), p(b)) € Tc((¢(c), p(d)) , (¥(€), p(f)) ), see [2] again. O

Notation 4. Let A be an algebra, n > 2, p1,...,pn: A® — A canonical
projections, and S a subset of A®. Then pf, ..., pS denote the restrictions of py, ...,
Pn, I€spectively, to S. '

Theorem. Let A be a finite algebra. The following conditions are equivalent:
(1) A" has factorable tolerances for any n > 2;
(2) A7(4) has factorable tolerances.
Proof. (1) = (2) is trivial.
(2) = (1): Take (a,b,c,d,e,f) € T(A™). It is a routine to verify that
(i) (aq, bi, i, di, i, fi) € T(A), i< n;
@) (o7, 5@, 5P, i, g, g ) € r(aTW);
g(ay, by, c1,dy,e4, f1) :
(iil) the correspondence ¢: g + [ ] is a homomorphism
9(an, bn, n,dn, en, fn)
from A7(4) to A™ which sends pI(A),p;(A) ,pg("),p:(‘),p;(‘), p;(A) to a,b,¢,d, e, f,
respectively.
By hypothesis A7(4) has factorable tolerances and so (ii) implies

(*) <,,;(A), p;(A)> € Ty ((pé“’, p;(A)> , (p?“’. p;(A))),

by Lemma 1(5). Applying the homomorphism ¢ to the relation formula (*) we obtain
(a,B) € Tyn((c,d), (e, f)),

see Lemma 2. In this way we get that (a,b,c,d, e, f) € 7(A") implies (a,b) €

Tun ((c,d), (e, f)), which establishes the factorability of tolerances on algebra A",

by Lemma 1(5) again. The proof is complete. ]
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. Corollary. Let A be a finite k-element algebra, k > 2. The following conditions
are equivalent:

(1) A" has factorable tolerances for any n > 2;

(2) A%**-3* has factorable tolerances.

Proof. Evidently card 7(A) = 4k? — 3k whenever card A = k. -0
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Souhrn
TOLERANCE NA MOCNINACH KONECNE ALGEBRY
JarRoMfR DupA

V ¢&lénku je ukézdno, Ze libovolné mocnina A", n > 2, kone¢né k-prvk:wé algebry A,
k > 2, md rozlotitelné tolerance, jestlife tuto vlastnost ma jiz mocnina A** —3%,
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