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LINEAR OPERATORS IN THE SPACE OF REGULATED 

FUNCTIONS 

STEFAN SCHWABDC, Praha 

(Received May 30, 1990) 

Summary. Representation of bounded and compact linear operators in the Banach space 
of regulated functions is given in terms of Perron-Stieltjes integral. 
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A MS classification: 26A42, 28A25 

This note deals with some functional analytic properties of linear operators on 
spaces of regulated functions. The results are based on the recent work [2] of Milan 
Tvrdy where the fundamental properties of the Perron-Stieltjes integral are consid­
ered and used for studying certain concepts of functional analysis on the space of 
regulated functions. Our goal is to give a representation theorem for bounded and 
compact linear operators denned on the space (3x(a,&) of regulated functions on 
[a, 6] which are continuous from the left in the open interval (a, 6), and with values 
in the space G(c,d) of regulated functions on [a, 6]. Let us recall some fundamental 
concepts which form the background of our subsequent consideration. The notation 
introduced in [2] is used. 

Assume that —oo < a < b < +oo. A function / : [a, 6] —* R is said to be regulated 
on [a, b] if the onesided limits 

/ ( H ) = r l i m / ( r ) , *e [a ,6 ) , 

/ ( * - ) = lim / (r ) , t€(a,b] 
r—•< — 

exist. The set of all regulated functions on [a, 6] is denoted by G(a,6). G(a,6) is a 
linear space. Given / G G(a, b) we define 

| |/||G<«,») = SUp 1/(01 <<». 
<€[a,6] 
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/ *-* ||/||G(a,ft) is a norm on C7(a,6) and it is known (see e.g. [1]) that G(a,6) with 
this norm is a Banach space. 

The subset Gx(a,6) consisting of all regulated functions / on [a, 6] which are 
continuous from the left on (a, 6) forms a closed linear subset in G(a, 6), consequently 
GL(a,b) with the norm ||||GL(a,ft) given by 

ll/ll<?L(a,ft) = ll/lka,ft) for feGL(a,b) 

is also a Banach space. 
Let us denote by 5(a,6) C G(a,b) the set of all finite step functions on [a, 6]. It 

is known (see [1]) that S(a, 6) is dense in G(a, b)%i.e. G(a, 6) is the closure of S(a, b) 
with respect to the topology given by the norm ||.||GL(a,ft)« This yields that 

the set S(a,b)CiGL(a,b) is dense in GL(a,b). 
Indeed, if / € GL(a, 6) C G(a, 6) then for every e > 0, s G (a, 6) there is a 6(s) > 0 

such that 

l/(*)-/(*)!<* 
for a G (s — 6(8), s) n (a, 6) and by the density of S(a, 6) in G(a, b) there is <p G 5(a, 6) 
such that 

|/(«)-^(«)K||/-¥»||G(a,»)<e 
for every 8 G [a, 6]. Then 

|y>(«) - <f>(«)\ = \<p(s) - /(«) + /(«) + f(<r) - f(a) - <p(<r)\ ^ 

< W) ~ /(*)l + W) ~ f(°)\ + l/(*) - y>(<-)| < 3e 
for every s G (a, 6), a G (s — 6(s), s) n (a, 6), i.e. 

M s ) - ? ( * - ) | ^ 3s 

for 8 G (a, 6). 
Define 

i/>(s) = <p(s-) for s G (a, 6), ^(a) = <p(a), V(6) = y>(6). 

Then evidently V> G S(a, 6) n GL(a, 6) and we have 

|/(«) - tf>(s)\ < |/(«) - <p(s)\ + \<p(s) - <p(s-)\ ^ 4e 

and also | | / - il>\\G(a,h) = 11/ - ^||Gt(o,6) < 4e, i.e. 5(a,6) n GL(a,b) is dense in 
GL(a, b). A set M C G(a, 6) is called equiregulated if for every e > 0 and s G [a, 6] 
there is a 6(s) > 0 such that 

|/(<-) - / («+) | < e for <-€(«,s + 6 ( s ) ) n M ] , 

|/(<r) - / ( « - ) | < e for < - € ( « - 6(s), s) (1 [a, b] 
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whenever / € M. 
The following result is well known (see e.g. [I])*-

Proposition 1. A set M C G(a, 6) is conditionally compact in G(a, 6) if and only 
if M is equiregulated and the set 

M(s) = {f(s) e R; / G M} 

is bounded for every s G [a, 6]. 

Taking into account the topology in GL(<*,&)> b v Proposition 1 we immediately 
obtain the following 

Corollary 1. A set M C GL(Q, 6) is conditionally compact in GL(V, 6) if and only 
if M is equiregulated, the set 

M(s) = {f(s) E R; / G M} 

is bounded for every s G [a, 6] and M is equicontinuous from the left at every point 
s G (a, 6), i.e. for every £ > 0 and s 6 (a, 6) there is a 6(s) > 0 such that 

\f(a)-f(s)\<e for < r £ ( s - 6 ( s ) , s ) n [ a , 6 ] . 

Proposition 2. Assume that hn: [a, 6] —• R, n £ N is a sequence of functions 
such that 

vara hn ^ L = const. 

and 
lim M t ) = 0, * € [a, 6]. 

n—>oo 

If g G G(a, 6) then J^ /in(t) d#(f) exists for every n G N and 

lim / hn(t)dg(t)=zO. 
n->°°Ja 

P r o o f . Assume that t/>: [a,6] —• R is a finite step function, i.e. ^ G 5(a,6). 
Then ^ is a finite linear combination of characteristic functions of intervals of the 
form 

[a,r],[a,r),[r,6],(r,6] 

or of a single point [r] ,r G [a, 6]. If e.g. X[atr] is the characteristic function of an 
interval [a, r] C [a, 6] then 

/ Һn(t)dXla,r](ł) = -Һn(r) if T<b 
J a 
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and 

J hn(t)dX[atT](t) = 0 if T = b 

by the results given in Proposition 2.3 in [2]. Hence if r < 6 then 

lim / hn(t)dX[a,T](t) = - Hm hn(r) = 0 
n"*"°°Ja n"~*°° 

and similarly for the remaining characteristic functions mentioned above. Therefore 
we have 

(*) nlim / hn(t)d^(t) = 0 

for every finite step function rp G S(a, b). 
Let g G G(a,6). Since 5(a,6) is dense in G(a,6), for every n > 0 there exists 

V> G5(a,6) such that 

lb - ^\\G(a,b) = sup \g(t) - i/>(t)\ < n. 
*€[a,6] 

Denote <p = g — ip. Then g = <p + tp where <p G G(a, 6) is such that \<p(t)\ < n for 
every t G [a, 6], i.e. |M|G(a,&) < « and ip G S(a,6). Using the estimate given by M. 
Tvrdy in [2, 2.8.Theorem] we have 

\J hn(t)d<p(t)\ ^( |An(a) | + |nn (6) | + varUn)|M|G(a,&)< 

^(\hn(a)\ + \hn(b)\ + L)n 

Since the sequence (hn)n
<L1 tends pointwise to zero for n —• oo there is no G N such 

that for n > no we have |nn(a)| -f |nn(6)| < L and therefore 

\Ja M0<M-) < 2Ln 

for n > no-
€ 

Assume that e > 0 is given. Let us set n = — and assume that a fixed 
2L + 1 

i> G 5(a,6) is given such that \\g - il>\\G(a,b) < V- Using (*) we obtain that there is 

n\ G N, ni > n0 such that for n > m we have | fa hndip\ < e and finally also 

U' hndg ^\ J hnd<p\ + \ hn dxj\ < 2e 
a ' J a I ' J a ' 

for n > ni where <p = g-xp. Hence lim / An(0dg(t) = 0 and the statement holds. 
n~+°°Ja 

D 
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Theorem 1. Let T: Gi,(a, 6) —> G(c, d) be a bounded linear operator. Then there 
exists r G G(c,d) with ||r||G(c,d) ^ ||T|| and K: [c,d\ x [a, 6] -> R such that 

a) K(s,.) G BV(a,b) for every s G [c,d]; var* K(s,.) ^ ||T|| for every s G [c,d\, 
\K(s,a)\<\\T\\; 

b) K(.,i) G G(c,d) for every t G [a,b] ; 

c) (Tf)(s) = r(s)f(a) + f* K(s,t)df(t)), J € M , / € GL(a,b)f and 
d) \\T\\ < \\r\\G(Ctd) + 2 s u p , € M ] \\K(s, .)\\Bv(ati>y 

P r o o f . For a given set M C R let us denote by XAf the characteristic function 
of M . Define 

(1) r(s) = T(XlaM)(s) for s€[c,d\ 

and 
K(s, t) = T(x(«,»])(s) for t G [a, b), s € [c, d\, 

K(s,b) = T(X[i])(s) for*€[c,rf|. 

Since all characteristic functions to which the operator T is applied in (1) and (2), 
evidently belong to G^(a,b) we get r G G(c,d) and also K(.,t) G G(c,d) for every 
*G[a,6]. 

Hence 
||r||G(Ctd) = sup \r(s)\ = ||Tx[a,6]||G(c,d) ^ ||-T|| 

se[ctd\ 

because ||X[o,6]||GL(a,6) = 1 and therefore we get 

iMkc^imi. 
For a fixed s G [c, d] let us consider the variation of the function K(s,.). Using the 

definition of K given by (2) and the properties of characteristic functions we have 
for an arbitrary division D: a = to < h < ... < tm = b of [a, 6] the equality 

(3) £l*'(M;)-tf(M,--i)l = 

m - 1 

= 2 \K(s,tj) - K(s,tj^)\ + \K(s,tm) - K(s,tm-i)\ = 
i = i 
m - 1 

= £ lT(X(ti,б])(s) - Г ( X ( І І . 1 I Ч ) W I + \T(Xlь))(s) - T(Xltш^ь])(s)\ = 
i = i 

m - l 

= E I - Г(X(ti- l l.i])WI + I - ПX(tm-ltЪ))(8)\ = 

І = l 
m - 1 

i = i 
m - 1 

= E ci r(x(ii.i iii])W + cmr(x(ím.ll»))(«) = 
i = i 

m - 1 

= T( Yl CiX(li.lfti]) +CmX(*m.lf»)) W = T(h)(s) 
i = i 
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where Cj = ±1, j =, 1,2, ...,m are chosen suitably and 

m - l 
h = 5 3 c;X(';-i..;] + CrnXO-..!,*)-

i=-

It is easy to see that this function h is an element of GL(Q> b) and ||A||GL(<-,&)
 = * ^or 

every choice of the division D. Hence the boundedness of the operator T: GL((*, b) —• 
G(c, d) yields 

f ; \K(s,ti) - tf(M,-i)l = T(h)(s) < |T(A)(s)|| < 
i=i 

< sup |T(A)(5)| = ||r(A)||G(c><j)^||T||.||A||Gt(a>&)^||T|| 
*€G(c,rf) 

for every division D. Consequently 

m 

(4) var K(s,.) = s u p V \K(s,tj) - K(s,tj_1)\ <. ||T|| < +00 
D f^i 

for every s 6 [c, d]. 
Moreover, for every s £[c,d] we also have 

\K(s,a)\ = |T(x(0,»])(s)| ^ ||T(x(o,»])||6(c,o) < im|.||x(o,»]||Gl(o,») = ||T|| 

because X(o,»] € GL(O,6) and ||X(o,»]||Gi(o,») = 1 and henceforth 

(5) I |^(«, . )IIBV(O,»)^2| |T| |<+OO. 

The proof of c) is based on a density argument; we use Proposition 2.3 from [2] for 
the subsequent calculations. 

For / = X[o,»] ve have £ K(s,t)df(t) = 0 and r(s)f(a) = r(s) = T(x[o,»])(s) = 
(Tf)(s), i.e. 

(6) <s)f(a)+ ( K(s,t)df(t) = (Tf)(s) 
Ja 

in this case. 
If / = X[»] then f*K(s,t)df(t) = K(s,b) = T(X[h])(s), r(s)f(a) = 0 and (6) is 

satisfied. 
If T e [a,6) and / = X(r,6] then fa K(s,t)df(t) = K(S,T) = T(X(r,6])(s), 

r(s)f(a) = 0 and again (6) is satisfied. 
Since every function belonging to S(a, b) H GL(&, b) is a finite linear combination 

of functions of the type X(T,6] with r E [<->&), X[b]> X[a,b] the above results show that 
(6) is true for every / G 5(a, 6) n GL(Q, b). 
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11-11 

If / € GL(a,b) is arbitrary then by the density of 5(a,6) fl GL(a,b) in Gz,(a,6) 
there exists a sequence /„ 6 S(a,b) fl GL(O,6) such that fn —• / in Gi,(a,6) and 
by Corollary 2.10 in [2] (on the limiting behaviour of Perron-Stieltjes integrals) we 
obtain by the above result the equality 

lim T ( / „ ) ( s ) = lim \r(s)fn(a)+ I K(s,t)dfn(t)] = r(s)f(a)+ [ K(s,t)df(t). 
n-*oo n->oo I Ja J Ja 

This together with the continuity of the operator T yields 

(Tf)(s) = r(s)f(a) + f K(s, t) df(t), s£[c,d\, fe GL(a, 6), 
Ja 

i.e. c) is satisfied. 
For the norm of the operator T given by c) we have 

II /* II 
= sup \\Th\\G(etd) = sup \W(s)h(a)+ K(s,t)dh(t)\\ = 

||*||oL(.,b)<l IWIGL( . .»<I " Ja l , G ? (« .<0 
I fh I 

= sup sup \r(s)h(a)+ / K(s, t) dh(t) < 

^ sup sup [|r(.s)||/i(a)| -h (|-ff(^, a)| + i-ff( ,̂ 6)| + vlrit(^, .))ll^ll^(a,6)] ^ 
\\h\\aLi.,b)<lse[c,d\ a 

^ sup (||r||G(M) + sup ^K(s,)\\BV{ath))\\h\\GL{aih)l 
l|fc||oL(.,6)<i *€[«,<*] 

Since the operator T is represented in the form given by c) we obtain immediately 
the estimate of its norm presented in d). • 

Theorem 2. Assume that r € G(c,d) and that K: [c,d\ x [a, 6] —• R satisfies a) 
and b) from Theorem 1 where \\K(s, .)||av(a,*) ^ M, M = const, for every s € [c, d\. 
Then the formula 

c) (Tf)(s) = r(s)(/(a) + J K(s, t) df(t)), s € [c, d], f € GL(a, b), 

from Theorem 1 defines a bounded linear operator from GL(a, 6) to G(c, d) and for 
its norm we have 

\\T\\= sup | |TA||G( e i ( J )^| |r | !G M ) + 2M. 
IIMIot (..»><! 

P r o o f . By the results from [2] (Tf)(s) given by c) is well defined for every 
/ € GL(a,b) and s € [e,d]. The linearity of the mapping T is clear. Let us show 
that for / € GL(a, b) we have Tf € G(c, d). 

85 



Since r € G(c, d) the first term on the right hand side of c) evidently belongs 
to G(c,d). By the assumption b) from Theorem 1 the onesided limits K(s—,t), 
K(8+,t) exist for every t € [a, 6], i.e. we have 

(7) lim K(cr,t) = K(s-, t) for every t G [a,b), se(c,d\, 

lim K(<r,t) = K(s+,t) for every t € [a,b), s e [c, d). 

Since \\K(s, .)II.BV(M) J$ M is assumed, Helly's Choice Theorem implies that 
K(s—,.), K(s+,.) € -BV(a,6) and therefore the integrals 

/ K(s-,t)df(t), j K(s+,t)df(t) 
Jo Ja 

exist for 8 €(c,d\, 8 € [c,d), respectively. Applying Proposition 2 and (7) we obtain 

lim [ [K(<r,t)-K(s-,t)]df(t) = 0, 
*-+'- Ja 

lim / K(<r,t)df(t) = f K(s-,t)df(t) for s€(c,d\, 
°-+9- J a J a 

and similarly also 

lim / K(<r,t)df(t)= f K(s+,t)df(t) for s e[c,d). 
~+9+ J a J a 

I.Є. 

a-

Hence the function 

se[c,d\>-+ f K(s,t)df(t)eR 
Ja 

possesses onesided limits in [c, d\ and belongs therefore to G(c, d). Moreover we have 

\(Tf)(s)\ < \r(s)\\f(a)\+\JbK(s,t)df(t)\. 
The inequality \\K(s, .)\\BV(a,h) < M, s € [c,d\ and the estimate given in Theorem 
2.8 in [2] yields 

\(Tf)(s)\ = \r(s)h(a) + J K(s,t)dh(t)\ < 

<* \r(s)\\f(a)\ + (\K(s,a)\ + \K(s, 6)| + vir K(s, .))||/||Gt(„>4) < 

^ IHIc^.H/llo^o.*) + (\K(8,a)\ + \K(s,b)\ + VKK(S,.))||/||Gt(a>») ^ 

< (l|r||G(e>(0 + 2\\K(s, .)||BV(a)»)).||/||Gi.(a)») < 

<(IH|G(c)t.) + 2A/). | |/| |Gt(M). 

Hence 
||T/||G(C)<.) = sup |(T/)(*)| < (\\r\\G(e,d) + 2M).||/||Gt(0)») 

and the operator T is bounded. D 
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Denote by B([c, d\ x [a, 6]) the set of all functions K: [c, d\ x [a, b] --> R for which 

#(*,.) € £V(a,t) for every s € [c,<fl, 

||#(*> 0I.BV(a,*) < M, Af = const, for every s G [c, d\ 

and 
#(.,*) € G(c, d) for every t € [a, 6] 

hold. It is easy to see that B([c, d\ x [a, 6]) is a linear space and that 

pT||= sup \K(Sia)\ + viiK(s}.) 
*€[c,ol a 

defines a norm in B([c, d\ x [a, 6]). Let us denote by B([c, d] x [a, 6]) the normed linear 
space B([c, d\ x [a, 6]) with the norm given above. 

Using Theorems 1 and 2 the following can be stated. 

Corollary 2. For a given pair (r, K) € G(c, d) x B([c, d\ x [a, 6]) denote 

T(r,K)(f)(s) = r(«)/(o) + jf K(s,t)df(t))y sefrdlife GL(a,6) 

and let B(Gjr,(a, 6); G(c^ d)) be the Banach space of all bounded linear operators from 
Gi,(a>b) toG(c,d). The mapping 

*: (rrK) G G(c,d) x B([c,d\ x [a,6]) »- r(rfJ0 € B(GL(a,6);G(c,d)) 

is an isomorphism. 

Theorem 3. Let T: G[,(a> &) —• G(c, d) be a compact linear operator. Then there 
exists r G G(c,d) and K:[c,d\x [a,b] —• R such that a) for every s e[c,d\ we have 
K(s,.)£BV(aib))i.e. 

\\K(sy .)||BV(«,6) = \K(sy a)\ + var K(s,.) < oo, s G [c, d]; 

b) the mapping 
mK:[c,d]-.BV(a,6) 

given by 
mK(s) = #(*,.), sG[c,d] 

is regulated, i.e. the limits 

mK(s+) = lim mic(flr) and m/c(s-) = lim m/c(^) 
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c 

exist and 

\\K\\= sup \\mK(s)\\Bv(a,b) = sup \K(s,a)\ + vltK(s,.)<oo; 
.>€M1 .>€[«,«*] a 

) (Tf)(s) = r(s) (/(a) + j K(s, t) df(t)) , • € M , / € GL(a, b); 

d) 11X11 < 2 sup ||r*||<-(e>-)-.2HTII, 
IIMIo(...)<i 

IHI < 11-11-
P r o o f . Since the operator T is bounded, the conclusion of Theorem 1 holds. 

The only thing we have to prove is b). Let us consider the mapping TUK given by 

mK:se[c}d\-+K(si.). 

By the results of Theorem 1 we have K(s,.) € BV(a,b) for every * £ [c,d\. We 
show that the mapping m # : [c, d] —• BV(a, b) is regulated as a BV-valued function. 
For si, 82 € [c, d] we have 

(8) ||TOA-(*2) - mtf(*i)||BK(a,6) = | |#(*2, .) - #0*1, -)II.BV(a,ft) = 

= | t f(s2 ,a) - * ( * i , a ) | + var(if(52,.) - K(su .)). 
a 

Since T(x(a,&]) G G(c, d) the onesided limits of this function exist at every point 
8 € [c,d], i.e. by the Bolzano-Cauchy condition for the existence of these limits for 
every e > 0, s £ [c, d] there is a 6(s) > 0 such that 

(9) \K(s2ia) - ff(*i,a)| = |T(x(«,6])(s2) - r(x(.f»])('i)l < * 
provided s\, s2 € («, s + £(«)) fl [c, d] or $i, s2 € (s — 6(s), s) D [c, d] (cf. the definition 
(2) of i f ) . 

Let us consider the second term on the right hand side of (8). Assume that 
D: a = to < t\ < ... < tm = 6 is an arbitrary division of [a, b]. By (2) and by the 
properties of characteristic functions we get 

m - l 

(10) £ \K(s2itj) - Kfatj-t) - K(sutj) + #(*!-ty-i)| = 
i = i 

m- l 

= £ \T(x(tjtb])(s2) --T(x(fi.1,i])(«2) - r t x d . ^ K ' O + rdcd^^flKai)! = 
i = i 
m- l 

= £ i - nxdi.1,ti])(52)+nx^^Ksoi = 
i = i 
m- l 

= £ ciW(xto-lttd)M - nx^. t , ] )^ ! ) ] = 
i=i 

m - l m - l 

= T ( £ c;x(«i-...i])(«-) - T ( £ cixo,.. ,«,])(•!) 
i=i i=i 
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where cj = ±1, j = 1, . -., m - 1, 

\K(s2ttm) - K(s2ttm-i) - K(slttm) + tf(*i,tm-i)| = 
= \K(s2tb)^K(s2ttm^)^K(8itb) + K(sutm^)\ = 

= |T(xm)(^) - T(x(tm„lM)(82) - IXxwKti) + TCxct<m-a.*l)(«i)l = 
= I - T(x(tm_uh))(s2) + T(x(tm-ltk))(si)\ = 
= cm[T(x(tm^tb))(s2) - T(X(tm^h))(si)] = 
= T(cmX(«m^i,»))(*2) - T(cmX(tm-ltb))(si) 

with cm = 1 or cm = —1. Let us set 

m - l 
h*> = J2 ciX(<i-i,<i] + cmX(tm..i,»); 

i=i 

then evidently hD € GL(<»,6) and ||Ap||GL(a,>) = 1. Using (10) and the above result 
we have 

m - l 

(11) £ \K(s2ttj) - K(s2ttj-X) - K(slttj) + K(slttj^)\ = 
i=i 

= T(hD)(s2) - T(hD)(sx) < \T(hD)(s2) - T(/n>)(«i)|. 

Since for every division D of [a, 6] the corresponding function hx> belongs to the 
closed unit ball in Cri,(a,6) and the operator T is compact, the elements T(hD) 
belong to a conditionally compact set in G(ct d)t i.e. the set of functions of the form 
T(hD) is equiregulated by Proposition 1. This means that for every e > 0, s G [ctd\ 
there is 6(s) > 0 such that 

\T(hD)(t) - T(hD)(s+)\ < | for ( 6 ( M + 6(a)) n [c, d\ 

and 
\T(hD)(t) - T(hD)(a-)\ < | for t € (s - 6(s), s) n [c, d] 

i.e. independently of the choice of D we have 

|-r(M(52)--r(Ai>)(*i)l<^ 

whenever s\ts2 E (s — 6(s)ts) C\ [ctd\ or $i,*2 € (*,* + 6(s)) H [ctd\. Using (9) we 
obtain that independently of the choice of the division D we have 

m - l 

J2 \K(s2ttj) - K(*2,tj-i) - K(slttj) + K(8lttj-X)\ < e 
i=i 
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provided 81,82 G (s — 6(s), s) f) [c, d] or s\, 53 G («, s 4- *(s)) H [c, d]. Passing to the 
supremum with respect to all divisions D we get 

yit(K(82i.)"K(s1,.))^e 

for * 1,82 € (s - $(*),*)fl[c,d] or -si,s2 G (*,* + 6(s)) f)[c,d\. 
Using (8), (9) together with this last inequality we obtain that for any e > 0 and 

s € [c,d\ there is £(*) > 0 such that for 8\,S2 G (s - £(*),*) fl [c,d] or *i,*2 € . 
(*, 5 + 6(s)) H [c, d] we have 

\\mK(s2) - mjr(*i)||sv(«,ft) < 2e, 

i.e. the function mK: [c,d\ —• JBV(a,6) is regulated and b) from the theorem is 
satisfied. This completes the proof of Theorem 3. • 

Theorem 4. Assume that r G G(c, d) and that K: [c,d\x [a, 6] —• R satisfies a) 
and b) from Theorem 3. Then 

c) (Tf)(s) = r(s)f(a) + J K(s,t) df(t)), se[c,d\,fe GL(a, b) 

defines a compact operator from Gi(a, 6) to G(c, d) and 

Hill = sup ||r&||0(e|iD ^ ||r||G(c,d) + 2||ff||. 
\W\oL(.t»$l 

Proof . By the results from [2] (Tf)(s) given by c) is well defined for every 
/ GGx(a, 6) and sG[c,d]. 

For a given / G Gz,(a, 6) and *i, 82 G [c, d\ we have 

\(Tf)(s2)-(Tf)(8l)\ = 

= l(r(*3) - r(8l))f(a) + J (K(s2,t) - K(8l,t))df(t)\ < 

< \r(s,) - r(8l)\\f(a)\ + | jf (K(s2,t) - K(sltt))df(t)\ < 

< \r(s2) - r(8l)\\f(a)\ + [\K(s2,a) - K(8l,a)\ + \K(s2,b) - K(sub)\+ 

+ var(/t>2) •) - K(su .))]||/||0i(.,») < 

< \r(s2) - r(sx)\\f(a)\ + 1\\K(s2,.) - K(su .)||J,V.>,»)II/IIG*(-,») < 

< [\r(s2) - K*i)l + 2|l*(«--.•)" K(su.)\\BV(a,h))\\f\\o^a,i,). 

Since r G G(c, d) and if satisfies b) we obtain that for every e > 0, s G [c, d] there is 
j(s) > 0 such that 

(12) \(Tf)(s2) - (T/)(*i)| < eO/ll«-(-.») 
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provided si, s2 G (s, 5 + *(*)) PI [c, d] or *i, s2 € (* - 6(s), s) H [c, d), i.e. the onesided 
limits (T / ) ( s+) , (Tf)(s-) exist for every s € [c,d), 5 € (c,d], respectively, and 
therefore T / G G ( c , d ) . 

For the norm of the operator T given by c) we have 

= sup \\Th\\G(Ctd) = sup \\r(8)h(a) + / # ( * , t) dh(t)\\G(Ctd) = 
IWIoiA*.*)*1 llfclloL(«t»).<l Ja 

= sup sup \r(s)h(a)+ f K(8,t)dh(t)\^ 

^ sup sup [|r(^)||Ma)l + ( l^(^ , «)l + !^(* . *)l + v i r /f^, .))||^||^(a.6)] < 
IIMIoL(«,k)<l *€[c,<J] a 

^ sup (||r||G(C|d) + sup 2\\K(8,.)\\BViath))\\h\\GUalh)]^ 
ll*llaL(.,»<- *€[c,al 

<||r| |o(c,fl + 2||if||. 

Hence if / € GL(a,6) is such that ||/||GL(a,&) < 1 then 

\(Tf)(s)\ < \\Tf\\G(e>d) < | |r| | | | / | |Gt (a>t ) < Hrji 

for every 8 E[c,d\ and by (12) we have 

\(Tf)(82)-(Tf)(8X)\<e 

provided *i, s2 € (s, s + 6(s)) fl [c, d] or *i , «2 € (« - £(*),*) H (c, d). Therefore by 
Proposition 1 the set M = {g € G(c,d);g = T / , / € <?L(a,6), | | / | |GL(a |6 ) < 1} 
is conditionally compact in G(c, d) and consequently the operator T given by the 
relation c) is compact. • 

Denote by K([c,d\ x [a,6]) the set of all functions K:[c,d\x [a,6] —> R for which 
a) and b) from Theorem 1 hold. It is easy to see that by \\K\\ from b) in Theorem 
3 a norm in K([c, d\ x [a, 6]) is given. 

Using Theorems 1 and 2 we obtain the following result. 

Corollary 3. For a given pair (r, K) € G(c, d) x K([c, d\ x [a, 6]) denote 

T(r,K)(f)(s) = r(8)f(a)+ f K(8,t)df(t), s € [ c , d ] , / € G L ( a , 6 ) 

Ja 
and let K(GL(<*,&);G(c,d)) be the Banach space of all compact operators from 
Gi(a, b) to G(c, d). T i e mappiBg 

<*: (r, K) e G(c, d) x K([c, d\ x [a, 6]) h- T(r,*> G K ( G t ( a , 6); G(c, d)) 
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is an isomorphism. 

Using the criterion for conditional compactness of a set in GL(C, d) stated in Corol­
lary 1 the proof of Theorems 3 and 4 can be repeated in order to obtain the following 
statement. 

Theorem 5. Let T: Gj&(a,6) —• GL(C,J) be a compact linear operator. Then 
there exist r £ GL(C, d) and K: [c, d] x [a, 6] —• R such that a), c), d) from Theorem 
3 bold and instead of b) the following condition holds: 

b-) the function mx: [c, d) —• BV(a} b) given in b) from Theorem 3 is a BV(a, b) 
valued GL-function, i.e. the conditions given in b) are satisfied with the additional 
continuity from the left on (c, d) of this function? 

On the other hand, ifr € GL(c,d) and K: [c,d\ x [a, 6] —• R satisfies a) and b-) 
then c) defines a compact operator T: GL(O, b) —• GL(C, d). 

The inequalities for the norms of the operators given in Theorems 1 and 2 remain 
unchanged in this case and a statement analogous to Corollary 3 holds. 
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