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Abstract. In this paper, we give a generalization of a result of Lovasz from [2]. 
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The terminology and notation used in this paper are those of [1]. So, let H = (X, £) 

be a hypergraph with X the set of vertices and £ = {Et}ie! the set of edges. 

T h e o r e m 1. If H = (X,£) is a hypergraph without cycles of length greater than 

two then there exists a vertex belonging to a single edge, or there exist two edges Ei 

and Ej such that Ei C Ej. 

P r o o f . Suppose that no edge is contained in another one and that every vertex 

belongs to at least two edges. Let 

(x1,Eil,x2,Ei2,...,xp,Eip,xp+i) 

be a chain of maximum length. We may suppose that X\ e En - Ei2, since otherwise 

xi could be replaced by a vertex x such that x e En - Ei2 (such a vertex x exists and 

i / i i , k = 2 ,3, since x2, x3 £ Ei2 and x £ Xk, 4 ^ fc < p + 1 , since, by hypothesis, 

H does not contain cycles of length greater than or equal to three). Obviously, there 

exists an edge Et such that i ^ i\ and xi G Ei. Since Xi £ Ei2 we have i ^ i2. 

Moreover, if i = ik, 3 ^ k ^ p, then there exists a cycle 

(x i ,£ i i ,X2 , . ..,xk,Eik,xi) 

of length greater than or equal to three, a contradiction. Thus, since the chain 

( x i , x 2 , . . . , x p + i ) is maximal, we have Ei C { x i , x 2 , . . . ,xp+\} and, since i ^ i\, we 

401 



have Ei - En ^ 0. Let k be the smallest index for which Xk e E, - En- Obviously, 

since Xk 4- Eil> w e have k ^ 1,2. On the other hand, k < 3, since otherwise there 

exists a cycle 

(xi,Ea,x2,...,xk,Ei,xi) 

of length greater than or equal to three, a contradiction. The theorem is proved. • 

Theorem 2. If H = (X,£) is a hypergraph without cycles of length greater than 

two and with p connected components such that \EiC\Ej\ ^ q for every Ei ^ Ej, 

then 

(l) £ (1-3.1-«)< 1*1-W-
iei 

P r o o f . We shall prove this theorem by induction. Obviously, the theorem 

is true for £) \Ei\ = 1. So, suppose that it is true for hypergraphs H* for which 

£ |£*I<£IEI-
,€/• iei 

Obviously, by Theorem 1, only two situations are possible. 

(a) There exists a vertex x\ which belongs to a single edge, say Ei. By induction 

hypothesis, the theorem is true for the subhypergraph H* induced by A'* = X—{x{\. 

Thus, we have 

J2{\E;\-q)^\X*\-p*q. 
•e/* 

If Ei ^ {xi}, then /* =I,p* = p, \El\ = | E i | - 1 and (1) is verified. 

If Ei = {xi}, then I* = I - {1}, p* = p - 1 and (1) is also verified. 

(b) There is no vertex belonging to single edge, but there exist two edges Ei0 and 

Ejo such that E,o C E;o- Since, by induction hypothesis, the theorem is true for the 

partial hypergraph H* = (X,£ - {Ejo}), it follows that 

] T (\Ei\-q)<\X\-pq 
;e/-{jo} 

(obviously, p* = p ) . Moreover, 

| E i o | - g = | E , o n E j 0 | - g ^ O 

and (1) is verified. The theorem is proved. Q 

Obviously, Theorem 2 for q = 2 yields 

Y,(\E,\-2)<\X\-2p<\X\-p, 
iei 

that is, the result of Lovasz from [2]. 

402 



References 

[1] C. Berge: Graphes et Hypergraphes. Dunod, Paris, 1970. 
[2] L.Lovász: Graphs and set-systems. Beitrage zuг Graphentheorie (H.Sachs, H. S. Voss 

and H. Walther, eds.). Teubneг, 1968, pp. 99-106. 

Author's address: Dănuţ Marcu, Str. Pasului 3, Sect. 2, 70241-Bucharest, Romania. 


		webmaster@dml.cz
	2020-07-01T13:12:15+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




