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SOLDERED DOUBLE LINEAR MORPHISMS 

ALENA VAN4UROVA, Olomouc 

(Received February 28, 1990) 

Summary. Our aim is to show a method od finding all natural transformations of a 
functor TT* into itself. We use here the terminology introduced in [4, 5]. The notion of 
a soldered double linear morphism of soldered double vector spaces (fibrations) is defined. 
Differentiable maps / : C0 —• Co commuting with TT* -soldered automorphisms of a double 
vector space C0 = V* x V x V* are investigated. On the set ZS(C0) of such mappings, 
appropriate partial operations are introduced. The natural transformations TT* —> TT* 
are bijectively related with the elements of Zs((TT*)0R

n). 

Keywords: Double vector space, double vector fibration, soldering, natural transfor­
mation 

AMS classification: 53C05 

1. 2>£-SPACES (FIBRATIONS) WITH SOLDERING 

As usual, let T denote the tangent functor; T is a lifting functor, i.e. a functor 
from the category of n-dimensional manifolds and their local diffeomorphisms into 
the category of fibred manifolds and morphisms. Similarly, the construction of a 
cotangent bundle and cotangent map can be interpreted as a covariant lifting functor, 
[2]. Further, TT, TT*, T*T, and T*T* are second order lifting functors, [2]. 

In [4, 5], double vector spaces (Z>£-spaces), double vector fibrations and their 
morphisms were studied. For example, the tangent bundle TE of a vector bundle 
E has the structure of a double vector fibration. Other important examples are 
the cotangent bundle T*E and the spaces TTMy TT*M, T*TM and T*T*M of a 
smooth manifold M. 

The Cartesian product C° = A x B x V of three finite-dimensional vector spaces 
can be regarded as a trivial double vector space AxBxV—*AxB. Its X>£-
automorphisms group Aut(C°) is identified with Aut(A) x Aut(jB) x Aut(V) x 
Hom(i4 x B, V) where Hom(-4 x B, V) denotes the vector space of all bilinear maps 
of A x B to V, [4]. Further, any 2>£-space C is D£-isomorphic with a suitable trivial 
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2>£-space C° (of the same dimension). Consequently, any automorphism <p € Aut(C) 
can be written as a quadruple (^i,^2,^3,cr). 

J. Pradines introduced a 1-soldering of a 2>£-object C as a linear isomorphism 
<rc: A -» V, and a 1-soldered morphism <p: C —• C as a 2>£-mo^phism satisfying 
<p3ac = ere <p\> [3, 1]. For our purpose, given a 2>£-space C, *: C —> A x .B, we 
define 

Defìnition 1. We say that ćľ is a 2>£-space with a 
Tíľ-soldering 

or T*üľ-soldeгing 
or ГT-soldeгing 
or TT*-soldeгing 
oг T*T-soldering, 
if we are given an isomorphism (or isomorphisms) 

XHV^A 

oгxз: A-+B* 

oľXi-V-+A, X2-V-+B 

or x i : V -* A, X2-V-+B* 

o г X l : V - > i ť , XÌ : V —• B, гespectively 

A 2>£-morphism <p: C -+ C of two 2>£-spaces with a T£?-soldering (or T*E-
soldering etc.) will be called soldered (more precisely, TJE-soldered etc.) if its under­
lying linear morphisms <p\f <p2t <P3 satisfy 

X i <Pз = <P\ Xi 

<*¥>2X'зPi = Xз 

oг x'i <Pз = <P\ Xъ X'2^3 -<P2X2 

o г x ' i ^ з = ^iXъ <P2 X'2 <PЗ = X2 

o г ^ ï x ' i У з = Xъ X'2 <PЗ = <P2X2 

In this way, we obtain a category of T-E-soldered 2>£-spaces and morphisms, etc. 
Obviously, TT~ and TT*-solderings are special cases of the T2i?-soldering, and the 
T*T-soldering induces a T*_C-soldering. 

Given a weak 2>£-fibration <£, [5], we say that <t is TE-soldered (or T*E-soldtrtd} 

etc.) if each fibre of (C is endowed with a T2?-soldering (T*2?-soldering, etc.). Given 
two weak 2>£-fibrations with a soldering of the same type, their morphism will be 
called soldered if its restriction to each fibre is a soldered 2>£-morphism. 

We say that a weak 2>£-fibration (<E,p, Af) with a soldering is a soldered VC-
fibration if there exists a 2?£-space C with a soldering of the same type such that 
for x £ M, there exists an open neighborhood U of x and a soldered isomorphism 
of weak 2>£-fibrations of the form / : (<£r/,pr/, U) —• (U x C}pr\}U) over identity. 
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Again, Ti?-soldered (or T*f7-soldered, etc) fibrations and their morphisms form a 
category. 

A T£-soldering (T*J?-, or TT-, or IT*-, or T*T-soldering) of a Z>£-fibration 
(C, p, M) induces the following isomorphisms of the underlying fibrations: 

XX:V-+A 

or X3: A —• B 

oг Xx: V — A, Лf2:v->ß 
oг Xг: v — A, ЛГ2:v^ß* 
otXз-.V^A', Л^: v —І• B, гespecti ely. 

2. THE 7T*-SOLDERED 2>£-SPACE C0: V* x V x V* -* V* x V 

We will consider a trivial X>£-space C0 = F* x V x V*, TT: C0 -> V* x V with a 
TT*-soldering Xi = M> X2 = *<**• Its 2>£-automorphism (y>i,y>2,^3>cr) is soldered if 
and only if 

<Pi = VV1 = ¥>3. 
Our main goal is to investigate differentiable maps / : C0 —• C0 which commute 
with all TT*-soldered automorphisms of C0. First, let us make some preliminary 
considerations. 

Given a continuous / : V* x V —• V* such that 

(1) <p*~lf(a,v) = f(<p—\a)Mv)) for a n y V € Aut(V), a € V*, v € V, 

it can be proved: 

Lemma 1. Let a G V*, a ^ 0; v G V, v ^ 0. Then there exists a reai number 
X(ayv) such that f(ayv) = A(a,v).a. 

P r o o f . If (vya) ^ 0, choose a basis {vi,..., vm} in V such that v\ = r~yt;, 
m 

v\ = a. Then / (a , v) = £ /*(a> v)-v*. where {v*, . . . , t;*̂ } is a dual basis. Setting 
*=i 

<p(vx) = vi, <p(vk) = -vjb for k ^ 2, 

(1) yields f(a,v) = /i(a,v).a. In the case (v,a) = 0, let us choose a basis with 
v2 = v, v* = a, and 

(2) y> € Aut(V) with ^( v i ) = vi> ^(v2) = v2, y?(vfc) = — vk for fc ̂  3. 

By (1), /(<*>«) = / i (a, v)-vi + /»(«! «)-«2- L e t V>' € Aut(V) be given by <p'(vk) = v* 
for fc ̂  2, <p'(v2) = £t>2 with e ^ 0. An application of (1) and the previous equal­
ity yields e~lf2(a,v) = f2(a,ev). By continuity of / , there exists lim/2(a,£t;) = 

/2(a,v) . Thus there exists also lime~1 /2(a, t;), which implies f2(ayv) = 0. In both 

cases, A(a,v) = / i (a ,v) . D 
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Lemma 2. Let a, a' G V* - {0}, v, v' € V - {0}. There exists >̂ G Aut(V) 
satisfying <p*~x(a) = a', y>(v) = v' if and only if(v,a) = (v',a'). 

Lemma 3. There exists a unique continuous function £: R —• R such that 
f(a,v) = £((v,a)).a for any a € V*, v G V. If / is differentiate, then ( is also 
differentiate. 

Now assume a fixed continuous / : V* x V x V* —• V* such that 

(3) * - 7 ( a , M ) = f(<P*-l(°)Mv)><P*-l(b)) 

for any y> G Aut(V), a, 6 G V*, v G V. Suppose dim V ^ 2. 

Lemma 4. Given two lineaxly independent forms a, 6 G V*, and v G V, there 
exist uniquely determined real numbers X(a, v, b), p(a, v, 6) such that 

f(a, v, 6) = X(a, v, 6).a + u(a, v, 6).6. 

P r o o f . Suppose (v, a) / 0 or (v, 6) ^ 0, and choose a basis with vj = a, vj = 6, 
(v, vk) = 0 for * ^ 3. Then v = avx + /3v2 where a, /? G R, a -/ 0, /? ^ 0. We can 

m 
write / (v j ,avi+/?v 2 , vj) = Y, fk(v*,avi+fiv2,V2).vl. Using (2) and (3) we obtain 

/ * K , a v i + /?v2,v$) = 0 for * ^ 3. 

By continuity, the numbers 

A(a,v,6) = / i ( v i , a v i + /?v2,v:j) and fi(a,v,b) = f2(v\,avx + pv2,v*2) 

satisfy the above equality even in the case (v, a) = (v, 6) = 0. Since a, 6 are indepen­
dent, A and fi are unique. • 

Lemma 5. Let U C V* x V x V* denote an open subset consisting of all triples 
(a, v, 6) such that a, b are independent. There exist uniquely determined continuous 
functions X, \x: U —* R such that for any two independent a, 6 G V* and any v G V 
we have 

f(a, v, 6) = A(a, v, 6).a + p(a, v, 6).6. 

Lemma 6. Let a, b and a', V be two couples of linearly independent forms, and 
v, v1 G V. There exists <p G Aut(V) such that 

<p-\a) = a', <p(v) = v', <p-\b) = b' 
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if and only if 
(vta) = (v'ta') and (vtb) = (v'tb'). 

Lemma 7. There are uniquely determined continuous functions £, rj: R —• R 
such that for any a, 6 6 V* independent and v G V t we have 

(4) / (a , v, b) = *«„, a), («, 6)).a +.-({», a), <», 6)).6. 

Proposition 1. Let dim V ^ 2. Then there are unique continuous functions £, 
?/: R2 —• R such that for arbitrary two forms a, 6 G V* and any v G Vf (4) is valid. 

The proof follows by the previous lemma and by continuity of / , £, r\. If / is 
differentiate, we can find differentiable functions (,17. In the case dimV = 1, 
Proposition 1 is not true. Nontheless, we prove: 

Proposition 2. Let dim If = 1 . Let f: V* x V x V* -> V* be a differentiable 
map satisfying (3). Then there exist (not unique) differentiable functions £: R —• R, 
17: R2 —• R such that for any a, 6 G V* and v G V we have 

/ ( a , vt 6) = t((vt a)).a + rj((vt a), (vt b)).b. 

P r o o f . We can suppose V = R. A map /(—,— ,0) : V* x V —• V* satisfies 
(1). By Lemma 3, there is a differentiable function £: R —• R such that / (a , vt 0) = 
£((v, a)).a for any a£V*t v eV. Let a map g: V* x V x V* —• V* be given by 

g(at vt 6) = / (a , vt 6) - £((t>, a)).a. 

Clearly, g satisfies (3) and g(atvt0) = 0. There exists a differentiable function 
(i':V* xVx (V* - 0) — R such that for any a G V* t v G Vt 6 G V* - {0}, we have 
g(atvt6) = fi'(atvtb).b. Let us define fi. V* x V x V* ->R as follows: 

fi(atvtb) = i*'(a,v,b) for 6 ± 0, »(atvt0) = dg<<a^°\ 

where p is differentiable and g(atvtb) = fi(at vtb).b for a, 6 G V*, i; G V. If 6 / 0, 
then /i(a,t;,6) = fi((p*"x(a)t<p(v)t<p*~x(b)) for any <p G Aut(V). Since /i is contin­
uous, the equality holds even for 6 = 0. It can be verified that there is a function 
rj: R2 —• R such that 

ti(atvtb) = r,((vta)t(vtb))foi atbeV*t v G V - {0}. 

If we choose a basis {t>i} of V we have rf(xty) = ii(xv\tvityv\). Therefore /i is 
differentiable. By continuity of fi as well as 77, the above equality holds even in the 
case v = 0. D 
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In the next part, consider a continuous map / : V* x V X V* —• V such that 

(5) <pf(a,v,b) = /(V>*-I(a)(y>(«))v>-1(6)). 

Lemma 8. Assume a, 6 G V*- v G V — {0}. Then there is a single real number 
A(a,v,6) such that /(a,v,6) = A(a,v,6).v. 

Proof , (a) First let (v,a) ^ 0, (v,6) 9-- 0. If a, 6 are independent, then there is 
a basis in V such that 

a = (v,a).vj, v = vi, 6 = (v,6).vj + vj. 

In the expression of/ with respect to the basis, /*(a, v, 6) = 0 for 4 ^ 3 . This follows 
by (5) if we use <p introduced in (2). Choose 

(6) <p'eAut(V): <p'(vk) = vk for* ^ 2 , <p'(v2) = e'lv2 

where e / 0. By (5), 

e'lf2(a, v, 6) + /2(a, v, (v, 6)vJ + ev*2). 

Since lim/2(a, v, (v,6)vj+evj) = f2(a> v, (v,6)vj) we have /2(a,v,6) = 0. Therefore 

(7) /(a,v,6) = /i(a,v,6).v, A(a, v,6) = /i(a, v,6). 

If a, 6 are linearly dependent then there is a basis {vi , . . . , vm} of V with a = 
(v,a)vj, v = vi, 6 = (v,6)vj. Choose ^>(vi) = vi, <p(vk) = — v* for ib ^ 2. The 
condition (5) gives /*(a, v, 6) = 0 for Jb ^ 2, /(a, v, 6) = /i(a, v, 6).v as above. 

(b) Assume (v, a) £ 0, (v, 6) = 0. The symmetric case is similar. If 6 = 0 we can 
proceed as above. If 6 7-. 0 we choose a basis with a = (v,a)vj, v = vi, 6 = vj. We 
obtain /*(a,v,6) = 0 for k ^ 3. Using (6), (5) gives e"1f2(aivib) = /2(a,v,e6) and 
consequently, f2(a, v, 6) = 0, i.e. A is given by (7). 

(c) Let (a,v) = (6,v) = 0. If a, 6 are independent we choose {vi , . . . ,vm} such 
that a = vj, v = vi, 6 = V3. We obtain /k(a, v,6) = 0 for k ^ 4; an automorphism 
<p given by <p(vk) = v* for k 7- 2,3, <p(v2) = e~xv2, <p(vz) = e~lvz} e £ 0 yields 
/2(a, v, 6) = fs(a} v, 6) = 0. If a, 6 are dependent, a^Owe use a basis with a = vj, 
v = vi, 6 = avj, a G R. Similarly for 6^0 . The case a = 6 = 0 is clear. • 

Lemma 9. Let dim V ^ 3. There exists a unique continuous function #: R2 —• R 
such that for any two independent forms a, 6 and v / 0 we have 

(8) f(a,v,b) = 0((v,a),(v,b)).v. 

Proof. By Lemma 6, 7 there exists a uniquely determined function tf: R2 —* R 
such that for any two independent forms a, 6 and v £ 0, (8) is true. In an arbitrary 
basis {vi , . . . ,vm} we have t?(x,y) = A(arvJ + v5,vi,yv* + V3). The function A 
described in Lemma 7 is continuous on its domain, hence # is also continuous. D 
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By continuity of / and # we obtain 

Proposition 3. Let dimV ^ 3. There exists a unique continuous function 
t?: R2 - • R such that for a, 6 £ V* and v £ V, (8) holds. If f is differentiate 
then 0 is also differentiate. 

Lemma 10. Let dimV = 2, a,6,a',6' £ V, v,v' £ K - { 0 } . If (v,a) = (t/ ,a ') and 
(v,6) = (t/,6 ;) then the corresponding real numbers introduced by Lemma 7 satisfy 

A(a,v,6) = A(a',t/,6'). 

The proof uses continuity ofX and a suitable choice of a basis and <p £ Aut(V). 

Proposition 4. Let dimV = 2. Then there is a unique continuous function 
t?: R2 -> R such that 

. f(a,v,b) = 4((v,a),(v,h)).v for a, 6 £ V*, v £ V. 

If f is differentiate then d is also differentiate. 

Proposition 5, Let dim V = 1 and let f: V* x V x V* —• V be a differentiate 
map satisfying (5). Then there exists a differentiate t?: R2 —• R such that / (a , v, 6) = 
4((v,a),(v,b)).v. 

P r o o f . We can suppose V = R and use the canonical isomorphism R:_R* . 
A map /(—, — ,0) : V* x V —• V satisfies the assumptions of Lemma 3. Thus there 
exists a diffferentiable function t?': R —• R such that / (a ,v ,0) = t?'((t;,a)).t;. Now 
consider the map g: V* x V x V* —• V given by g(a, v, 6) = / (a , v, 6) — t?'((t;, a)).v. 
Again, g satisfies (5). Moreover, </(a,v,0) = 0. There exists a differentiate p: V* x 
V xV* -+R such that g(afv,b) = fi(a,vyb).v for a, 6 £ V*, v € V. If t; / 0 then 
^i(^*""1(a),^(t;),^*"*1(6)) = /i(a,v,6) for any <p £ Aut(V). Since fi is continuous 
this equality holds even if t; = 0. Further, there exists a function d": R2 —• R with 
/i(a,v,6) = t?"((v,a),(t;,6)) for any a, 6 £ V*} v £ V - {0}. Evaluation in a basis 
of V shows that t?" is differentiate. By continuity of /i and t?", the above equality 
holds even if v = 0. Hence / ( a , v, 6) = (t?'(v, a) + t?"((v, a), (v, 6))). v for a, 6 £ V*, 
t; £ V. The uniqueness of the function d = d' -f t?" is obvious. • 

Definition 2. Let $ = (y>*""1, y>, (p*"l
) <r) be a TT*-soldered ©^-automorphism 

of a trivial 2>£-space C0 = V* x V x V*. We say that a 2>£-automorphism # is 
strongly soldered if the bilinear map a: V* x V —• V* is ^symmetric, i.e. if it satisfies 

(9) (t;,(T(a,^>-1(u;))) = {w,tr(a,<p-l(v))) forv,ti ;£V , a £ If*. 

Now let a continuous map / : C0 —• C0 satisfy 

(10) # / = / # 
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for any soldered (or strongly soldered) $ G Aut(C0). We write / = ( / i , / 2 , / s ) , and 
# as above. An evaluation of (10) gives for any <p € Aut(V) and any bilinear (or 
symmetric bilinear) map a 

(11) f'~1fx(a,v,b) = /1(y>*-1(a),^(t;),v»*"1(t) + ^(a )v)) , 

(12) ^ " 7 2 ( a , „ , 6 ) = h(<p*-l(a)Mv),<p-\b) + v(a,v)), 

(13) <p*~1f3(a,v,b) + ff(fi(a,v,b),f2(a,v,b)) = 

M<p-\a), <p(v), <p*~\b) + <r(a, v)). 

Suppose dim V ^ 2. By Propositions 1,3,4 (setting a = 0) there are uniquely 
determined continuous functions £, n, #, i, K: R2 —• R such that for any a, b € V , 
v 6 V we have 

/ i (a , t>, 6) = t((v, a), (v, b)).a + v((v, a), (v, b)).b, 

h(a,v,b) = 0((v,a),(v,b)).v, 

f3(a, v,b) = i ((v, a), (v, b)).a + K((V, a), (v, b)).b. 

The map / = ( / i , / a , / s ) satisfies (10) for any 2>£-automorphism of the form # = 
(ip*~l,if>,if>*~x,Q). It remains to find out under what conditions / satisfies (10) if 
0 = ( l v

- 1 , l v . l v - 1 , ~) w i * n ~ a~ arbitrary (or lv-symmetric) bilinear map. By 

(11), 

*((«, a), («, b)).a + t|((ti, a), (t>, 6».6 = £((*, a), (v, 6) + (t/, <r(a, v))).a 

+ t]((v, a), (v, 6) + (v, <r(a, v)».6 

+ *?((*>> a)> (v>b) +(v> *(«i v)))<r(<-> *>)• 

If a / 0, t; -i 0 we can choose a lv-symmetric <r such that <r(a, v) ^ 0, (v, <r(a, v)> = 
0. Then ?7((t;,a),(t;,6» = 0, and tf = 0 by continuity. Now it is obvious that 
£(x> y) does not depend on y. Therefore / i (a ,v ,6) = £((v, a)).a. By (12), #(x,y) is 
independent of y, i.e. /2(a, v, 6) = t?((v, a)).v. Finally, by (13), K(X} y) and t(x, y) are 
also independent of y, and K = £#. Thus /s(a,t;,6) = *((t;,a».a+(((t;,a»t?((t;,a».6. 
So we have proved 

Proposition 6. Let dim If ^ 2. Continuous (or differentiate) maps f: C0 —• C0 

which commute with all soldered (or strongly soldered) automorphisms of C0 are 
precisely all maps of the form 

/ i (a ,v ,6) = £((v,a».a, 

/ 2(a ,v,6) = t?((t;,a».t;, 

/3(a, v, 6) = i((vt a)).a + £((v, a))d((v, a».6, 

where { , I > , J : R - » R are arbitrary continuous differentiate functions. 
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In the case dimK = 1, the previous proposition holds in its differentiate version 
only. The proof uses the morphism* = (l*/"1 , l v , l*/""1 ,^)- Here any bilinear cr is 
lv-symmetric, e £ 0. 

Definition 3. On the set Z(C0) of all differentiable maps of the 2>£-space C0 = 
V* x V x V* into itself, the following partial operations may be introduced: 

if / , g £ Z(C0) and *\f = *2g we define / + g, 

for / , g € Z(C0) satisfying w2f = *2g we define / + g> 

if / , 9 € Z(Co) with g(C0) C K* we define / + g, 
for / , g € Z(C0) we define a composition / y . „ 

Denote by Z9(C0) (or Z,,(C0)) the set of all / £ Z(C0) satisfying (10) for any 
soldered (or strongly soldered, respectively) <P € Aut(C0); Z9(C0) = Z99(C0) is closed 
under the above operations. The previous results yield: 

Theorem 1. By means of+, the set Z9(C0) = Z99(C0) is generated by maps of 
the following form: 

(14) (a, v, b) - , *«„ , a)) . (<>((v, a)) .(a,v, b)), 

where £, # : R —• R are arbitrary differentiable functions; 

(15) (a , t ; ,6 )^(0 ,0 , t ( ( t ; , a ) ) . a ) , 

where t: R —• R is differentiable. 

3. NATURAL TRANSFORMATIONS OF TT* INTO TT* 

Since any two of the functors TT*, T*T and T*T* are naturally equivalent, [2], 
it suffices to investigate any one of them. We choose TT* here. The case TT is 
essentially different, [2, 6]. 

TT* is a second order lifting functor. Moreover, it assigns to any differentiable 
manifold M a P£-fibration TT*M and to a diffeomorphism <p; M —• N a VC-
isomorphism TT*(^~ 1 ) : TT*M - • TT*N. The underlying vector fibrations of 
TT*M are A = T*M, B = TM, V = T*M with projections E n TT*M - • .4, 
H2 : TT*M -* B given as follows. If X G T„(T*M) we set IIiX = w, n 2 X = Tq(X) 
where q: T^M —• M is a natural projection. TT*M has a natural structure of a 1>£-
fibration with TT*-soldering (similar statements hold for TTMy T*TM, T*T*M, 
TE or T*E which explains the terminology introduced in Definition 1 where the 
case T*T* was omitted). 
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It is known that the natural transformations F —• G of two r-th order lifting func­
tors F, G are bijectively related with the Z^-equivariant maps FoRn —• GQRH where 
F0Rn = (FRn)o denotes a fibre over the origin 0 € Rn, and Lr

n = inv J0
i(Rn,Rn)o is 

the group of all invertible r-jets on Rn with source and target 0, [2]. 
In our case, (TT* )oRn is canonically P£-isomorphic with the trivial VC-space 

Rn* x Rn x Rn* so we can identify them. The Taylor decomposition yields a bijection 
Ln —• Ln x Hom,(Rn x Rn ,Rn) where Horn, denotes the vector space of symmetric 
bilinear maps. In fact, a local diffeomorphism a: Rn —• Rn with a(0) = 0 may be 
written as 

a(x) = (Tcr)o + cr«(x, x) + R(x) 

in some neighborhood of 0 (cra is a symmetric bilinear form on Rn, lim $-££ = 0). 

The above identification is given by j%a »-• ((Ta)o^<ra). 
It can be verified that Ln is a semidirect product of Ln and a commutative group 

Hom,(Rn x R n , R n ) . 
A diffeomorphism a of Rn with a(0) = 0 induces an automorphism (TT* JoaT1 of 

a Z>£-space Rn* x Rn x Rn*, (TT^oa- 1 = ((Toa)*""1,roa,(r0a)*'"1,(r) where T0a 
is a tangent map (differential) at 0 € Rn, <r: Rn* x Rn —> Rn* is a bilinear map given 
by 

(16) ((ToayH^'^Toa)-^)^) = -<v,<r(a,t/)> for v,v' £ Rn, a € Rn*; 

6 denotes the second differential of a at 0. 

Lemma 11. The bilinear map a is Toa-symmetric. 

Consequently, (TT* ) o a - 1 is a strongly soldered 2>£-automorphism depending on 
JQ a only. This enables us to define a map 

v. I* - Aut(R"* x R" x Rn*), v(ilct) = ((Toay-\T0a,(T0a)-\<x) 
0 

where Aut0 denotes the group of strongly soldered automorphisms. If we use an 
expression of Ln as a semidirect product we can rewrite v in the form i/(/, 6) = 
(Z*"1 , / , Z*"1,^) where the bilinear maps 6, <r are related by the condition (16). 
Therefore v is a group isomorphism. 

Proposition 7. There is a bijective correspondence between all natural transfor­
mations TT* - • TT* and the elements of Zs,((TT*)oRn). 

Theorem 2. By means of+, the set of all natural transformations of the functor 
TT* into itself is generated by the transformations 

(17) X€Ta(T*M)~S((TlKtX,a)) . (0((TlMX,a)) . X) 
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where £, d are arbitrary differentiate functions and q^i T*M —• M is a natural 

projection 

(18) X € Ta(T*M) -> t ((TqMX, a)). eA/(a) 

where t is differentiahlet ^M(O) = xf and eM:T*M -~> To(T*M) means a canonical 

isomorphism. 

By Proposition 7, it suffices to show that the transformations (17), (18) corre­

spond to the generators (14), (15) of Theorem 1. The proof in local coordinates is 

straightforward. 
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S o u h r n 

VÁZANÉ DVOJNĚ LINEÁRNÍ MORFISMY 

ALENA VANŽUROVÁ, OLOMOUC 

Cílem článku je prezentovat invariantní postup pro nalezení všech přirozených trans­
formací funktoru TT* do sebe. Užíváme zde terminologie zavedené v [4, 5]. Definujeme 
zde pojem dvojně lineárního morfismu dvojně lineárních vektorových prostorů resp. fibrací. 
Dále vyšetřujeme diferencovatelná zobrazení / : C0 —* C 0, která komutují s TT* -vázanými 
automorfismy dvojně vektorového prostoru C0 = V* x V x V*. Na množině Z$ (C0) takových 
zobrazení jsou zavedeny potřebné parciální operace a jejich žitím je vhodně nagenerována 
množina Zs((TT*)oRn). Její prvky jsou ve vzájemně jednoznačné korespondenci s přiroze­
nými transformacemi funktoru TT* do sebe. 

Author's address: Palacký University, fak. přírodovědecká, Svobody 26, 77142 Olo­
mouc. 
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