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MONOUNARY ALGEBRAS WITH TWO DIRECT LIMITS 

EMILIA HALUSKOVA, Kosice 

(Received November 23, 1998) 

Abstract. In this paper we describe all algebras A with one unary operation such that 
by a direct limit construction exactly two nonisomorphic algebras can be obtained from A. 

Keywords: monounary algebra, direct limit, endomorphism, retract 

MSC 1991: 08A60 

For an algebra A we denote by L[A] the class of all isomorphic copies of algebras 

which can be obtained by a direct limit construction from A. We investigate classes 

L[A] in the case when A is a monounary algebra. 

Every algebra A such that every endomorphism of A is an isomorphism has the 

property that whenever B e L[A], then B is isomorphic to A. In [4] monounary 

algebras A such that L[A] consists of isomorphic copies of A were characterized. 

The natural question arises whether there exists a monounary algebra A such that 

the class L[A] contains exactly two nonisomorphic types of algebras. 

In the present paper we construct a countable system of nonisomorphic types of 

monounary algebras with the mentioned property and we show that there are no 

other types of monounary algebras with this property. 

1. PRELIMINARIES 

As usual, by a monounary algebra we understand an algebra with a single unary 

operation; cf. e.g. [9], [10]. For monounary algebras we will use the terminology as 

in [9]. 

The class of all monounary algebras will be denoted by U. The class of all con­

nected monounary algebras will be denoted by Uc. 
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We will use the symbol / for the operation in algebras of U. 
The symbol N denotes the set of all positive integers. 
If k e N and Ai,..., Ak are algebras, then by [Ax,..., Ak] we will understand the 

class of all isomorphic copies of algebras Ai,..., Ak-
Let J be a nonempty set. For each i € / let Ai be a monounary algebra. We denote 

by 53 Ai a monounary algebra which is a disjoint union of monounary algebras 
iei 

Ai, i e I. If the set I is finite, I = {l,...,n}, then instead of ^ Ai w e write 
Ai + .. . + A„. 

We recall the notion of a direct limit, cf. [2], 
Let (P, <j) be an upward directed partially ordered set, P # 0. For each p e P let 

Ap be a monounary algebra and assume that if p, q e P, pi= q, then 4 p n i , = 0. 
Suppose that for each pair of elements p and g in P with p < q a homomorphism 
VPp, of Ap into Aq is defined and that p < q < s implies that <pps = <ppq o <pqs. Let ppp 

be the identity on Av for each p £ P. We say that {P, Ap, </?p<,} is a direct family. 
Assume that p,q € P and a- £ i f , j e i , . Put a; = J/ if there exists s e P 

with p ^ s, g ^ s such that ipps(x) = <fiqS(y), For each ^ 6 U Ap put z = ( ( e 
rep l 

U Ap: -J = t\. Denote A = \z: z e U Ap\. 
Pep J l peP ' 

If zi, z2 are elements of U AP s u c i l t hat z\ = z2, then clearly }(z{) = f(z2). 
veP __ 

Hence if we put /(«i) = f(zi)t then the operation / on A is correctly defined and 
with respect to this operation A is a monounary algebra. It is said to be the direct 
limit of the direct family {P,AP,<ppq}. We will express this situation by writing 

(1) {P,Ap,<ppq}-^A. 

The autor is aware of the fact that the term 'direct limit' is rather out-of-date, 
and that the term 'directed colimit' (cf. [1]) would be more up-to-date. 

Nevertheless, since the present paper can be considered as a continuation of the 
articles [4] and [3] where the term 'direct limit' was used, the author prefers the 
application of this therm also in this paper. 

Let A eU and (1) be valid. If Ap = A for every p e P, then we will write 

(2) {P,A,<p„}—>l 

and say that A is a direct limit of A. We denote by L[A] the class of all monounary 
algebras which are isomorphic to some of the direct limits of .4. 

The next lemma is an immediate consequence of the definition of the relation (2). 



Lemma 1. Let A e U and let (2) be valid. 
(i) If <Ppq is an isomorphism for every p,q e P such that p < q, then 1 ^ 4 . 

(ii) The algebra A has a cycle if and only if A has a cycle. 
(iii) Let k eN- If"A~ contains a cycle of length k, then A contains a cycle of length 

k. 
(iv) If A is connected, then A is connected. 
(v) If the operation of A is injective, then the operation of A is injective. 

Lemma 2. Let A,B,D € U. Suppose that A = B U D, A = B + D and that (2) 
is valid-

Let ipp be an isomorphism from A into Ap for every p 6 P. Denote Bp = 
fv(B), Dp = tpp(D) for every p e P. Further, let <ppq(Bp) C Bq,<ppq(Dp) C Dq 

for every p,q £ P, p^q. 
Then {P, Bp, <ppq}, {P, Dp, <pvq} are direct families (where ippq are the correspond­

ing restrictions) and if {P, Bp, ipPq} -s> B, {P, Dp, ippq} -» D, then A = B U D and 
A = B + D. 

Proof . It follows from the fact that direct limits commute with sums. D 

Let us denote by N the monounary algebra defined on the set M with the operation 
of successor. Further, let Z be the monounary algebra defined on the set of all integers 
with the operation of successor. 

Let A be a monounary algebra and let {Bj,j 6 J} be the set of all components 
of A. If j € J and k € N are such that, Bj contains a cycle of the length k, then let 
Cj be a cycle of the length k. If j e J is such that Bj contains no cycle, then put 
Cj S Z. We denote A*=Y,Cj. 

i€J 
The following result is proved in [3]: 

Lemma 3. Let AeU. Then A9 e L[A). 

Lemma 4. 
L[N} = [N,Z). 

Proof . Since N° = Z we have {N, Z} C L[N). Let (1) be valid and Ap S. N 
for every p e P. In view of Lemma 1 (iv) and (v) the algebra A is connected and 
the operation of A is injective. Therefore A = Z or A = N. D 

Let us denote 

T — {AeU: every component of A is a cycle and there are no 

components C\, Ci of A such that C\ ^ C2 and the length of C\ 

divides the length of Ci}-



In view of Theorem 1 of [4] we have 

Lemma 5. L[A] = [A] if and only if A e T u [Z]. 

Let A e U. Let B be a subalgebra of A. Assume that there exists a homomorphism 
ip of A onto B such that ip(b) = b for each b e B. Then B is said to be a retract of 
A and ip is called a retract mapping corresponding to B. 

This definition yields 

Lemma 6. Let A eU. Let J be a set and let Bj be a component of A for every 
j e J. MB' is a retract of the algebra J2 Bj, then the algebra 

(A-\JBJ)VB' 
jeJ 

is a retract of A. 

Retracts of monounary algebras were thoroughly studied by D. Jakubikova-
Studenovska [5], [6]. The following lemma we obtain from Theorem 1.3 of [5] 

Lemma 7. Let A eU. If A contains a cycle, then there exists a retract T of A 
such that T eT. 

We will often use the following well-known property of direct limits; cf. [1] 2.4 and 
1.5. 

Lemma 8. Let A 6 U and let B be a retract of A. Then B e L[A]. 

Let A eU and R C A. The set R is said to be a chain of the algebra A, if one of 
the following conditions is satisfied: 

l..R = {_o, . . . , _ „ } , n. € N U {0}, a; ^ a.j for i j= j and /(a.) = a._i for % = 
l ,2, . . . ,n; 

2. R = {at,i e N U {0}}, a; 5- aj for i ^ j and f(a{) = a._i for each i e N. 



2. CLASS 71 

We denote 

71 = {A € W: there exists a chain R of A such that 

A~ ReT and P fails to be a subalgebra of A}. 

If A 6 71 and P is a chain of A from the definition of 71, then we put A* — A — R. 
It is easy to see that {A, A*} C L[A]. 

In this section we will prove that if A £ 71, then L[A] = [A, A*], i. e., if (2) is 
valid, then either A = A or A = A*. 

The definition of 71 yields the following lemma. 

Lemma 9. Let A £ 71, If A is not connected, then there exist monounary 
algebras B,D such that B €71 nUc, D £T, A = Bu D and A = B 4- D. 

Theorem 1. Let Ae%. Then L[A] = [A, A*]. 

Proof . Suppose that A is connected. 
Since A* = A", we have A* ~ L[A] according to Lemma 3. Thus [A, A*] C L[A], 
The algebra A is connected and thus A* is a cycle of A. If a £ A — A*, then there 

exists k £ N such that fk(a) £ A* and fk~~'(a) £ A*. Let (2) be valid. Suppose that 
for every p £ P a mapping if>P is an isomorphism from A onto Ap. For every p £ P 
and a £ A we denote ap = ipp(a) and A* = V>j>(A*)-

The algebra A is connected and A has a cycle of the same length as A*. If p £ P 
and x £ A*, then x belongs to the cycle of A. 

Suppose that A is not isomorphic to A. We need to prove that A is a cycle. Let 
p £ P. We need to prove that for every a € A we can find s £ P such that p < s 
and <pps(ap) £ A*. 

By induction on k we show: 
If a £ A is such that fk(ap) £ A*p and fk~~l(ap) <~\ Ap, then there exists s £ P 

such that p < $ and ipps(av) £ A*. 
Let a £ A and k £ N. It is obvious that the following three assertions are 

equivalent: 
(i) fk(a)eA*mAfk~'(a)$A*; 
(ii) there exists p£ p such that /*(ap) € A* and fk~~L(ap) <£ Ap; 
(iii) for every q £ P we have /*(a9) € AJ and fk~~1(aq) ~z A*. 
Let fc = 1. Put Q = {g e P: p < g}. Then {<?,A,¥>,,,'} -> X Assume that 

the equality <PPq(ap) = aq is satisfied for every a £ Q. Let q,q' £ Q be such that 
g < g'. Then fqq>(aq) = ipqq>(<pPq(ap)) = <ppq>(ap) - aq>. That means ^TC' is an 



isomorphism. Therefore A = A, a contradiction. We conclude that there exists 

q € Q such that <ppq(ap) # aq. This implies that there exists i e N such that 

<fiPq(ap) = f(aq) and so <ppq(av) £ A*. 

Let k e N, k > 1 and let the claim hold for every natural number less than k. 

Analogously as in the first step there exist q € P such that p <_ q and <pvq (ap) = f1 (aq) 

for some i e N . If i ^ k, then ipvq(ap) e A*. If i < k, then there exists s e P such 

that q < s and ^ ( / ' ( a , ) ) e A* by the induction hypothesis (for g £ P and f(aq)). 

Thus i / v K ) = <Pqs(<fivt(ap)) - <Pqs(f(aq)) e A*s. 

We conclude L[A] = [A, A*]. 

Now suppose that A is not connected. Take B and D from Lemma 9. Then 

A* = B* + D. 

Let (2) be valid. According to Lemma 2 we have that {P, B,<pvq}, {P,D,ippq}, 

where <ppq axe the corresponding restrictions, are direct families. If {P, B, (ppq} -> B, 

then i? 6 [.B,i3*] since B is a connected algebra from T\. If {P, D,ippq} -> U, then 

D = D according to 5. In view of Lemma 2 we obtain 

A = B + De[B + D,B* + D] = [A,A*]. 

3. CLASSES T2,T3 

We denote 

T2 = {AeU: there exist B e T and k, I e N such that 

A = B + C, where C is a cycle of length I, B contains a cycle of 

length k and ! i s a multiple of k}. 

If A e T2 •, then we denote by A* a subalgebra of A which is isomorphic to the algebra 

B from the definition of T2. 

Further, we denote 

75 = {A e U: there exists B e T such that A = B + Z}. 

If A e 75, then we denote by A* a subalgebra of A such that A* e T and A — A* is 

an algebra isomorphic to Z. 

If A = Z + Z, then we denote by A* a subalgebra of A which is isomorphic to Z. 

T h e o r e m 2. Let A e T2 U 75 U [Z + Z], Then L[A] = [A, A*]. 
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Proof. Let us remark that if ip is an endomorphism of A, then <p has the 
following tree properties: 

1. <p(A*) = A*; 
2. <p(A) = A or <p(A) S A*; 
3. if tp is onto A, then <p is an isomorphism. 
It is obvious that {A, A*} C L[A]. Let (2) be valid. 
Suppose that there exists p e P such that for every q € P the following conditon 

is valid: if p ^ q then <y2p<j(-4p) = Aq. Denote Q = {q 6 P: p < <?}. Let g,s e Q 
be such that g ^ s. In view of </>ps = <ppq o <pqs we have tpqs(Aq) = pqs((ppq(Ap)) = 
<ppa(Ap) = As. Thus <̂ gs is an isomorphism between Aq and As. The set Q is cofinal 
with P and thus the direct limit of the family {Q, A,ipqs} is isomorphic to A. We 
obtain A = A according to Lemma 1 (i). 

Suppose that for every p e P there exists q e P such that p < q and ippq(Ap) ^ Aq. 
Thus for every p e P there exists q £ P, p ^ g such that </>p,(Ap) = A*. Choose 
p e P. Let Bp be a subset of Av such that Bp S A*. Denote P = {r £ P : p ^ r} 
and B r = tfipr(Bp) for every r e P. Then B r = A* for every r 6 J? and {P,J3,,<prs} 
is a direct family. Assume that {R, BT, iprs} ~» B. Since A* e T or A* = Z we have 
J3 = A* according to Lemma 5. 

Let q e R. Take s e P such that g ^ s and w(A<j) = A*. Then s e R and 
W(A«) = B$ according to Bs = A*. We obtain that P = A; an isomorphism is 
ip(b) = o, where fl6J. • 

4. CLASS 75 

Let us denote 

% = {AeW: there exists a chain 1? of A such that A-RSi Z}. 

In this section we will prove that if A e 75, then L[A] = [2, A]. 

Lemma 10. Let A e 75 and Jet P be a subset of A such thai A- R= Z. If R is 
finite, then L[A] = [A, Z]. 

Proof . Obviously {A,Z}CL[A]. 
Let C be a subalgebra of J4 which is isomorphic to Z. Since P is finite there exists 

exactly one element a 6 A such that f(x) ^ a, for every x € A. Suppose that n e M 
is such that fn(a) 6 C and / n - 1 (a ) <̂  C. Assume that {P,A,<ppq} -> X Let ^p be 
an isomorphism from A into .4P for every p e P. For every p e P and s 6 i denote 
% = ipp(x) and Cp = ipP{C). 
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Let p,q<$ p, p^q. We remark that 
1. <Ppq(Ap) _• A if and only if V>P«(°P) ~ a,; 
2. <Pp<,(Ap) s Z if and only if </>,(<%>) € Cg; 
3. if %?p, is onto Aq, then v?p« is an isomorphism. 
Denote 

(*) There exists p€ P such that <pPq(Ap) s 4 whenever q G P and p C g. 
(**) For every p e P there exists g G P such that p ^ q and v?p«(.Ap) - Z. 

We will prove that 
a) (*) is not fulfilled if and only if (**) is fulfilled; 
b) (*) implies A = A; 
c) (**) implies A = Z. 
a) Clearly if (**) is fulfilled then (*) is not fulfilled. 
Suppose that (*) is not fulfilled, i. e., for every p <~ P there exists g 6 P such that 

p ̂  q and tppq(Ap) is not isomorphic to A. 
Let po € P. Choose px,... ,p„ G P such that <fipipi+l(Apt) is not isomorphic to 

A for i G {0, • • • ,n - 1}. We get <pViPi+l(aPi) # oPi+] for every i e {0,... ,n - 1}. 
Therefore <PpOPn(aP0) e Cp„ and thus Vp0p„(Ap0)

 s £• 
b) Let (*) hold. If <ppq(Ap) £ A, then <ppq(Ap) = Aq. Denote Q = {q e P : p ^ q}. 

Let g, s G Q be such that g ^ s. We have <pqs(Aq) = <pqs(<ppq(Ap)) = ^ .(Ap) = As. 
Therefore </>,s is an isomorphism and A = A. 

c) Assume that (**) is valid. The algebra A is connected and contains no cycle 
according to Lemma 1. We need to show that A has a bjjective operation. 

Let p,q £ P, x € Ap, y G A, and f(x) = /(f). Then /(a;) = f(y) and thus there 
exists s e P such that p,g < s and <pps(f(x)) = pqs(f(y)). The validity of (**) 
yields that there exists t £ P such that s < t and «>st(̂ 4s) — Z. We have 

- /(p.tOM-0)) = <PA<PPs(f(x))) = v>.t(<M/(»))) = /te.t(v,.(v))). 

Therefore ^ (VpsM) = ¥,st(v,s(?/)) according to the injectivity of the operation of 
the algebra <pst(As). We conclude that <ppt(x) = <pqt(y) and x = y. 

Let p £ P and a; G Ap. Choose q £ P such that </?p9(Ap) = Z. Then there is 
y £ Aq such that f(y) = <Pvq(x). Hence f(y) = x. D 

Lemma 11. Let A G 71 and Jet R be a subset of A such that A — R<~= Z. If R is 
infinite, then h[A) = [A,Z\. 

Proof. According to Lemma 3 we have Z G L[A] . 
Suppose that {P,A,<ppq} —> A. The algebra A is connected and Z is isomorphic 

to a subalgebra of A according to Lemma 1. 
Let p € P and x G Ar Take y € Ap such that /(•(/) = x. Then /(f) = x. 



Let a,b,u,v £ A be such that a •/£ b, u ^ v, a # u, f(a) = f(b) and f(u) = f(v). It 
is easy to verify that then there exists s g P such that the set As contains elements 
a',b',u',v' which satisfy a' ^ V', «' ^ -u', o' 5̂  u', /(a') = f(b') and /(u') = /(«')• 
This is a contradiction since As — A. 

We conclude that A~ZotA=iA. Q 

Theorem 3. Let A € 75- Tien LL4] = [A, Z]. 

Proof , It follows from Lemmas 10 and 11. D 

5. MAIN RESULT 

In this section we will characterize all monounary algebras A such that the class 
L[A] contains exactly two nonisomorphic types of monounary algebras. 
. Lemmas 3, 7 and 8 will be often used. Further, we will apply some results of 

D. Jakubikova-Studenovska from [7], [8]. 
Let A 6 U and k 6 N. If L[A] contains at least k nonisomorphic types of algebras, 

then we will write |L[A]| > k. If L[A] contains exactly k nonisomorphic types of 
algebras, then we will write |L[A]| = k. If L[A] contains at most k nonisomorphic 
types of algebras, then we will write |L[A]| ^ k. 

Lemma 12, Let A be an algebra without a cycie and Jet A be not isomorphic to 
N. If A does not contain a subalgebra isomorphic to Z, then \L[A]\ ^ 3. 

Proof . Let K be a component of A, We have K° = Z, because A is an algebra 
without a cycle. Further, K" is not isomorphic to K, because A does not contain a 
subalgebra isomorphic to Z. 

Suppose that M = {Ki, i 6 /} is the set of all components of A which are isomor­
phic to N. 

First let M ^ 0. Let K G M. If M possesses only one component of A, then 
A — K is a retract of A and the algebras A, A", A - K are nonisomorphic algebras 
from L[A]. If M — {K} ^ 0, then K is a retract of the algebra 1J Ki. In view of 

iei 
Lemma 6 we have that (A- [J Ki) U K is a retract of A. Thus A, (A- {] Ki)uK, 

y tei ' v iei ' 
A" are nonisomorphic algebras from L[A]. 

Now let M = 0, Let K be a component of A. Then K contains at least two 
nonisomorphic retracts according to Lemma 3.1 of [8]. Assume that, K' is a retract 
of K such that K' ^ K. Let L = {K'p'j 6 J} be the set of all components of A 
which are isomorphic to K. Since K' is a retract of the algebra (J Kp we obtain 

,KJ ' 
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that the algebra (A— U K'AUlC is a retract of A according to Lemma 6. Moreover, 
v jeJ ' 

[A— U K'j) UK' £= A because the algebra \A— \J K'A UK' contains no component 
v jeJ ' v jeJ ' 
isomorphic to K. Thus A, [A— \J K'A U K, A" are nonisomorphic algebras from 

v jeJ ' 
the class L[A]. Q 

Lemma 13. Let A° 6 Tu[Z]. If\L[A]\ 4 2, then 

AeTuTxUTiU[N,Z]. 

Proof . Let A^TuTiUTs,U[N,Z]. 
If A° e T, then in view of A £ TuTi there exists a component K of A such 

that K satisfies the assumptions of Lemmas 1.1, 1.2, 1.5, 1.6 or 2.3 from the paper 
[7], It is proved in these lemmas that the algebra K has a retract K' such that 
K' ¥ K and K' is not a cycle. Let L = {Kpj 6 J} be the set of all components 
of A which are isomorphic to K. Since K' is a retract of A, Lemma 6 yields that 
(A - U K',) U K' is a retract of A. Further, A^ (A- {J ii"'•) U K' because the 
v j£J ' v j€J ' 

algebra [A— \J K'AUK' does not contain a component isomorphic to K. Thus A, 
v i£J ' 

[A- U K^) U K', A° are nonisomorphic algebras from the class LL4], 
v jeJ ' 

If A contains a subalgebra isomorphic to Z, then A is connected. In view of 
A $. % U [Z] the algebra A satisfies the assumptions of Lemma 2.3 or of Lemma 3.1 
from the paper [8]. It is proved there that A has a retract B such that B ^ A and 
B^Z.We have A, B,Z e L[A]. 

If A does not contain a subalgebra isomorphic to Z and A" = Z, then \h[A]\ > 3 
according to Lemma 12. • 

Lemma 14. Let A"iTU[Z]. If \L[A]\ ^ 2, then 

AeT2UT3U[Z + Z], 

Proof . The algebra A is not connected and A $ 71 U %. Suppose that 
A ^ 75 U 75 and A is not isomorphic to Z + Z. 

Assume that A has no cycle. If A does not contain a subalgebra isomorphic to 
Z, then |L[A]| > 3 according to Lemma 12. If A contains a subalgebra isomorphic 
to Z and A is not isomorphic to A", then A,A",Z are.nonisomorphic algebras of 



L[A]. If A contains a subalgebra isomorphic to Z and A — A", then A, Z + Z, Z are 
nonisomorphic algebras of L[A]. 

Assume that A has a cycle. Let T 6 T be a retract of A. If A° is not isomorphic 
to A, then A,A",T are mutually nonisomorphic and are in L[A], 

Let A0 = A. Then / is a bijective operation on A. 
Let A contain a component K such that A — KeT- In view of A ^ 75 the algebra 

K is a cycle. Further, in view of A ^ T% U T there exists a component it"i of A — Ji" 
such that the number of elements of K\ is a multiple of the number of elements of 
K. Hence A - K% is a retract of A. We obtain A - K\ $ T according to A f 75- We 
conclude that A, T, A — /Cj are nonisomorphic algebras of L[A], 

Now let A - K $ T for every component K of A. Then the algebra A - T has at 
least two components and so A has at least three nonisomorphic retracts. D 

Theorem 4. Let AeU. Then \L[A]\ - 2 if and only if 

AeTil>T2UT3UT4U[Z + Z,N]. 

Proof. Let |L[A]| = 2. Then A € TuTi U75UT3U7iU[Z,Z + Z.JV] according 
to Lemmas 13 and 14. In view of Lemma 5 we have Ag-Tl)[Z]. 

Theorems 1, 2, 3 and Lemma 4 yield the opposite implication. D 
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