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1. INTRODUCTION

Let A: H — H be a completely continuous linear operator on a real Hilbert space
H (with the inner product (-,-) and norm |- |), let G: R x H — H be a completely
continuous (nonlinear) mapping satisfying

(1.1) lim S 0)

w0 [u]

=0 uniformly on compact A-intervals,

and let {K(u); u € H} be a system of closed convex subsets of H.
We are interested in examining bifurcation from the origin of the solutions of the
quasivariational inequality

(1.2) u€ K(u): (Au—Au—-G(M\u),v—u)>0 forall ve K(u);

that is, we are looking for values A > 0 (bifurcation points of Ineq. (1.2)) such that
An — A, 0 # u, — 0 for some solutions [A,,un] € R x H of (1.2).

The first major works about quasivariational inequalities appeared in the first
half of the 1970’s. Among others we mention Bensoussan [3}, Bensoussan, Goursat,

21



Lions [4], Friedman [7], Baiocchi, Capelo [2]. In the papers Joly, Mosco [10] and
Mosco [17] existence (not bifurcation) theorems were proved for a certain type of
quasivariational inequalities. Alternatively, the bifurcation problem for the inequality
(1.2) with K(u) = K, K C H a closed convex cone with its vertex at zero has been
extensively studied over the last 15 years. Miersemann [15], [16] proved bifurcation
theorems for variational inequalities for the case of a potential operator. At the
same time, Kuéera [11], [12], [13] successfully treated the nonsymmetric case using
a method based on Dancer’s global bifurcation theorem. Kulera’s results were later
improved and extended by Quittner [19], [20], who developed a more efficient and
simpler method based on a jump in the Leray-Schauder degree. The aim of the
present paper is to show that most of these results remain valid if we let /' vary with
u, provided the mapping u — K(u) is in a certain sense continuous. We prove the
existence of a bifurcation point A € (A1, Az) of Ineq. (1.2), where A; < A; are positive
eigenvalues of A satisfying certain assumptions (see Section 4, Theorems 1,2,3). Also,
under an additional assumption on the system {/(u)}, the existence of a bifurcation
point A > )¢ is proved, where )\ is a positive eigenvalue of A (Theorem 4). This
theorem is of particular interest when Ag is the largest eigenvalue of a symmetric
operator A; in this case the theorem ensures the existence of an eigenvalue A of (1.4)
(see also Remark 5) that is larger than the first eigenvalue of A. (Recall that this
is never the case when K(u) = K, u € H, i.e. when (1.4) is a standard variational
inequality, and A is symmetric.) Some of our results, namely Theorems 3,4, deal
with the situation when int K (u) = 0 which is important in the applications. Our
approach is a modification of the method used by P. Quittner and can be briefly
described as follows: Ineq. (1.2) with A > 0 is rewritten as

(1.3) Au— Py (Au+ G(A,u)) = 0,

where P,: H — K(u) is the projection onto the convex set K (u). To prove that there
is at least one bifurcation point of (1.3) between two values A;, Az (see Proposition 2)
we show that there is a jump in the degree of the mapping © — Au — Py Au which
corresponds to the linearized inequality

(1.4) u € K(u): (Au—Au,v—u) 20 forall ve K(u).
To determine this degreé we give a series of lemmas in Section 3. Finally, an in-

terpretation of our theorems concerning partial differential equations with unilateral
conditions can be found in Section 4.

22



2. PRELIMINARIES

Let us summarize the notation used throughout the paper:

(*,-), | - | denote the inner product and the norm on H,

P,: H — K(u) is the projection onto K (u) with respect to (-, ),

To(A, u) = Au — Pyy Au,

By (u) is the ball in H with centre u and radius r > 0,

S = dB1(0),

d(A) = deg(To(A, ), B1(0)) (see Remark 6),

a4+ (A) is the set of all positive eigenvalues of A,

E(A) = Ker(A — A),

E*(A) = Ker(M — A*),

K = {u € H; u satisfies (2.9)},

Ke={u€e H; 3DcC H,D = H)(Yw € D)(3t > 0)(u + tw € K)},

U, — U, u, — u denote the strong and the weak convergence in H, respectively.
Let {K(u); u € H} be a system of closed convex subsets of H with the following

properties:

(2.1) K(u)# H,K(u)#0 for each u€ H,

(2.2) K(Au) = AK(u) for all vu€ H,X>0,

(2.3)  if up — u,v, — v, v, € K(up) then v € K(u),

(2.4) if up — u,v € K(u) then there exist v, € K(un),vn — v,
(2.5) if up, — u,v, —v,v, € K (uy,) then v € IK(u).

Remark 1. Note that u = 0 is a solution of (1.2) for all A > 0. Indeed, we
obtain easily from (2.1), (2.2), (2.3) that 0 € K'(0) and it follows from (1.1), and
from the continuity of the mapping G that G(X,0) = 0.

Remark 2. Let f € H, A > 0. By virtue of (2.2) the inequality
(2.6) u € K(u): (Au—Au—f,v—u) 2 0forall v e K(u)
can be rewritten as

u € K(u): (Au— (Au+ f),v — Au) > 0 for all v € K(Au).

Since the projection P,z of z € H onto K(u) is the only element of the set K(u)
that satisfies
(Puz — z,v— Py) 2 0 for all v € K(u),
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the inequality (2.6) is equivalent to the equation
M = Pau(Au+ f).
In particular, Ineq. (1.2) is equivalent to Eq. (1.3).

Proposition 1. If u, — u,2, — 2 then P, z, — Pyz.

Proof. First realize that |Py z,] < C, n = 1,2,... Indeed, since K(u) is
nonempty, we can choose v € I'(u) and we obtain from (2.4) a sequence vn, € K(up)
such that v, — v. [lence

(2.7 |zn = Pu,2zn| € |2n — vn|

and Py, 2y =z, + (Py, 2n — 2zn) is bounded. Thus we can suppose P, 2, — w € H.
Repeating the same argument we obtain from (2.7) for any v € K'(u):

(2.8) |z — w| < liminf|z, — Py, 2,] < limsup |z, — Py, zn| < |2 — 0.
n-—0o n— 00
Moreover, (2.3) implies w € K(u) and thus we conclude from (2.8) that w = P,z.
Now we put v = w in (2.8) to get nlim |2n = Pu,zn| = |2 — w|. Hence z, — Py, 20 —
— 00
z—w=2— P,z O

Remark 3. Let u, — u, v, — v, v € int K(u). Then v, € int K(u,) for n
sufficiently large. Indeed, Proposition 1 implies P, v, — Pyv and if v, ¢ int K (u,)
we would have Py, v, € 0K (un). Then it would follow from (2.5) that v = Pyv €
IK(u). :

Remark 4. As aresult of Proposition 1 we obtain the following assertion: Let
Up — U, Uy — v, Ay — A # 0 and A\u, = Py, (Au, + v,). Then u, — u and
Au = Py, (Au +v).

Remark 5. We say that a number A € R is an eigenvalue of the inequality
(1.4) if there exists a nonzero solution u of (1.4). The solution u is then called an
eigenvector of (1.4). It follows from Remarks 2, 4 that under the assumption (1.1)
any bifurcation point A > 0 of (1.2) is an eigenvalue of (1.4).

Remark 6. Let D be a bounded open region in H, A > 0, T(A\,u) = Au —
Pru(Au+ G(), u)) and let T(X, u) # 0 for all u € dD. It follows from Proposition |
that the Leray-Schauder degree — deg(T(}, -), D) — of the mapping T(A,-): H — H
with respect to 0 is defined. See [9] for the definition as well as for simple properties
of this degree. Further, let us denote d( \) = deg(To(}, ), B1(0)) where

To(A, u) = Au — Py, Au.
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Note that d( ) is defined iff A > 0 is not an eigenvalue of (1.4) and that in this case
we have d( A) = deg(To(A, ), Br(0)) for all R > 0.

The following two propositions follow from the basic properties of the Leray-

Schauder degree. Their proofs are similar to the case K(u) = K which can be
found in [20]. ’

Proposition 2. Assume that 0 < A} < A3, A, Az are not eigenvalues of (1.4). If
d( A1) # d( A2) then there is a bifurcation point of Ineq. (1.2) in the interval (A1, Az).

Proposition 3. Let f € H, A > 0 be fixed, with A not an eigenvalue of (1.4),
T(A,u) = Au— Pyy(Au+ f). Then there exists Ro > 0 such that

deg(T(}, "), Br(0)) = d()) for all R > R,.

In particular, if the inequality (2.6) has no solution then d(A) =
The points u € H with the following property will be important in our considera-
tions:
(2.9) v€E K(v) =v+uec K(v),
we denote
K = {u € H; u satisfies (2.9)}.

It is readily verified that by virtue of the assumption (2.2), K is a closed convex cone
with its vertex at zero. Notice that in the constant case K(u) = K'(0) for allu € H
we have K(u) = K. Further, following Quittner [19], we define

K*={ue H; (3D C H,D = H)(Yw € D)(3t > 0)(u + tw € K)}.

The following simple lemma, for variational inequalities first proved by Kuéera [11]
and later generalized by Quittner [19], plays a key role in our method. It provides
a sufficient condition that the eigenvectors of Ineq. (1.4) corresponding to a given
eigenvalue A of A, are exactly the eigenvectors u € K (u) of the operator A.

Proposition 4. Let A\ € o4+(A) be such that K® N E*(Ao) # 0. Then any
eigenvector of Ineq. (1.4) corresponding to g satisfies A\gu = Au, i.e. u € E(Xo).

Proof. Let u € K(u) be an eigenvector of (1.4) corresponding to Ao and let
u* € KN E*(A). Then for any w € D there exists ¢ > 0 such that u* + tw € K
Hence, u + u* &+ tw € K(u) and this choice of v in (1.4) yields

(Aou — Au,u* £ tw) 2 0
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Since (Aou — Au,u*) = 0 we have

(Aou — Au, tw) > 0,
(/\ou - AU, w) =0

The statement now follows from the fact that D = H. O

3. DETERMINATION OF d())

As we have mentioned above the method we use to prove bifurcation for Ineq. (1.2)
is based on a jump in the degree, i.e. on Proposition 2. The following leminas give
several ways to determine the degree d( A) (see Remark 6).

Throughout this section let € denote a sufficiently small positive number.

Lemma 1. Let A\ € 04+(A) and ug € int K N E*()g). Assume

(3.1) u ¢ OK(u) forall0# u € E(\).
We assert
(a) if
(3.2) (ug,uo) >0 for some ug € E(Xg) Nint K (uo)

then d(A) # 0 for all A € (g, Ao +¢),
(b) if

(3.3) (u},u0) < 0 for some ug € E(Xo) Nint KK (uo)

then d(X) # 0 for all A € (Ag — €, Ao).

Proof. Inorder to prove part (a) of the lemmalet us verify the following points
@), (-
(I) There are no eigenvalues of Ineq. (1.4) in the set (Ao — &, Ao) U (Ao, Ao +€).

Let us assume that there exist sequences A, — Ao, Ay # Ag, 0 # un € K (un) such
that

(3.4) (Mnttn — Aug,v—u,) >0 forall ve K(un)-
Remark 2 yields
(3'5) Anlpg = P)\,.u,.AUm
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and we can suppose |u,| =1, u, — u € H. Remark 4 implies u,, — u, Ag = PyouAu,
and by Proposition 4, u € E(X¢). On the other hand, u, € 0K (uy) for all large n
since otherwise u, would satisfy A\, u, = Au,, and A, would be eigenvalues of A.
Hence u € K (u) by the property (2.5). Since u is nonzero this contradicts (3.1)
and (1) is proved.

(II) The inequality
(36) u€K(u):  (Au—Au—(A=Ao)uo,v—u) 20 forall v e K(u)

has for A € (Ao, Ao + €) the only solution ug.
Let A, N\ Ao, Un € K(up), un # uo,

(3.7) (Anun — Aup — (A — Xo)ug, v —up) 20 for all v € K(un).

Since uf € K, we have u,, + uj € K(u,) for all n. Setting v = un + ug in (3.7) we

obtain
('\nun - AU" - (An - ’\O)uﬂv “a) Z 0.

We have (Aun, uy) = (tn, Aug) = Ao(un, ug) and, consequently,

((An = Ao)un — (An = Ao)uo, ug) 2> 0,
(An = Xo)(un — ug,ug) > 0,
(un — uo,ug) 2 0,
(un, ug) > (uo,ug) > 0.
Hence
(3.8) lual 2 >0, n=1,2,...
By Remark 2
(39) Anly = PAnu.(A“n + (An - /\D)UO)-
Putting w, = ﬁ:‘[ and using (2.2) we rewrite (3.9) as
(3.10) Antn = Prywn (A + (On = X0) ).
s Jun

Assuming w, — w € H and using Remark 4 we obtain from (3.8), (3.10) dow =
ProwAw together with w, — w. Proposition 4 gives w € E(Ao). Moreover,
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Ineq. (3.7) ensures u, € 0K (u,) for n sufficiently large. Indeed, let u, € int K(u,).
Then (3.7) would imply Apu, — Au, = (A, — Ao)ug and, since A, is not an eigen-
value of A for n large, we would have u, = ug. This is a contradiction and therefore
un € 0K (uy), i.e. wy, € 0K (wy). Thus (2.5) implies w € K (w) which contradicts
(3.1). The proof of (Il) is complete.

To complete the proof of Lemma 1 we define
(3.11) T(A, u) = Au — Pru(Au + (X = do)uo).
It follows from (II) that for A € (Ao, Ao + €)
(3.12) ~ deg(T(A, ), Br(0) \ B, (wo)) = 0

where r > 0 is sufficiently small, R > 0 sufficiently large. By the additivity property
of the degree we have

deg(T'(A, ), Br(0)) = deg(T'(}, ), Br(uo)) + deg(T(}, -), Br(0) \ Br(uo))-

Since Apug € int K(Aoug) we obtain from Remark 3 that there is 7 > 0 such that
Au+ (X = Xo)uo € K(Au) for all A € (Ao, Ao +¢€), u € Br(ug). Hence

T(A u) = Au— Au— (A — Xo)ug = AMu — ug) — A(u — up)

for such A and u. On the other hand, the element ug is the only solution of the
equation Au — Au = (A — Ag)ug. Using Schauder’s formula (see e.g. [18]) we get

(3.13) deg(T(A, ), Br(uo)) = deg(AI — A, B,(0)) = (—1)P*),
where
(3.14) B(Xo) = ) dim ( D Ker(Al — A)P>.

A>Ao p=1

Consequently, deg(T'(}, ), Br(0)) # 0 for all R sufficiently large. The assertion (a)
now follows from Proposition 3 as deg(7(}, -), Br(0)) = d( A) for large values of R.

To prove the part (b) we need to show that ug is the only solution of (3.6) for

A € (Ao —€,X). As above we proceed by contradiction. Let A, / Ao, un # uo,

up € K(uy) satisfy (3.7). Since ug € K we can take v = up + uy € K(uy,) in (3.7)
to obtain

('\nun - Aun - (An - A())u()) u:)) 2 0)

(An = A0)[(un, ug) — (uo,ug)] 20,

0

(un, ug) < (uo,up) <0,
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and therefore |u,| > ¢ > 0,n =1,2,.... The rest of the proof follows the same lines
as that of (a). O

Remark 7. Let K(u) = K, u € H in Lemma 1. Then it can be easily verified
that the assumption int K N E*(Ao) # @ together with (3.1) imply dim E(Xo) = 1.
So, Lemma 1 can be used only with simple eigenvalues A if (1.2) is a variational
inequality. This is not true in general and one can easily construct examples of
quasivariational inequalities in R3 with multiple eigenvalues Ag of the operator A
satisflying the assumptions of Lemma 1. Nevertheless, we shall prove the following
lemma which admits multiple eigenvalues even in the constant case K(u) = K.

(Cf. [19], Theorem 4.)

Remark 8. Let A\g € 04(A), K*N E*(Ag) # 0. Then the closed convex cone
with its vertex at the origin K N E*()Ag) is not a linear space. Indeed, if —ug € K for
an element ug € K we would have K = H which would contradict (2.1). By [20],
Lemma 2, there exists an element u] € K N E*()g) such that

(3.15) ul #0, (ul,u") >0 forallu® € KN E*(X).
Lemma 2. Let \g € 04+(A) be such that int K N E*(\o) # 0. Assume
(3.16) Vue E(o) NOK(u)NS Ju* € B*(Ao) NK: (u,u%) < 0

and

(3.17) ueintK(u) for allu € E( o) N(E*(Xo)* @ {cu}; c>0})NS,

where u} € K N E*(Ao) is a vector satisfying (3.15). Then d()) # 0 for A €
(Ao, Ao +€).

Proof. We shall first prove that
(I) Ineq. (1.4) has no eigenvalues in (Ag, Ao + €).

Assume that there exist sequences An \, Ao, un # 0, un € K(u,) that satisfy
(3.4). As in the proof of Lemma 1 we get u, — u, |un| = 1,u € E(\) N K (u). By

the assumption (3.16) there exists u* € E*(Xo) N K such that (u,u*) < 0. Putting
v = up +u* € K(u,) in (3.4) we obtain

(Anun — Au,,u*) 20,
(/\n - ’\0)('“1““‘) 20,
(un,u*) 2 0.
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This contradicts (u,u*) < 0, and (I) is proved.
(IT) the inequality
(3.18) u € K(u): (Au—Au—ul,v—u) >0 forallve K(u)

has for A € (Ao, Ao + €) exactly one solution which satisfies u € int K (u).

In order to prove (II) let us first consider the solutions u € dK(u) of (3.18).
Assume that there exist u, € dK(un), An \\ Ao satisfying

(3.19) (Antun — Aup —ul, v —u,) 20 forallv e K(u,).
Since u} € K we can put v = u, + uj in (3.19) to obtain
(un,u7) 2 (An = Xo) 7 uil?,

which implies |u,| — co. Further, putting w, = ﬁT we can rewrite (3.19) as

AWy = Pxw, (Awn + I—%)

We can assume w, — u and Remark 4 yields w, — u € S, Agu = Pj,, Au. Moreover,
taking into account Proposition 4 and the property (2.5), we get © € E(Ao) NOK (u).
By the assumption (3.16), there exists an element u* € K N E*(\g) with (u,u*) < 0.
On the other hand, the choice v = u, + u* in (3.19) together with (3.15) yield

(An = 20)(un,u*) > (ui,u*) 20,

which implies (u,u*) > 0. Hence a contradiction and there is no solution u € 9K (u)
of (3.18). Further, any solution u € int K'(u) of (3.18) satisfies Au — Au = u}. Thus,
it is sufficient to prove that the (unique) solution of this equation with A € (Ao, Ao+¢)
satisfies u € int K (u). It was proved in [19], p. 291 that if A, \, Ao, Ao € 04 (A4),
u} € E*(Xo) and A\ u, — Au, = uj; n =1,2,...then
T = 4 € EQ0) N (B (o)* & {eui; ¢ > 0)
n
for a suitable subsequence of {u,}. By (3.17), u € int K(u) and therefore u, €
int K (u,) for n large, which completes the proof of (1I).
In the rest of the proof we proceed as in Lemma 1; putting

(3.20) T(), u) = M — Pru(Au +u})

we prove deg(T'(}, -), Br(0)) = (1)) for A € (Ao, Ao+¢) and R sufficiently large.
The assertion then follows from Proposition 3. a
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Lemma 3. Let Ao € 04+(A) be such that K* N E*(X\o) # 0. Then we assert
(a) if

(3.21) Yu € E(Mo) N K(u)NS Fu* € E* (M) N K: (u,u*) > 0

then d(A) = 0 for all A € (Ao — €, o),
(b) if

(3.22) Vu € E(Ao) N K(u) NS Ju* € E* (o) N K : (u, u*) < 0

then d(A) =0 for all A € (Ao, Ao +€).

Proof. We will confine ourselves to proving part (a), the proof of part (b)
being similar. As in Lemma 2 one can prove

(1) Ineq. (1.4) has no eigenvalue A in (Ao — &, Ao).

Further, we shall consider Ineq. (3.18), where 0 # u} € E*(Xo) N K is a vector
satisfying (3.15) (see Remark 8), and we shall prove
(11) Ineq. (3.18) has no solution for A € (Ao — €, Ag).

Assume there exist u, € K(un),An / Ao satisfying (3.19). As in the proof of
Lemma 2 we get piap — u € E(Ao) N K(u)NS. By the assumption (3.21), there
exists u* € E*(Ao) N K such that (u,u*) > 0. Putting v = u, + u* in (3.19) we
obtain

(n = A0)(tn, %) > (1], u%) 3 0,

which implies (u, u*) < 0. This is a contradiction and (II) is proved.
Finally, defining T'(A, u) by (3.20), we obtain from (I), (II) and from Proposition 3

d(A) = deg(T(,), Br(0)) = 0
for A € (Ao — €, Ao) and R sufficiently large. O

Lemma 4. Let Ao € 04(A), E(A)N{u € H; u € K(u)} = {0}, E*(Ao)NK* # 0.
Then d(A) = 0 for all A € (Ao — €, Mg +€).

Proof. By the preceding lemma, d(A) = 0 for A close to Ao, A # Ao. In
particular, there is no eigenvalue of (1.4) in (Ao — €, Ao) U (Ao, Ao + €). Further, it
follows from Proposition 4 and from E()o) N {u € H; u € K(u)} = {0} that Ao is
not an eigenvalue of (1.4) and d( o) is defined. If d(Ao) # 0 we would obtain a

contradiction with Proposition 2, putting A; = Ao — €, Az = Ag. See also Remark 5.
O
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Being a generalization of [19], Theorem 5, the following lemma admits operators
with multiple eigenvalues as well as systems of sets K'(u) with empty interiors. The
important assumption is that A is symmetric.

Lemma 5. Let A be a symmetric operator, Ao € 04(A) and uj € KN E()).
In addition, let there exist ug € E(Ag) N K(uo) NS such that

(3.23) (uo, ug) > 0,

and

we |J EM)
’ AER for some t > 0,
=> uptw € K(u,)

(3.24)
all n large.

u, € Hyu, - u

u€ K(u)NE(A)N S

Then d( A) # 0 for all A € (Ao, Ao + €).
Remark 9. It follows from Remark 3 that (3.24) is satisfied if

(3.25) ug € int K(u) forallu € E(Ag)NK(u)NS.

If H is finite dimensional then (3.24), (3.25) are equivalent.

Remark 10. Note that if K(u) is independent of u, i.e. if K(u) = K for all
u € H, then all assumptions of Lemma 5 reduce to the following one: there exists
an element ug € E(Ag) such that for arbitrary w € |J E()) there is ¢ > 0 with

A€ER
tg  tw € K. Cf. Theorem 5, [18].

Proof. We shall consider again the inequality (3.6) and prove
(I) Ineq. (3.6) has the only solution uq for A € (Ao, Ao +€).

Assume there exist sequences A, \, Ao, un # up that satisfy (3.7). Using (3.23)
we proceed as in the proof of Lemma 1 to obtain (3.8), (3.10) together with

Un

lual

We shall prove u = uq. Rewriting (3.7) we get

(3.26) :

An — A , .
wy € K(wy): (,\,,wn - Aw,, — g—%‘—l—o—zuo,v - w,,) >0 forall v € K(wn)-

—u€ E(A)NK(u)NS.

Wy =
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Let 7: H — Hg be the projection onto the space

Ho= €D E().
A2 Ao

Since Hy is finitedimensional, the following fact follows from (3.24) which we shall
use several times in the sequel:

Let u,, u be as in (3.24) and v, € Ho, n = 1,2,.... Then ug+ v, € K(u,) for n
large.

Hence ug + 7(wn — u) € K(w,) for n large. Putting v = 1o + 7(wn — u) in (3.26)
we get

An — Ao

|un]
An — Ao )
Ug, Ug — U
un|

Ao — A
+ (Anwn = Awp, (7 — Dwy) — —"m—"
7

Since ug € Ho, the last term equals zero. Also, (Awn, ug — u) = Ag(wn, uo — u) and

0< (A,,w,, — Aw, —

ug,ug — u + (7 — I)w,.)
= (Anwn - Aw, —

(wo, (7 — Nwy).

therefore
(3.27) 0< (A — /\0)(wn - I_le ug — u) + (Anwn — Awg, (7 — Iwn).
n

Let us prove that the second term in (3.27) is < 0. Indeed, let A > Xy, w € H be
arbitrary. Let {u(s)} be an orthonormal basis of the eigenvectors of A, w = 3~ ¢, u(,).
8

Then
W = Z Csl(s), (m—TNw=~ Z Csl(s),

A2 A,<Ao

Aw = Aw =Y (A= X,)esug).

Thus we get
(Aw - Awy (7I’ - I)UJ) = (Z( L /\,)C,‘U(,), - Z cau(s))
s As<Ao
(3.28) == Y (A=A)(e)?<0 forallA> X, w€ H.
A5<A0

Moreover, equality in (3.28) occurs if and only if w € Ho. Thus (3.27) yields
o
0 < (wn,uo — u) - (m,“o u).

33



Since |uo| = |u| = 1, we get (ug,uo — u) > 0 and so 0 < (wy, up — u). This implies

< (u,up —u) and u = ug. By virtue of (3.28), the second term in (3.27) is zero and
therefore w, € Hy. Hence A(w, — uo) € Ho, n = 1,2,.... As above we get using
(3.8) and (3.24)

1/\71_/\0

] ug € I{(/\El/\nwn)

uo + Ay ' A(wn — wo) + Ay

for n large. Hence

An = Ao

[tn]

/\n - /\O

Aw, + o]

ug € K(Apwy)

uo = Aouo + A(wn — ug) +

and (3.10) implies
/\n - /\0

|y

w, — Aw, = Ug.

Since A\,I — A: H — H is an isomorphism for n large, the last equation has the
only solution w,, = fiy- Finally, |wn| = |uo| = 1 implies v, = wp, = uo. Hence a
contradiction and the assertion (I) is proved.

(IT) Ineq. (1.4) has no eigenvalue in the interval A € (g, Ao +¢€).

Assume there exist sequences u, € H, |up] = 1, A\, \, Ag such that (3.4) holds. As
in the proof of Lemma 1 we obtain (3.5) together with u,, — u,u € E(Ag)NK(u)NS.
Since 7 is a projection onto the finite dimensional space [lg, the assumption (3.24)
yields ug + m(u, — u) € K(u,) for n large and so we get from (3.4)

0 < (Anup — Auy,, uo + m(up —u) — uyp)
= (Mun — Aup,ug —u+ (7 — [uy,)
= (Anun — Auy,, 1;0 —u)+ (Antn — Aug, (7 = DNuy)
(3.29) = (An = Ao)(un, uo — u) + (Antn — Ay, (7 = Nuy).

By (3.28), the last term is < 0, which implies (u,, ug—u) > 0. Hence (u,uo—u) >

and Ju| = 1, |ug| = 1 yield ug = u. Using again (3.28) for w = u,, together with (3. 2‘))
we get ¢, = 0 for all A; <'Ag and therefore u,, = 7u,. Hence A(u, —uo) € g and by
a similar argument as above we get from (3.24) Au, = Aoug+ A(u, —uo) € KN(Anu,)
for all n large. Thus (3.5) yields A, up = Au,. This contradicts A, \, Ao and (II) is
proved.

(ITI) For any X € (Ao, Ao +¢) there exists #(A) > 0 such that deg(T'(A,-), Br(uo)) # 0
for all r € (0,7())), where T(), u) is given by (3.11).
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Let € > 0 be such that there is no eigenvalue of A in (Ao, Ao +¢). We take a fixed
value A € (Mg, Ao +¢) and put f = (A = Ag)u,

H(t,u) = Au— tPa(Au+ f) — (1 - )(Au + f)
forue H,0 <t < 1. Then

H(1,u) = T()\u),
H(0,u) = Au— Au— (A = Ap)uo.

Obviously, the equation H(0,u) = 0 has the only solution u = ug. Using Schauder’s
formula (see [18]) we get

deg(H(0,-), B,(uo)) = deg(Al — A, B,(0)) = (=1)’*e) for all » > 0,

where (o) is from (3.14). To prove deg(H (1, "), B;(uo)) = deg(H (0, ), Br(uo)) for
r > 0 small it is sufficient to show

(3.30) H(t,u) #0, forall0<t< 1, u€ B(uo).
Assume H(tn,un) = 0 for up, — ug, £, € [0,1], un # ug, n=1,2,.... We have

Aup — tnPAun(Aun + f) - (1 - t")(Aun + f) =0,
Mun = ug) = tn(Pou, (Aun + f) — (Aup + f)) + A(un — uo).

Let
w. — Un — Ug _PAu,.(Aun+.f)—(Aun+f)
" lup—uol” T [un — uol '
Then
(3.31) . Aw, = U2y + Aw,.

Let u, —ug = 9 cyui), n=1,2,.., so > 0 a fixed integer. Then
Aup + f = dug + A — o) = duo + ¥ Aecugy)
= Aug + E Ascyu(s) + Z AsCugs).

s=1 8>30
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Since u, — ug € K(up) N E(Xo) NS we get from (3.24) that

80
uo+ A7} Z/\acfu(,) € K(u,)

s=1

3
for all n large. Thus Aug + i Ascius)y € K(Auy,) and by the definition of the
s=1

projection Py, : H — K(Au)

lAuﬂ + .f - PAun(Aun + f)l < l Z ’\ac?“(s)

$>39

< sol - |tn — uol.

We have proved |z,| < |As,| for n sufficiently large. Since A\, — 0 as s — 400, we
get z, — 0. We can suppose w, — w and (3.31) implies w, — w # 0, Aw = Aw.
This is a contradiction since A € (Xo, Ao + €) is not an eigenvalue of A. Thus (3.30)
holds and (I1I) is proved.

The rest of the proof is similar to the proof of Lemma 1. a

Lemma 6. Let the system {K(u)}, in addition to the properties (2.1)-(2.5),
satisfy

(3.32) u=1tP,0 forsome0 t<1l= u=0.

Then d( A) = 1 for all large ).
Remark 11. Note that (3.32) holds if 0 € K'(u) for all u € H.
Proof. Weput H(t,u) = Au — tP\yAu and prove

H(t,u)#0 forall0<t <1, ueS, Alarge.

Assume on the contrary that there exist sequences u,, tn, A, such that |u,| = 1,
0<t, <1, A, = 400 and

Antn =t Py, Au,, n=12,....

Dividing by A, we obtain

Up = tnPy, (-;:Au,,).

Assuming u, — u, t, — t € [0, 1] we get from Proposition 1 and from the complete

continuity of A that u, — u, u = tP,0. Hence |u| = 1 and simultaneously u = 0 by
(3.32). O
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4. EXISTENCE OF BIFURCATION POINTS

Using our lemmas from the preceding section together with Proposition 2 we obtain
bifurcation points of the quasivariational inequality (1.2). For instance, if 0 < A; <
Az are such that d(A) = 1 for A € (A1,A1 +¢€) and d(A) = 0 for A € (A2 — €, A3)
then there exists a bifurcation point A of Ineq. (1.2) in the interval (A;, A2). Thus we
obtain a bifurcation point of (1.2) between two positive eigenvalues of the operator A
satifying certain assumptions. Similarly, if we prove d(A) = 0 for all A € (Ao, Ao +¢)
and d(A) = 1 for X sufficiently large we come up with a bifurcation of (1.2) that
is larger than a given eigenvalue Ao of A. The following theorem is an immediate
consequence of Lemma 1 (a), Lemma 3 (a) and of Proposition 2.

Theorem 1. Let 0 < A\ < Ay be two eigenvalues of the operator A such that

(4.1) Jug € E(A1) Nint K (ug) Jug € E* (A1) Nint K : (up, ug) > 0,
(4.2) ug OK(u) for all0 # u € E(\y),

(4.3)  E*(M)NintK #0,

(4.4) Vue EA)NK(u)NS Iu* € E*(A2)NK: (u,u*) > 0.

Then there exists a bifurcation point A € (A, A2) of Ineq. (1.2).

Using Lemma 1 (b) together with Lemma 3 (b) we can see that Theorem 1 remains
valid if we swap the roles of A; and A; and reverse the inequalities in both (4.1) and
(4.4). Further, Lemma 2 together with Lemma 3 (a) give

Theorem 2. Let 0 < A < Xz be two eigenvalues of the operator A and let
u} € K N E*(A1) be a nonzero element satisfying

(uj,u) 20 for all u € K N E*(\).
Let the following hold:

int K N E*(A;) # 0,

Yue dK(u)NE(M)NS 3u* € KNE*(\): (u,u*) <0,

u € int K(u) for allu € E(\) N (E*(A))* @ {cu}; c>0})NS,
int K N E*(A) #0,

Yu€ K(u)NE(A)NS Iu* € KNE*(A): (u,u*) > 0.

Then there exists a bifurcation point A € (A1,A2) of Ineq. (1.2).
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The following theorem uses Lemma 5 and Lemma 3 (a). It admits systems of
convex sets I{(u) with empty interiors but holds only for symmetric operators.

Theorem 3. Let A: H — H be a symmetric operator, 0 < Ay < A2 two eigen-
values of A. Let there exist two elements uy € K(ui) N E(A) NS, ui € K*NE(\)
such that

(uy,u}) >0,

we | JEW)
AER for somet >0, -

up € H,up — u = wElwe K(u)

ve K(u)NEMA)NS

all n large.

Moreover, let

KN E(X:) #0,
Vue K(u)NEA)NS Ju* € KNE(A2): (v, u*) > 0.

Then there is at least one bifurcation point X of Ineq. (1.2) in the interval (A1, Az).

As we have pointed out in Introduction it is well known that if A is symmetric
and (1.4) is a variational inequality then no eigenvalue of (1.4) (and therefore no
bifurcation point of (1.2)) can be larger than the largest eigenvalue of A. The next
theorem, based on Lemma 3 (b) and Lemina 6, shows that this is no longer the case
if we let K (u) vary with u. Indeed, the quasivariational inequality (1.4) can have an
eigenvalue A > Ag, Ag being the first eigenvalue of A. See also Example 2.

Theorem 4. Let A\g > 0 be an eigenvalue of A, K® N E*(Ag) # 0 and let the
following condition hold: '

(4.5) Yu€ E(A)NK(u)NS Ju* € E*(N)NK: (u,u") <0,
Moreover, let
(4.6) u=1tP,0 forsome0 <t<1 = u=0.

Then there exists a bifurcation point A > A¢ of Ineq. (1.2).

Example 1. We shall give the following interpretation of Theorem 3:
Let Q be an open subset of R® with sufficiently regular boundary and let H =
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H'(Q) be equipped with the scalar product (u,v) = ) [ DiuDivy dx + [, uv dx.
i=1
We define

(Au,v) = / uvdx for allu,v € H,
Q
(G(A, u),v) = / g(Aw)vdx for allu,v € H, XA €R,
Q

where g: R x R — R is a smooth function satisfying

lim M

b ] = 0 uniformly on compact A-intervals,
u— u

such that the Nemyckij operator g: R x H — L?(Q) is completely continuous. (See
for instance [8] for such functions.) Then A: H — H and G: R x H — H are
completely continuous, A is symmetric and (1.1) holds. Further, let [ be an open
subset of 9N and ¢ € L2(9R) a given function. We define

K(u) = {v € H'(Q); v(z) > / pudx a.e. on F}.

an
Then {K(u)} is a system of convex sets satisfying the conditions (2.1)-(2.5). The
properties (2.3)-(2.4) follow from the well known trace theorem for /!(2), see Lions,
Magenes [14]. For instance, to verify (2.4) it is suflicient to put v,(z) = v(z) +
(foq Ptn dx — [5q pudx). In this setting, the solutions of Ineq. (1.2) for A > 0 are
the weak solutions of the problem

(4.7) AAu+ (1-Nu+g(Au)=0 on$
Ou
(4.8) i 0 ondQ\T

ou Ou
4. —> > dx, =—(u-— dx ) = r.
(4.9) ED 20, u//ansou X, 01/(“ /ansou X) 0 on

Further, the elements of E(A), i.e. the eigenfunctions of A, are the solutions of the
Neumann problem

(4.10) Au+ u=0 onQ
Ou
(4.11) 3 = 0 on 99.

We have E(A) C C}(Q) and K = {u € H'(Q); u > 0 a.e. on '}. We can see that
u € K for any function u € HNC(Q) such that u > € on T, ¢ > 0. (It is sufficient to
put D = C'(Q) in the definition of K®.) Theorem 3 gives the following proposition:
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Let 0 < A; < Az be two eigenvalues of (4.10), (4.11). Then there exists a bifurca-
tion point A € (A1, A2) of the problem (4.7)—(4.9) provided
(i) there exist uy,uj € E(A;) NS such that

(ul,u'{)>0
uij2e>0 onT

u12/ pujdx onT
an

uy >/ pudx on ' forallue E(M)NS, u 2/ pudx on I,
an an

(ii) there exists uz € E(A3) such that uz > € >0on T,
(iii) for any u € E(A2) NS such that u > [, pudx on T there exists u* € E()z2)
such that u* > 0 on T and (u,u*) > 0.

Example 2. Using Theorem 4 we shall show that inequality (1.2) can have
bifurcation points A > Ag, Ao being the first eigenvalue of a symmetric operator A.
Let @ = (0,1), H = {u € H'(R); u(0) = 0}, (u,v) = fol u'v'dz and let A, G be as
in Example 1. Consider the system of convex sets in H

K(u) = {v € H'(0,1); 2(0) = 0, o(1) > r(w)},

where 7: H — R is a continuous functional on H such that 7(Au) = Ar(u) for A > 0,
u € H. The solutions of Ineq. (1.2) are the solutions of the problem

(4.12) M +u+g(Au)=0 on (0,1)
(4.13) u(0) =0

(4.14) u'(1) > 0, u(1) > 7(u), u'(1)(u(l) = r(v)) = 0.

The elements of E()) are the solutions of

(4.15) M’ +u=0 on(0,1)
(4.16) u(0) = 0, /(1) = 0.
We have

K={ueH'0,1); u(0)=0,u(1) >0}, K®=intK ={ue K;u(l)>0}.

Let Ao be the largest eigenvalue of the problem (4.15), (4.16). We have Ao = 4/n2,
E(Xo) = {csin}z; c € R} and the condition K? N E(Xo) # 0 is fulfilled. Clearly,
(4.5) is satisfied if
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(1) u(1) < 7(u) for any 0 # u € E(\).

Indeed, in this case we have E(A) N {u € H;u € N(u)} = {0}. Further, the
projection w = P,0is w = 0 if 7(u) < 0 and w(z) = r(v)z, £ € [0, 1], if 7(u) > 0.
Thus, (4.6) is satisfied if the following condition holds:

(it) if u(z) = az, € [0, 1], @ > 0 then 7(u) < a.

By Theorem 4, the assumptions (i), (ii) imply the existence of a bifurcation point
A € (4/n2,4+00) of the problem (4.12)—(4.14). To satisfy (i), (ii) one can take for
instance 7(u) = « fol lu(z)] dx with ir < o < 2.

For more examples of quasivariational inequalities sce [5] where partial differential
equations corresponding to systems of reaction-diffusion with unilateral conditions
on the boundary were considered. Note that such inequalities involve nonsymmetric
operators A.
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