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Abstract. ‘In this paper we describe all algebras A with one unary operation such that
by a direct limit.construction exactly: two nonisomorphic algebras can be obtained from A,
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For an algebra A we:denote by L[A] the class of all isomorphic copies of algebras
which can be obtained by a direct limit construction from A. We investigate classes
L[A] in the case when A is a monounary algebra.

Every algebra A such that every endomorphism of ‘A is an isomorphism has the
property that whenever B € L[4], then B is isomorphic to 4. In [4] monounary
algebras ‘A such that L[A] consists of isomorphic copies of A were characterized.
The natural question arises whether there exists a monounary algebra A such that
the class L[A] contains exactly two nonisomorphic types of algebras.

In the present paper we construct a countable system of nonisomorphic types of
monounary algebras: with ‘the mentioned property and we show that there areino
other types of monounary algebras with this property:

1. PRELIMINARIES

As usual; by a monounary algebra we understand an algebra with a single unary
operation; ¢f. e.g. [9], [10]. For monounary algebras we will use the terminology as
in [9].

The class of all monounary algebras will be denoted by I4.: The class of all con-
nected monounary algebras will be denoted by ¢4¢.
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We will use the symbol’ f:for the operation in algebras of U

The symbol N denotes the set of all positive integers.

If k€ Nand A1,. .., Ay are algebras, then'by {4y, ..., Ax] we will understand the
class of all isomorphic copies of algebras Ay, ..., Ax.

Let I be a nonempty set, For each i € I let ‘A; be.a monounary algebra. We denote
by >7A; a monounary algebra which is a disjoint union of monounary. algebras

i€l
Ajy i€ I If the set [ is finite, T = {1,...,n}, then instead of 3" A; we write

i€l
A+t A

We recall the notion of a direct limit, cf. [2].

Let (P, <) be an upward directed partially ordered set, P # (). For each p € P let
‘A, be a monounary algebra and assume that if p,q € P, p# ¢, then 4, N A, = {.
Suppose that for each pair of elements p and ¢ in P with p < g a homomorphism
pq Of Apinto A, is defined and that p < ¢ <'s implies that ©ps = ©pq 0.4s. Tet wp,
be the identity on A, for each p'€ P. We say that {P, A,,0p,} is a direct family.

Assume that p,g € Pand 2 € Ay, y € A, Put z =y if there exists s € P
with p <'s, ¢ < s such that ©,.(z) = @gs(y). Foreach z € %)P Apput Z = {t €

P

Apiz=th Denote A=17: 2 € Appe

pLeJPPZ } enote { z pLeJP p}

1f 2, 7o are elements of | ) A, such that Z; = Z, then clearly f(z1) = f(z).
PEP.

Hence if we put f(%1) = f(z1), then the operaﬁon f on A is correctly defined and

with respect to this operation A is a monounary algebra. It is said to be the direct
limit of the direct family {P, Ay, @pe}. We will express this situation by writing

(1) g {R APv‘qu} — A

The autor is aware of the fact that the term ‘direct limit’ is rather out-of-date,
and that the term ‘directed colimit’ (cf. [1]) would be more up-to-date.

Nevertheless, since the present. paper can be:considered as a continuation of the
articles [4] ‘and [3] where the term ‘direct limit” was uged, the author:prefers the
application of this therm also in this paper.

Let A € U and (1) be valid. If A, 22 A for every p € P, then we will write

2 {P A opg} — 4
and say that A is a direct limit of A, We denote by L[A] the class of all monounary
algebras which are isomorphic to some of the direct limits of A,

The next lemma is an immediate consequence of the definition of the relation (2).
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Lemma 1. Let A € U and Jet (2) be valid.
(1) If @pq is an isomorphism for every p,q € P such that p < g, then A~ A;
(i) The algebra A has a cycle if and only if A has a cycle.
(iii) Let k € N. If A contains a cycle of length k, then A contains a cycle of length
k.
(iv) If A is connected, then A is connected.
(v} If the operation of A is injective, then the operation of A is injective.

Lemma 2. Let A,B, D € l. Suppose that A= BUD, A= B+ D and that (2)
is valid.

Let b, be an isomorphism from A into A, for every p. € P. Denote B, =
“hp(B); Dy = (D) for every p-€ P. Further, let ¢po(Bp) C By 0pe(Dy) © Dy
forevery p,g € P, p<q.

Then {P, By, ¢pqe}y { P Dpi o} are direct families (where ,, are the correspond-
ing restrictions) and if {P, By, ¢pe} = B, {P, Dy, 0p} = D, then A =BUD and
A=B+D.

Proof. It follows from the fact that direct limits commute with sums. 0

Let us denote by N the monounary algebra defined on‘the set N with the operation’
of successor, Further, let Z be the monounary algebra defined on the set of all integers
with the operation of successor.

Let A be a monounary algebra and let {B;,j € J} be the set of all components
of A. Tfj € Jand k € N are such that B, contains a cycle of the length k, then let
C; be a cycle of the length k. If j € J is such thaf B; contains no cycle, then put
Cy = 7. We denote A% = EJCj.

The following result is pjreoved in [3]:

Lemma 3. Let A € U. Then A°® € L[A].

. Lemma 4.
L[N} =[N, Z].

Proof. Since N? = Z we have {IN,Z} C L[N]. Let (1) be valid and 4, = N
for.every p € P. In view of Lemma 1 (iv) and: (v) the algebra A is connected and
the operation of 4 is injective: Therefore A= Z or A= N. o

Let us denote
T = {A €U: every component of A is a cycle and: there are no
components €1, Co of A such that €1 # C> and the length of ¢
divides the length of Cs}.

487



In view of Theorem 1 of [4] we have

Lemma 5. L{A] = [A] if and only if A€ T U[Z].

Let A € U. Let B be asubalgebraof A, Assume that there exists a homomorphism
@ of A onto B such that o(b) = b for each b € B. Then B is said to be a retract of
A and @ is called a retract mapping’ corresponding to B.

This definition yields

Lemma 6. Let A € U. Let J be a set-and let B; be a component of A for every
j € J. If B is aretract of the algebra 5~ B;, then the algebra
€L

(A = U Bj) UB
i€
is a retract of A.
Retracts of monounary algebras were thoroughly studied by D.Jakubikova-

Studenovska (5], [6]. The following lemma we obtain from Theorem 1.3 of [5]

Lemma 7. Let A € U. If ‘A contains a cycle, then there exists a retract T of A
such that T € T

We will often use the following well-known property of direct limits; cf. {1] 2.4 and
1.5.

Lemma 8. Let:A € U and let B be a retract of A. Then B € L[A].

Let A €U and R.C A. The set R is said to be a chain of the algebra A, if one of
the following conditions is satisfied:
L. R = {ao,.-sa,},n € NU{O}, a; # a; for i # j and fa;) = @iy for i =
1,2,.00,m
2. R={a;;i € NU{0}}, a;i #a; for i # j and f(a;) = a;_; for each i € N.
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2. CLass 1
We denote

Ti = {A € U: there exists a chain R of A such that
A~ Re T and R fails to be a subalgebra of A},

If:A € 71 and R is a chain of A from the definition of 71, then we put A* = A — R,
1t is easy to see that {4, 4%} C L[A].

In this section we will prove that if A € 71, then L[A] = [4, A*], i. e, if (2) is
valid, then either A = A or A = A*.

The definition of 7y yields the following:lemma:

Lemma 9. Let A € T1. If A'is not connected, then' there exist monounary
algebras B, D-such-that B € iU, De T, A=BUD and A=B+D.

Theorem 1. Let A€ 5. Then L{4] = [A4,4*].

Proof.: Suppose that A is connected. :

Since A* = A% we have A" € L{A] according to Lemma 3; Thus [4, A*] C L[A]

The algebra ‘A is connected and thus A* is acycle of A. If a € A— A*, then there
exists k € N such that f¥(a) € A* and f*7*(a) ¢ A*. Let (2) be valid. Suppose that
for every p € P a mapping ¥ is an isomorphism from A onto A,. For every p € P
and a € A we denote a, = ¥p(a) and A2 =¥, (A%).

The algebra A is connected and 4 has a cycle of the same length as A*. If p€ P
and ¢ € A7, then T belongs to the cycle of 4.

Suppose that A is not isomorphic to 4. We need to prove that A is a cycle. Let
p € P. We need-to prove that for every a € A we can find s € Psuch that p < s
and @p(ap) € A7

By induction on k we show:

If o € A is such that f%(a,) € A% and f*~'(a,) ¢ A3, then there exists s € P
such that p < s and @p.{a,) € A7

Tet o € A and k€ N. It is obvious that the following three assertions are
equivalent:

(i) f*(a) € A" and f*~*(a) ¢ A%

(ii) there exists p € P such that f*(a,) € A} and 1 a,) ¢ A%

(it1) for every ¢ € P we have f¥(a,) € A7 and f*7'(a,) ¢ 4;.

Let k=1 Put Q = {g € P:p < q}. Then {Q A4, ¢;q} — A. Assume that
the equality ¥pe(as) = q, is satisfied for every ¢ € Q. Let ¢,¢" € @ be such that
g < ¢ Then Pogi(ag) = @0 (0pg(0s)) = @py(ep) = ag. That means pgq 15 an
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isomorphism. ‘Therefore 4 = A, a contradiction. We conclude that there exists
¢ € @Q such that 0pq(ap) # ag- This implies that there exists i € N such that
¢ra(ap) = filay) and 50 ppy(ay) € 45

Let k'€ N, &k > 1 and let the claim hold for every natural number less than k.
Analogously as in the first step there exist ¢ € P such that p < g and @p(a,) = fi(ag)
for some 3 € N. If i > k, then ppy(a,) € A% If i <k, then there exists s € P such
that ¢ < s and pes(fi(ag)) € A7 by the induction hypothesis (for g € P and f*(a,)).
Thus ¥ps(ap) = ©gs(0pg (ap» = ‘qu'(fi(a'q)) € A}

We conclude L[A4] = [A4, A7)

Now suppose that A is not connected. Take B and D from Lemma 9. Then
A* =B+ D.

Let (2)-be valid. According to Lemma 2 we have that {P, B, @pe}s 15D, @pa}s
where (¢p, are the corresponding restrictions, are direct families.. If {2, B; @p} = B,
then B € [B, B*] since B is a connected algebra from 75. If {P, D, pe} = D, then
D = D according to 5. In view of Lemma 2 we obtain

A=B+De[B+D,B'+D=[4A4")

3. CLasses T, Tz
We denote

Tz ={A €U: there exist B € T-and k,l € N such that
A= B+ C, where Cls a cycle of length [, B contains a cycle of
length k and I is a multiple of k}.

If A € 75, then we denote by A* a subalgebra of A which is isomorphic to the algebra
B from the definition of T:
Further, we denote

Tz = {A € U: there exists B € T such that A = B+ Z}.

If A € T3, then we denote by A* a subalgebra of 4 such that A* € T and A~ A* is
an algebra isomorphic to Z:
If A= Z+ Z, then we denote by A" a subalgebra of 4 which is isomorphic to Z.

Theorem 2. Let A € T, UT3 U[Z + Z]. Then L[A] = [A, 47].
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Proof. - Let us remark that if ¢ is an endomorphism of A, then ¢ has the
following tree properties:

1. (A7) = A%

2. p(A) = Aorp(A) =A%

3. if o is onto A, then  is an isomorphism.

It is obvious that {4, 4*} C LA]. Let (2) be valid.

Suppose that there exists p.€ P such that for every ¢ € P the following conditon
is valid: if p < g then @,,(4,) = A, Denote Q = {g € P:p < q}. Let ¢;5 € Q
be such that ¢ < 5. In view 0f (s = g © s we have g (Ay) = wys(Ppe(4y)) =
Pps(Ay) = A,. Thus @y is an isomorphism between A, and A.. The set @ is cofinal
with P and thus the direct limit of the family {Q.4,¢,s} is isomorphic to 4. We
obtain A = A according to Lemma 1 (i).

Suppose that for every p € P there exists ¢ € P such that p < g and p,,(A,) # A,
Thus for every p € P there exists ¢ € P, p < g such that ¢,,(4,) = A*. Choose
p € P, Let B, be a subset of A, such that B, = A*. Denote R = {r € Pip <r}
and B, = ¢p,(B,) for every r € R. Then B, = A" for every'r € R and {R, B, ¢y}
is a direct family. Assume that {R, B.,@rs} —» B, Since A* € T or A 2 Z we have
B = A* according to Lemma 5.

Let'g € R. Take s € P such that ¢ < s and pg:(4,) & A*. Then s € R and
pq:(Ay) = B: according to B, = A*. We obtain that B = A; an isomorphism is
Y(b) =@, where a € b. 0

4. CLASS T
Let us denote
Ta = {A € US; there exists a chain R of A such that 4 — R 7},
In this section we will prove that it 4 € T, then L{A] = [Z, A].
Lemma 10. Let 4 € T, and let- R be a subset of A such that A~ R=Z IfR is

finite, then L[A] = [4, Z).

Proof. Obyiously {4,Z} CL[A]

Let C be a subalgebra of A which is isomorphic to Z. Since R is finite there exists
exactly one element a € A such that f(z) # a for every z € A. Suppose that n € N
is-such that f*(a) € C and f27}(a) ¢ C. Assiime that {P, 4,0p,} = A Let ¢, be
an isomorphism from A into A, for every p € P, For every p € P and z € A denote

zp = Pp(2) and O = 9, (C).
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Letp.ge p p< g We remark that

L. pe(4,) = 4 if and only if ¢pelep) = ag;

2. ¢pe(4,) = Z if and only if pq(as) € C,:

3. if ©pq is onto A,, then @pq is an isomorphism.

Denote :

(%) There exists p € P such that vpe(4,) = A whenever ¢ € P and p <'q.
(¥#) For every p € P there exists ¢ € P such that p < g and p,(4,) = Z.
We will prove that
a) () is not fulfilled if and only if (x¥) is fulfilled;
b). () implies A =2 A;

¢) (+#) implies A= Z.

a) Clearly if (#x) is fulfilled then (x)is not fulfilled.

Suppose that (x) is not fulfilled, 1. e,, for eyery p € P there exists ¢ € P such that
p < ¢ and pe(4,) is not isomorphie to 4. :

Let po € P. Choose py,...,p, € P such that gpp.., (4p,) is not isomorphic to
Aforie {0 in =1} We get @, 0, (ap,) # Gpy, for every 1€ {0,000 0 — 1}
Therefore @pop, (Gp;) € Cp.. and thus @pp, (Ap,) 2 Z.

b) Let (%) hold. If ¢, (4,) =4, then pp,(A,) = Aq: Denote @ = {ge P:p< g}
Let ¢, 5 € @ be such that ¢ < s, We have ,(A,) = 0oe(Ppe (A7) = s (Ap) = As.
Therefore ©gs is an isomorphism and 4 = 4.

¢) Assume that (++) is valid. The algebra A is connected and contains no cycle
according to Lemma 1. We need to show that A has a bijective operation.

Let p,g€ P, z€ A,, y€ A, and £(T) = f(7). Then Flz) = F{@) and thus there
exists s € P such that p,q < s and ¢p(f(x)) = @, (f(y)). The validity of (%)
yields that there exists't € P such that s <t and @o(A4s) = Z. We have

Flet(0ps () = 0arlipps (F(2))) = 9ot 00:(F (W) = F(0ar(0g: ()

Therefore ¢si (ps(€)) = @et(p4:(y)) according to the injectivity of the operation of
the algebra @, (As): We conclude that @, (2) = @q(y) and T =7.

Let p € P and z € 4, Choose ¢ € P such that 0pq(A,) = Z. Then there is
3. € A, such that f(y) = @pq(x). Hence f(7) = 7. )

Lemma 11, Let A € T3 and let R be a subset of 4 such that A— R=Z. IfRis
infinite, then L[A] = [4,Z].

Proof. Accordingto Lenima 3 we have Z € L[A] .

Suppose that {P, 4,@p} — A. The algebra A is connected and Z is isomorphic
0 a subalgebra of A according to Lemma 1.

Letpe P andz €A, Takey€ 4, such that f(y) = Then f(7) = T.

492



Let a,b,u,v € Abesuchthat a# b, u# v, a #u, fla)=f(b) and f(u) = flu): It
is easy to verify that then there exists s:€ P such that the set A; contains elements
o', b ul, 0 which satisfy o # U, W # 0, o £ fld) = () and fu) = f(v)).
This is a contradiction since A, = A.

We conclude that A= Z or A= A. 0

Theorem 3. Let A € Ty, Then LIA] = [4,Z].

Proof, 1t follows from Lemmas 10:and 11. 0

5. MAIN RESULT

In this section we will characterize all monounary algebras A such that the class
L[A] contains exactly two nonisomorphic types of monounary algebras:

. Lemmas 3,7 and 8 will be often tised.  Further, we will apply some results of
D. Jakubikové-Studenovska from [7],[8].

Let A € U and k € N. If L{A] contains at least k nonisomorphic types of algebras,
then we will write |L[A]| > k. If L[A] contains exactly k nonisomorphic types of
algebras, then we will write |L[4]| = k. If L[4] contains at most k nonisomorphic
types of algebras, then we will write |L{A]| < &

Lemma 12. Let A be an algebra without a cycle and let A-be not isomorphic to
N. If A does not contain a subalgebra isomorphic to Z, then {LIA]| > 3.

Proof. Let K beacomponent of A, 'We have K° = Z, because A is an algebra
without a.cycle: Further, K is not isomorphic to. [, because A does not contain a
subalgebra isomorphic to Z.

Suppose that M = {I;,i € I} is the set of all components of A which are isomor-
phic to N.

First let M # 0. Let K € M. If M possesses only one component of A; then
A~ K is a retract of A and the algebras A, A%, A — K are nonisomorphic algebras
from L{A]. If M — {K} # 0, then K is a retract of the algebra UI K;. In view of

i€

Lemma 6 we have that (A =1 Ki) UK is aretract of A. Thus 4, (A -4 Kf) UK,
i€l i€l

‘A% are nonisomorphic algebras from L[A].

Now: let M = 0. Let K be a component of 4. Then K contains at least two
nonisomorphic retracts according to Lemma 3.1 of [8]. Assume that K’ is a retract
of K such that K" % K. Let L = {K/.j € J} be the set of all components of A
which are isomorphic to /(. Bince K’ isa retract of the algebra 4UJK_§, we obtain

i€
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that the algebra (A— U K J’) UI" i3 aretract of A according to Lemma 6. Moreover,
JE€J
(A- UK J’) UK 22 A because the algebra (A— UK ;) UK’ contains no component
€ Jj€d
isomorphic t0. K. Thus 4, (A =U K;) U K, A% are nonisomorphic algebras from
Jed
the class L[A]. ]

Lemma 13. Let A% € TU[Z]. If|L[A)] <2, then

AETUTIUTAUIN, Z).

Proof. Let A¢TUTIUTLUIN,Z].

If A° € T, then in view of A ¢ T U T; there exists a component K of 4 such
that K satisfies the assumptions of Lemmas 1.1, 1.2, 1.5, 1.6 or 2.3 from the paper
[7): 1t is proved in these lemmas that the algebra J{ has a retract K” such that
K! % K and K' is not a cycle. Let L = {K},j € J} be the set of all components
of A which are isomorphic to K. Since K is a retract:of ‘A, Lemma 6 yields that
(A =U KJ’) U K" is a retract of A. Further, 4 2 (A = Kjf) U K’ because the

J€d J€d.

algebra (A =K ;) U K" does not contain a component isomorphic to K. Thus A4,
I€J

(A - ‘léJJ K ;) U K, A® are nonisomorphic algebras from the class L[4].

It ri contains a subalgebra isomorphic to Z, then: A is connected. In view of
A¢ T2 U[Z] the algebra A satisfies'the assumptions of Lemma 2.3 or of Lemma 3.1
from:the paper [8]..It is proved there that A4 has a retract. B such that B 2 A and
B % Z. Wehave A, B, Z € L[A].

If A does not contain a subalgebra isomorphic to Z and A° = Z, then |L[A]| > 3
according to Lemma 12. 0

Lemma 14. Let A* ¢ TU[Z]. If|L[A]] € 2, then

AehUTU[Z+2).

Proof.  The algebra A is not connected and A ¢ 71 U 7. Suppose that
A¢ 75 UT; and 4 is not isomorphic to Z + Z.

Assume that A has no cycle. If A does not contain a subalgebra isomorphic to
Z, then |L[A]| 2 3 according to Lemma 12. Tf A contains a subalgebra isomorphic
to Z and A is not isomorphic to A% then A, A%, Z are nonisomorphic algebras of
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L]A]. If A contains a subalgebra isomorphic to Z and A = A%, then A, Z + 7, Z are
nonisomorphic algebras of L[A]. ;

Assume that A has a cycle: Let. T € 7 be a retract of A. If 4° is not isomorphic
to A, then A, A, T" are mutually nonisomorphic and are in L{A].

Let A% = A. Then f is a bijective operation on 4.

Let A contain a component K such that A — K € 7. In view of A ¢ 75 the algebra
K is a cycle. Further, in view of A ¢ 75 UT there exists a component K of A — K
such that the number of elements of K7 is a multiple of the number of elements of
K. Hence A— K is a retract of A. We obtain A— K ¢ T according to A ¢ T5. We
conclude that A, T, A — K are nonisomorphic algebras of L[A].

Now let A — K ¢ T for every component K of A. Then the algebra A — T has at

_least two components and so A has at least three nonisomorphic refracts. 0

Theorem 4. Let A € U, Then |LIA}| = 2 if and only if

Ae TUBUTBUTUIZ A Z,N).

Proof. Let|L[A]l =2 Then A€ TURUBUTRUTLU[Z, Z+2Z,N] according
to Lemmas 13 and 14. In view of Lemra 5 we have A ¢ T U[Z].
Theorems 1, 2; 3 and Lemma 4 yield the opposite implication: ]
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