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Abstract: This paper-is a continuation of [9]: In [9] results concerning equations of the
form

1
20 = o)+ | dAG) +10) - 10
a
were presented.’ The Kurzweil type Stieltjes integration in the setting of [6] for Banach

space valued functions was used.
Here ‘we consider operator valued solutions of the homogeneous ‘problem

t
Q(t) =1 +/d d[A(s)]@(s)

as well as the variation-of-constants formula for the former equation,

Keywords: linear Stieltjes integral equations, generalized linear differential equation,
equation in Banach space
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Assume that X is a Banach space and that L{X) is the Banach space of all
bounded linear operators A::X — X with the uniform operator topology: Defining
the bilinear form B: L(X)x X = X by B(A,z) = Av € X for A € L(X)and z € X,
we obtain in a natural way the bilinear triple B = (L(X), X, X) (see [6]) because
using the usual operator norm we have

B4, 2)lx <N Alrelzlix.

This work was supported by the:grant 201/97/0218 of the Grant Agency of the Czech
Republic.
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Similarly, if we define the bilinear form B*: L(X) x L(X) — L(X) by the relation
B(A,C) = AC € L(X) for A,C € L(X) where AC is the composition of the linear
operators A and C we get the bilinear triple B = (L(X); L(X), L(X)) because we

have
1B (4, Oy SAC 20 < Ml Cllnex):

Assume that [a,0] C R is a bounded interval.
Given A: [a,b] — L(X), the function A is of bounded variation on [a, b] if
i 3
Jar(4) = sup {]2;: A(ey) = Alas Dl } < oo,
where the supremum is taken over all finite partitions
Dig=ay<or <. <api<ap=0
of the interval [a,b]. The set of all functions A: [a, 8] = L(X) with rvabx}(A) < oo will
‘ 14

be denoted by BV ([a,b]; L(X)).
For A: [a,b] = L(X) and a partition D of the interval [a,b] define

VA, D) = sup {H Zk:[A(Qj) = A(ay‘wl)]yjHX}»
=1

where the supremum is taken over all possible choices of y; € X, 7 = 1,.5. &k with
lwsll < 1 and similarly

Vi(4,0) = sup {| SH(es) - Ales0lCy Lt
=1 :

where the supremum is taken over all possible choices of C; € L(X),5 = 1,...,k

with [|Cllux) € 1.
Define
(8) yar(d) = =up Vi(4,D)

and ;
(B7) Ivaé(‘A) =sup V(4 D)

where the supremum is taken over all finite partitions
D:a:ao<a1',<.t.<a1;v1 <oap=b
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of the interval [a, b].

The function A; [a,b] = L(X) with (B) lei( ) < oo is called a function with
bounded B-variation on [a,b] and similarly if (B*) vax (A) < oo then A is of bounded
B*-variation on [a,b] ([3]).

We denote by (B)BV ([a, b]; L(X)) the set of all functions A: [a,b} — L(X) with
(B) var(A) < oo and by (B*)BV/([a, b]; L(:X)) the set of all functions A4: [a,b] =+ L(X)
thh (B*) var(A) < 0o,

In [9, Pmp 1.1and 1.2 it is shown that

BV ([e,b); L(X)) C (B)BV([a, b]; L(X) = (B") BV ([a, b]; L(X))

holds.

Given z: [a,b] — X, the function z is called regulated on [a,b] if it has one-sided
limits at every point of {a,b], ie.if for every s € {a,b) there is a value z(s+) € X
such that

ng+ lx(t) — zls+)ix =0

and if for every s € (a, b} there is a value z(s—) € X such that
Jim a(t) ~ a(s-)llx = 0.

The set of all regulated functions z: [a,b] — X will be denoted by G({a,b}; X)
and similarly we denote the set of all regulated functions A: [a,b] — L(X) by
G(la, b; L(X)). :

If B = (L(X),X,X) is the bilinear triple of Banach spaces mentioned above then a
function A: [a,b] = L(X)is called B-regulated on [a,b] if for everyy € X, |lyllx £ 1,
the function Ay: [a,b] — X given by t € [a,b] = A(t)y € X for t € [a,b] is regulated;
ie Ay € G([a;b]; X) for every y € X, |lyllx 1. :

We denote by (B)G([a,b]; L(X)) the set of all B-regulated functions A: [a,b] —
L{X).

1. EQUATIONS WITH OPERATOR VALUED SOLUTIONS
For [a,b] = [0, 1] we denote shortly
V(L(X)) = BY ([0, 1} LX), (B)BV(L(X)) = (B)YBV([0, 1]; L(X),

G(L(X)) = G([0,1}; L(X)) and (B)G(L(X)) = (B)G([0,1]; L(X)).
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Assume that A: [0,1] — L(X) satisfies
an ' A€ (B)BY(LIX) n(BCLEX))

and the following condition (E) (see [9]):
for every d € [0,1] there are 0 < 0 ='0(d) < 1 and A& = A(d) > 0.such that

(B+) (B) e {o,q(A) <o
and
(E-) (B) 0 A\f%rnxo’l}(A) <o

Taking the bilinear triple 8" = (L(X), L(X), L(X)), by Proposition 1.1 in [9] we

have
(B)BV(L(X)) = (B*) BV(L(X))

and
(B) &r](A) =(B7) [‘;?br](A)

for every [a,b] C [0,1]. Therefore condition (1.1) reads
Ly A€ (BY)BV(L(X)) N (B)G(L(X)),

and in condition (E) the symbol B can also be replaced by B*, i.e. condition (E) reads
for every d € [0,1] there are 0 < p = p(d) < 1 and A = A(d) > 0 such that

(E+) : (B7) “ ¢+VA“]15[9,11(A) <e
and
() ), A <e

Hence the results presented in Section 2 from [9] can be used for equations of the
form

12) Ym=?+/ﬁm@w@+F@~Fw
d

for every 1 € [0,1] where F € G(L(X)), d € [0,1] and ¥ € L(X).
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The operator valued function Y:: [a, 8] = L(X) is called a solution of (1.2) on an
interval [o, 8] C [0,1] if V' satisfies (1.2) for every t € [, 8]. If d € [o; 8] then of
course we have Y(d) = ¥ for this solution.

With regard to the above mentioned facts we obtain by a simple reformulation of
Proposition 2.4 and Theorem 2.10 from [9] the following

1.1. Theorem,. Assume that A: [0,1] — L(X) satisfies (1.1) and condition (E).
Then for every d € [0,1, ¥ € X, F e G(L{X)) there is a A > 0 such that for the
interval Jy = [d — A, d -+ AN [0,1] there is a unique function ¥ € G(Jy; LX) such
that

i o
Y=Y +/ A[A(8)]Y (s) + F(t) — F(d), t € Ju,
d.
i.e.Y (1) is a local solution of the operator valued equation (1.2) on Jy = [d — A, d +
Alnfo, 1.
If
(1.3) - A€ (B)BVILX) 0 GILIX)),

condition (U):

(U4) I+ ATAW)]7 € L(X) exists for every.t € [0,1)
and
(U-) [l = ATA®)7 € L(X) exists for every t € (0,1]

and (E) hold, then for every choice ofd € [0,1], ¥ € L(X), F € G((0,1]; L(X)) there
exists a unique ¥ € G([0,1]; X) which is a (global) solution of (1.2) on [0,1].
Let us consider the special case of the equation (1.2) with F' a constant, i.e. the so
called homogeneous equation
i
(1.4) Y =Y+ / A[A()]V(s).

d

Theorem 1.1 applies to this equation and therefore there is a unique (global)
solution to this equation and this operator valued solution is regulated provided
A:[0,1] = LX) satisfies (1.3); (E) and (U).

Together with (1.4) let us consider the equation

s By =1+ /: AAE)2(5)
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where I € L(X) is the identity operator.
Clearly every solution ¥ : [0,1] — L(X) of (1.4) can be written in the form

Y =0n¥, tel0q]

Let us now consider the properties of the solution :{0,1] — L(X) of (1.5).

1.2. Lemma. Assume that A: [0,1] — L(X) satisfies (1.3), (E) and (U). Then
for the solution ®: [0,1] — L(X) of (1.5) we have

3 € (B)BV(L(X)) N G(L(X))

and there is a constant K > 0 such that [|@(1)]| < I for every ¢ € [0,1].

Proof. By Theorem-1.1'® € G([0,1}; L(X)) and therefore there exists a
K > 0 such that @) < K for every t € [0,1]. Tt remains to show that
® e (B)BV([0,1]; L(X)). :

Assume that,

D=0 <o <. <opr o=

is an arbitrary partition of the interval {0, 1].
Forany y; € X,j =1,..., k with [|y;]| < 1.we have

i By
“ ;Z;[@(aj) ~ttes], =32 s,

Define
l(s) = @(s)y; for s € (a1, 05) And 208) = 0 for 5 = ).
Evidently [lo(s)] € K-
Then by 1.18 from [9] we get

fa d[A(s))@(s)ys = / “ a[A(s)]els)
+[Alayi4) = Alayo)|@(ag )y +Alay) - Al =8y
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and
1=/ " o], =] [ demee
+ [A(oj1+) ~ Aloy-)IB(aj1)y; +[Aley) - Ala-)1@(a ]

1 k
=] [ 1o + SlAs-14) - Al 0los-us
=1

k 1
+ 3 lA(e) = ANt < | [ o),

=

o St - Aley- i@y + | S lAfas) - Ales-1# (o)
j=1 =1

o
For a given n > 0 let us:choose a 6> 0 such that

1
A{ej—1 +0) — Al Hlleix) < e
and
7, 3

li
nA(aj =0 = Al <y
forall j=1;...,k. Then

H;;Waj_m VLGRS

Sk
= | 2otAtes14) — Alays +6) + Alass +6) = Ales )]0y
d=1

k

< | @) - Alayos + 8085
=1

X

k
+ [ a1 + ) - Al I8y

j=1

X

k K k.
<2 | e 0 - Al st
< Kn+K(B) Fge’air](A)

and similarly also
k
| 2ot4@) - s -Ne(esyus |, < K0 + K (B) yar( ).
g=1 !
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By 1.11 from [9] we have further

|/ )], <x®) e

and finally we obtain

%

¥ b
;) = ; = ] Vs 2K 3 A).
it~ = [ tsmom] <+ s
Passing to the corresponding suprema we arrive easily at
<
®) [‘géﬁ@) < 3K(B) [\"ﬁr}(A) < 00,
ie @ € (B)BV([0,1]; L(X)). o

1.3. Lemma.  Assume that A:[0,1] = L(X) satisfies (1.3), (E) ard (U).
Then the solution ®: [0,1] — L(X) of (1.5) has an inverse [8(t)] ™" € L(X) for
every t € [0,1]

Proof: Fort=dwehave $(t) = ®(d) = I and the inverse [2(¢)]~* evidently
exists for this value.

Assume that there is a point t* € [0,1] such that the inverse [@(t*)]”" does not
exist.: Then there exists y € X such that the equation

St )z =y

has no solution in X. Assume that ¥: [0,1] — L(X) is a solution of the operator
valued equation

1
(o) = 1+ [ Ay
e
this solution exists and is uniquely determined by the second part of Theorem 1.1.

Let us set z = U(d)y. The function z: [0;1] — X given by z(¢) = ¥{#)y is a solution
of the equation

33
2=y + [ At
with 2(t*) = y and z(d) = ¥(d)y. On the other hand, ©(t) = ®(t)z is a solution of
o) =2+ [ dlataleto
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where o(d) = z = ¥(d)y = z(d) and
'
o(t) = 2(d) + /d A (s).

Hence by the uniqueness of a solution stated in Theorem 210 from [9] we have
z(t) = @(t) for all t € [0,1]. Therefore

x(t) =y = p(t7) = 2%z = (") U (d)y,

ie.z = ¥(d)y € X is a solution of the equation ®(t*)z = y. This contradicts
the assumption and proves that the operator ®(4) € L(X) has an inverse for every
telfo1] : 0

1.4. Lemma. Assume that A: [0,1] — L(X) satisfies (1.3); (E) and (U).
Then the inverse [®(t)]7 = ®71(t) to. the solution :{0,1] — L(X) of (1.5)
belongs to G(L(X)) and there is'a constant L > 0 such that

e Dllzxy S L

for every t € [0,1].
Proof. By Theorem 1.1 we have & € G(L(X)) and therefore the onesided
limits of this function exist at every point of [0,1]. E. g., the limit Iixg‘ ®(r) exists
gy
for every t € [0,1) and by 1.18 from [9] we have

- :
i 8() = 1 + Tim. /l AAENels) = 1+ /d AlA())2(5)

+ lim /t " QA = () + lim /t AA]B(s)
= 8(1) + [A(tH) — AD]B() = [[+ ATAWD)]8(2).

Hence ®(t+) = [I + ATA(t))8(t) and because ®~!(t) exists by Lemma 1,3 and
the inverse [T + ATA()]7! exists by (U+) from the assumption (U) the inverse
[®(t-H)]7L = @71 (t4) also exists and we have the relation

@]t =0 ) =07 1) [T+ ATAWTE, . tefo ).
Similarly we have also
7Ht-) = &7 [T - ATAW]T, te (0]
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where ®~1(t-) = [®(1-)]71
Using the continuity of the operation of taking an inverse (see [2], p. 624) we obtain

: R
r}z}rﬁ@ (ry=& "¢+ fort € [0,1)

and
lim. &7Hr) = @7 t—) for t € (0,1]

because Tlirgx+§>(r) = ®(t+) for t€{0,1) and Tlirg’_@(r) =®(t—) for t € (0,1].
Hence the operator valued function ®7': [0,1] — L(X) belongs to the space
G(L{X)) and it is therefore bounded, i.e. there is an L > 0 such that
1o Wl s L
forevery t €[0,1]. 0
1.5. Lemma. Assume that 4; [0,1] — L(X) satisfies (1.3), (E) and (U).
Assume that d €[0,1] is fixed and that ®: [0,1] — L(X) is the solution of (1.5).

Then for every to € [0,1] and ¥ € X, the unique solution z: [0,1] — X of the
homogeneous equation

z(t) =T+ [ d[A(s)]z(s)

is given by the relation

2(t) = &) 1)z, te(0,1]

Proof. The solution z exists and is unique by Theorem 2.11 in [9]. Using (1.1)
we have

a() = 208 M (t0)E = [1 + / : AN (s)] 27 (t0)7
N ¢ i
=i+ /d AAG)B(s) + £ 0 dAENR ()] 2 (o)
= (w2 s + [ A T =5+ [ Ak

and the lemma is proved. il

440



2. VARIATION OF CONSTANTS

2.1. Lemma.. Assume that 4:[0,1] — L(X) satisfies (1.3), (E) and (U). Let

®:0,1] — L(X) be the solution of (1.5) and assume that its inverse ®=%: [0,1] -
L(X) given by Lemma 1.3 is such that 7! € (B)BV(L(X)).

Then for every g € G(X), t € [0,1] the equality

1) [ aaoner [ ae e = e [ aston + | daene

holds,

Proof. Since g € G(X) and &7 € (B)BV(L(X)), the integrals on both sides
of (2.1) exist by [6, Theorem 11] (see also [9, 1.12] .

To show that the equality (2.1) is valid for every regulated function g: [0,1] & X
it-is sufficient to prove it for an arbitrary finite step function, because the finite step
functions are dense in the space G(X) (see [2]).

For a given o € [0,1], ¢ € X and for s € {0,1] we define

PI(s)=0if s < o pHs)=cifs>a

and
PI(s)=0ifs <a, YI(s)=cifs2 a
It is a matter of routine to verify that every finite step function can be expressed
in'the form of a finite sum of functions of the the type 1 and v Hence by the
linearity of the integral it suffices to show that (2.1) holds for functions of this type,
Let us prove e.g. that (2.1) is satisfied for the function 17
Assume that o < d. Then

/ (@ s)wi(s) = [@7 (1) = (e if r>a
and .
(2.2) / - dfe  e)wt(s) = [87Hat) ~ 7 Dl if r <o

d
Hence for't > owe have

v pT
Loy

3 [ daetee [ aeome

= [ dpee-0) - o7 @le= [ danl - 208~ @)
d
=[A@) = Ald]e - [8(1) — D)o (e = [A) = Ald)]e+c = (S (d)e.
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Ift <o then
/ a4 / BT ) = - / e / " LB ()
—( / auopee [ ae@ute s [ daenee [ apon o)

and

d T
/d[A(T)]@(T)/ dJ[@H st (s)
=[A(a+) = A(@)]®(Q)[® 7 o) — 37 d)]e
d
+lm [ AR 0) - 27 @)
s ats
= [Ala+) — A(a)}‘f’(a){@'1(a+) 27 (d)e
d.
+lim | dADe - L /d LA ()= (d)e
o e el e e
= [8(d) — 2(a+)]o7 (d)e

Eurther we have

/ia d[A()}2(r) /, 4o[27 ()t (5) = [2(c) = (V][ (a+) — &7 (d)]e

/ dA()® / 4L (L)

= ~{[Alot) ~ A@12(@)[2 (o4) = 27 (d)e + [A(d) ~ Alat)le
~12(d) - 2(a)|2 ! (d)e + [B(a) = 2W[27 (o) ~ & 1A}

and

Since [A{at) — A(@)]@(a) = AT A{a)B(a) = ®(a+) — B(a) we have

[ avenee [ et owie
d d
= {[B(ah) - B@I[E (at) ~ 87 (d)] + [A(@) — Ala-H)]
(2:4) =T +&(a+)® &t @)+ 2(a)® folen (CH—) @(a)@'i (d)
= B8 Ha+) + 2(1)2 7 (d)}e
= (A - A(aH)] - SR (4 — 2 @)e
= [Alat) — A(d)]c + @(t){@'l(a+) - Qvl(d)}c
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fort <o
For the right hand side of (2.1) we use (2.2) for obtaining

B(1) /t de7 (Ot () = e[ M) ~ e Hd]e if t>a
d
and
43 f
(25) (1) /d A H)wi(s) = [37Har) — 87 @)e if t<a
Now it.is'a matter of routine to.show that
[ a6 =140 - 4@t > o
and
(2:6)° /t A t(s) = [Alat) = Aldc it t < o
.
Using (2.5) and (2.6) we obtain
2 [ ae oz + [ daowie)
d d
= -0B)[o7 () ~ & D)+ [AR) ~ AD]c if t>a

and

a() / a[e~ (o)t (o) + / A[AG) (s
= [ Hat)— 27 e+ [Alar) —Ald)e if t <
Looking at (2:3) and (2:4) we can see immediately that the equality (2.1) holds for.
the function ¥/7 if o < d.

- For o 2 d as well as for the case of the function 45 the result can be proved
similarly. The computations are straightforward but Shghtly tedious. o

Let us assume that A: [0,1] = L(X) satisfies (1.3), (E) and (U).
Let us consider the equation

@0 S =5 /t AAGels) + F) = 7o),



By [9, Theorem 2.10 ] we obtain that
for every choice of fo € [0,1], T € X, f € G(X) there exists © € G(X) such that

z(t)—a:+/ A[A(s)]z(s) + f(1) ~ flto)

for every t € [0,1].
This solution of (2.7) is determined uniquely.

2.2. Theorem.  Assume that A: [0,1] = L(X) satisfies (1.3), (E) and (U). Let
@:{0,1] =+ L(X) be the solution of (1.5) and assume that its inverse &71:[0,1] =

L(X) given by Lemma 1.3 is such that 7% € (B)BV (L(X)).
Then for every to € [0,1], T € X and f € G(X) the formula

(28)  2() =237 (t0)F + £(1) — flto) — 2(1) ‘ d[@ = ()](f(s) — f(ta))s

Sty
t € [0,1), represents a solution of (2:7).

Proof. Using (2.8) we have for t € [0,1}

[ aawre

_ / A R)2 10)7 + 1) = 1) — (1) /, " @A) - fr)))
-/ ' dArNer)e ()7 + [ L QAN = feo)
f d[4]e f d[@74(s)](F(s) = f(to)):

For a solution ® of (1:5) we have

/t A = () - (o)

and by Lemma 2.1 we have

dA(r) r)/d L))~ £lt))

o
~a() / AL ()] f(s) — FlE) + j{ AN - £
tey 0
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Therefore

[ a0
= (80 - )0 @ + [ AN - (0

=10 / B~ 61(7(5) = £ i) - | ALAWII(0) =~ Fl10) = OB (0} - 7

ty

~20) [ A @I - )

Hénce :
| ataeiet) =) =2 - (109 - )

for every't € [0;1] and this means that the function z: {0,1] = X given by (2.8) is a
solution of the equation (2.7). )

Remark. From the point of view of the variation-of-constants formula (2.8)
presented in Theorem 2.2 the assumption that the inverse ®71: [0,1] — L(X) to
®:.[0,1] = L(X) given'by Lemma 1.3 is such that &~ € (B)BV/(L(X)) is very
unnatural. -1t would be nice if the property ®7* €:(B)BV (L(X)) could be derived
from the general assumptions; .. from the fact that A+ [0,1) — L{X) satisfies (1.3).
(E) and (U).

In the next section we will show that in the special situation of 4 € BV (L(X))
the variation-of-constants formula (2:8) holds without any further assumption;

3. THE VARIATION-OF-CONSTANTS FORMULA FOR THE CASE A € BV(L(X))

Assume throughout this section that 4 € BY (L(X)).

First of all it should be mentioned that by {9, 1.5]:we have 4 '€ G(L(X)) and
therefore 4 [0,1] — L(X) evidently-satisfies (1.3) because, as was already mentioned
in the introductory part of this note, we have BV(LX) ¢ (B)BV(L(X)) by [9
Prop. 11 and 1.2].

As was mentioned in the last Remark in [9],4f A € BV (L(X)) then A satisfies
also condition (B).

Let us now prove the following proposition.

3.1. Proposition. Asgume that 4; [0,1] — L(X).
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Then A € BV(L(X)) if and only if

3.1) sup{ sup ”ZD o~ Aoyl F<oo

C;,D; L(x)

where P: 0= op <01 <...<op_y < ap=11isa partition of [0,1], C}, D; € L(X)
with |Csll o) €15 IDilley 1, =100,k and

"
[var(A) = sup { sup “;DJ—;[A(Q]‘ — Alag-)]Cy ”L(X)}t
Proof. Assume that

Pil0=qy <o <. <agpy<ap=1

is an arbitrary partition of [0,1].
I G, Dy € L(X) with [|Cjll1ex) S LIIDjllexy S 1,5 =1,..., K then

|3 Pilden) - Atess)ic)|
i=1

L(X)
k
< Z 1PillzeollAles) = AlasDlleoo il
J=1
k
< ST A) = Alesan) oo
=1
Hence
k vk
sup || 37 D1A(a5) = Al l0y ], < DI - Alay-)laco
ERe Ry L gm0

where the supremum on the left hand side is taken over all ¢, D; € L(X) with
Il € LIDslLex) € 1. Consequently,

Sl;)p{ sup ”iDg [Alaj) = Ale;-1)]C. n

C5.D; Fl L(,X)}

(32)
supz 1A(e)) = Alege)nx). = [‘{){iﬁ(A%

=l
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Assume that D; € LX) with | Dillzxy < 1and a; € X with flosllx < 1,7 =
1,...,k. Let us take w € X such that flw||x = 1. Then for all'j = 1,...,k there
exist C; € L{X) with [16,-;1,,‘& < 1such that é\jﬂl = ;. Hence

= “ iﬁfw(aj) - A(aj_l)]@wnx

H > DilAlay) = Alos)lz; éx
=1

< sup ]EZDJ{A(% < Ao l)]ojg,H

{lyllx<1

= E] Zﬁj[A(aj) = Alay- 1)]

— “L(X)

< sup \ZD] (aj) — Ala;- 1)6’ “

C‘;,D, LX)

where the supremum on the right hand side is taken over all Cj,D; € L(X) with
NCi ) < L1IDslipcx) < 1. Passing to the supremum over all D; € L(X) with
1Dl < Land z; € X with fl2)llx 1,7 =1,...,k we get
- |
sup || 3 Ds{A(ay) - Aty ||

R Rl R Y

33)

< sup HZD (a;) —Ala;_1)] CJHL(X)'

Assume that ¢ > 0 is given. Choose vectors z; € X with |lz;llx €1,7=1,...,k
such that

(34) ACag) — Alaylzgllx > [Aley) - Aoy Do = &
Let us set

o [Aley) = Alega)lss

% = o) = Aoyl - o) = Ales-olsy 20

and
v = 04f [Ale;) — Aoz, =0,
For v; #'0 let ¥ be the onedimensional subspace of X given'by
Yy = {2 e R}
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and.assume that f, is ‘a bounded linear. functional on Y; such that fj(?)j) = land
denote by f; € X its extension onto X with [[f;] = 1:

Assume that w € X is fixed such that {wllx =1 and define the linear operator
D; & L(X) by the relation

Diz = fi(t)w, zeX, j=1,..,k
Then certainly
1Dl = Iflllwll =1
and
Di[Ala;) — Alas-1)les = [ Alay) = Alas )]zl x Dyvy !
= [|Al) = Aloy-Dzsllx 0w = | Aley) = Alag-1))zil xw.

Hence by (3.4) we get
“ Ek: D;[Aley) - A(arl)}@jnx = H f: “A(@j) = Aleg 1)z xwllx
= i=

= Z Afey) = Aley0)zsllx > }: (IAG) = Al — £)

=l

= Z [FA(ey) = Ales)llleen = £
J=1
Taking the supremum over all D;-€ L(X) with | D;j|lpx) <1 and 25 € X with
lzillx £ 1,7 = 1., k we get

sup n ZD [A(e) — Ala-1) TJ“ > E lA() = Alog-DMleex)y — ¢

@5,Dj g=1

and using (3:3) we finally obtain

o | ZD [4(a)) — Afay-)1G|

E
ENA(% = Aoyl —e
J=1

L(x)

Taking the supremum over all partitions P of [0,1] we obtain together with (3.2)
for every € > 0 the inequality

ar(A)

va:c(A —e< sup { Cs]ugj Hgl)j[l&((lj) ~ A(O[j_:[)]chL<x>} [\61

[0,1]
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and therefore

var(A) =su Su;
(M( ) Pp{cysp)

ZDJ (o) ~ A1) CJ”L(X)

8]

Remark. It has to be mentioned that' the characterization of the space
BV(L(X)) given by Proposition 3.1 is interesting independently of the context
of the equations studied in this paper.

3.2. Lemma.  Assume that-A: [0,1] = L(X) satisfies A € BV{L(X)) and (U).
Then for the solution ®: [0,1] — L(X) of (1.5) we have & € BV/(L(X)).

Proof. Since BV(L(X)) C (B*)BV(L(X)) the conclusion of Lemma 1.2 holds
and there exists a K > 0 such that ||®(2)]| < K for every ¢ € [0,1]. It remains to
show that the relation @ € BV (L(X)) holds.

Assume that

P 0=ay<ou<i . <ar<op=1

is an arbitrary partition of the interval [0,1] and that C;,D; € LX), =1,.. 5k
with [|Cill Loy < 15 11D5llnex) £ 1 are given.

The fact that & € G(L(X)) yields by [6, Prop:15] the existence of the integral
fo [A(r)]®(r) and therefore by definition for every e > 0 there is a gauge 6: [0,1] —
(0,00) such that

"ZA(&)—A(&- 12(0:) - /d Ao, < 757

for every d-fine: P-partition
{Bo,or, By Bt o, B}
of the interval [0,1].

By the Saks-Henstock Lemma (see [6, Lemma 16]) we haye

i
69 | e -aelec)- [
il

Qi

op

L(x ) +1
for every é-fine P-partition
(83,0080, B ol LY
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of the interval [o;_1,05], 4 =1,... k.
Further, we have

B(a5) ~ 0oy = [ dAOI0)

for every j:=1,..., % by the definition of a solution of (1.5).and therefore

I inm) ~seic, , | iu,-{ /“’ aacee]o), ,

1

k o :

- “z{p,[ / Ao () ?[A(ﬂ”) - ABLDleeh)es}

J= a
ki

+ 303 D148 - AL a0

J=1i=1 X

ISl [ e - Z[A(ﬂﬁ*A(ﬁf~l”‘1’("f)]"j}“ﬁ<><>
i=1 ik
+I1ZZD () - Agloeedal|,

J=li=1

< aonse - E[Aw — ALl

\L(X)

=1 im
+112:Z:D, 8 - agioeee|
provided Lo i G
(8,0l B, B0, L)
is a o-fine P-partition of the interval [aj_1,@5], j = 1., k. Hence using (8:5) we
obtain by the last-inequalities
k
| 3 Diete) = 2,15, )
Lag i \Q‘D_[A(ﬁj) — A )]qx(gé)c_n :
Yt | D E e - ABREIG),
i=1 et
koody |
<ot | T YDA - MGG,
i=1i=1



For the second term on the right hand side we have

| DRI - AL 1R

S=1i=1 LX)
bl : ‘
< ZZ 1Dl A = AB Dl @@ Lo lCillnen
j=1i=1
J kb ; ;
SE-STSAB) - ABL Dl S K- E{Fﬁw
F=1i=1 :

Hence

LX)

I gpj[@(ya,‘) ~ e )IG|  <ev K ()

and since £7> 0 can be taken arbitrarily small, we get

k

D;[®(a)) — ®(a;-1)1C; < K - var(4)
“ 7:21 2 7 ’ "'HL(X) > [0,1]
for any partition

P:0=ap<ar < vi<aki<ap=1
of the interval [0, 1] and any choice of C, Dy € L(X), i =1,. .., k with [|CsllLcxy € 1,
1Dl s 1 ,
Pagsing to the suprema over all C;, D; € L(X),j =1,... .k with |Cillzon) € 1,
1250l 1x) < 1 and all partitions P of [0, 1] we obtain

<K var(A)

k.
Sup sup I ]4‘;1 Dil2(0;) — 2y 1)IC; HL o e

and this together with Proposition 3.1 yields the result. O

3.3. Lemma. Assume that A: [0,1] - L(X) satisfies A € BV(L(X)) and (U).
Then the inverse [8(1)]~! = &=1(t) to the solution &: [0,1] — L(X) of (1.5) exists
for every 1 € [0, 1] and we have ®7 € BV/(L(X)).

Proof. By the results given in Lemma 1.3 and 1.4 the inverse 7! exists and
&1 ¢ G(L{X)). Hence there is a constant L >0 such that

@7 @l €L



for every t € [0,1].
It remains to show that =1 € BV(L(X)).
Assume that
P0=ar< o <...<op— <op=1

is an arbitrary partition of the interval [0,1] and that C;, D, € L(X),j =1, ..k
with |CillLex) < 1 I1Djl Ly < 1 are given.
We have

!!

k k
Yo Di[2Hay) ~ 87 (@)1 | = | 0 D52 () - 2(03)8 7 (05-0)]G |
J=1 J=1

= 308~ e B(a1) - (a8 (as-1)C |
J=1

- iDﬂﬁl(aj)[@(aj) —®(a; 010 0,1)G|
j=1

< L% var(®) < L2 K - var(4).
o1 0.4

Passing to the suprema over all Cj,Dj € L(X),j = 1,....k with |Gyl ) < 1,
[1Dsllzex) <1 and all partitions: P-of [0,1] we obtain

o

k
s Di[@ Yay) = 87 ey 1)]C;| < L? K var(4):
S%DC]L}E,- “; i () (aj-1)] J|}L(X)\ Gﬁ%( )

and this together with Proposition 3.1 yields 7! € BV (L(X)). 0

3.4. Theorem. Assume that A: [0,1] = L(X) satisfies A € BY/(L(X)) and (U):
Let @: [0,1] — L(X) be the solution of (1.5).
Then for every to € [0,1], Z € X and f € G(X) the formula

28 () = 2O (10)F + F() — flto) — () / A=) — F(to),

t € [0, 1], represents a solution of (2.7).

Proof. By Lemma 3.3 the inverse ®1: [0,1] - L(X) given by Lemma 1.3
belongs to BV(L(X)) and therefore we have also @71 € (B)BV(L(X)). All the
assumptions of Theorem 2.2 being satisfied we obtain the result by this theorem. I
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3.5 Example. Let us consider the abstract linear differential equation

3.6) = e+ o)

on-[0,1] -where a: {0,1] .= L(X), ¢:[0,1] — X and both a and ¢ are Bochner
integrable. For equations of this kind see e.g. [1].

A solution of (3.6) is understood to be a solution of the integral equation

(3.7) z(t) =g + /dt a(s)z(s)ds + /i p(s)ds

where d € [0,1] and zo = z(d).
More generally we can consider the integral equation of the form

(3.8) z(t) = /: a(s)z(s)ds + g(t)

with g € G(X),
Let us set.

AR = L " a(s) ds and £(8) = /d Clelds tefo]

Assume that D: 0= 0o < ar <0 < or-1< ax = 118 an arbitrary partition of
[0,1]. Then using the properties of the Bochner integral we get

o

S (e - Ay =3 [
=1 =1 o
5
J=1

and therefore A € BV(L(X)). Since the function |ja| is Lebesgue integrable over
[0,1] we have

als) ds“

&

1
()l ds = /0 lal)l[ds < 6

i

140 - 40 < | [ fateiias

for £,r € [0,1] and this yields the continuity of A on [0, 1]. Hence tl_i)m' Alt) = A(r) for
e

r€[0,1) and tl_i;mi A(t) = A(r) for r € (0, 1] and consequently we have ATA(r) =0

forr € [0,1) and AT A(r) = Oforr € (0,1] and the function A:{0,1] — L(X) satisfies
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the condition (U) given in Theorem 1.1. Similarly the function f: [0,1] = X is also
continuous and belongs trivially to G(X).

It is a matter of routine to show that
ifz.€ G(X) then the integrals jol d[A(s))z(s) and fo1 a(s)z(s) ds both exist and

/ d[A(s)]z(s) = /a(s)m(s)ds
0

Since g is assumed to belong to G(X), every solution of (3.8) also belongs to G(X)
and therefore the equation (3.8) is equivalent to

o0 = [ A +900) = o0+ [ a4l + (0 - o)

Hence by Theorem 2.10 in [9] there exists a unique solution z: [0,1] = X, z € G(X)
of (3:8) and by Theorem 3.4 we get after a straightforward calculation

() = 20 e)o(d) + 9(9) = o(d) = 30 [ B~ ()o(6) — a(a)
=10 ] @4 (s)lg(s)

where the function ®:[0,1] — L(X) is a solution of (1.5) with A given by A(t) =
[ials)ds fort € 0,1].
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