
Mathematica Bohemica

Miroslav Bosák
Bifurcation of stationary solutions to quasivariational inequalities

Mathematica Bohemica, Vol. 119 (1994), No. 1, 21–42

Persistent URL: http://dml.cz/dmlcz/126204

Terms of use:
© Institute of Mathematics AS CR, 1994

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/126204
http://dml.cz


119 (1994) MATHEMATICA BOHEMICA No. 1, 21-42 

BIFURCATION OF STATIONARY SOLUTIONS 

TO QUASIVARIATIONAL INEQUALITIES 

MlROSLAV BOSAK, Prague 

(Received August 10, 1992) 

Summary. Bifurcation and eigenvalue theorems are proved for a certain type of quasi-
variational inequalities using the method of a jump in the Leray-Schauder degree. 
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1. INTRODUCTION 

Let A: II —• H be a completely continuous linear operator on a real Hilbert space 
H (with the inner product (•, •) and norm | • |), let G: R x II —> II be a completely 
continuous (nonlinear) mapping satisfying 

(1.1) lim —r-\— = 0 uniformly on compact A-intervals, 
V ' u - 0 |ti | 

and let {K(u); u G H] be a system of closed convex subsets of H. 
We are interested in examining bifurcation from the origin of the solutions of the 

quasivariational inequality 

(1.2) t iGK(t i ): (Au-^u-G(A,tO,t ; -~ i i ) ^ 0 for all v G K(u); 

that is, we are looking for values A > 0 (bifurcation points of Ineq. (1.2)) such that 
An —• A, 0 ^ un —• 0 for some solutions [An, un] G R x H of (1.2). 

The first major works about quasivariational inequalities appeared in the first 
half of the 1970's. Among others we mention Bensoussan [3], Bensoussan, Goursat, 
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Lions [4], Friedman [7], Baiocchi, Capelo [2]. In the papers Joly, Mosco [10] and 
Mosco [17] existence (not bifurcation) theorems were proved for a certain type of 
quasivariational inequalities. Alternatively, the bifurcation problem for the inequality 
(1.2) with K(u) = K, K C H a closed convex cone with its vertex at zero has been 
extensively studied over the last 15 years. Miersernann [15], [16] proved bifurcation 
theorems for variational inequalities for the case of a potential operator. At the 
same time, Kucera [11], [12], [13] successfully treated the nonsymmetric case using 
a method based on Dancer's global bifurcation theorem. Kucera's results were later 
improved and extended by Quittner [19], [20], who developed a more efficient and 
simpler method based on a jump in the Leray-Schauder degree. The aim of the 
present paper is to show that most of these results remain valid if we let K vary with 
ix, provided the mapping u —» K(u) is in a certain sense continuous. We prove the 
existence of a bifurcation point A £ (Ai, A2) of Ineq. (1.2), where Ai < A2 are positive 
eigenvalues of A satisfying certain assumptions (see Section 4, Theorems 1,2,3). Also, 
under an additional assumption on the system {K(u)}} the existence of a bifurcation 
point A > An is proved, where An is a positive eigenvalue of A (Theorem 4). This 
theorem is of particular interest when Ao is the largest eigenvalue of a symmetric 
operator A] in this case the theorem ensures the existence of an eigenvalue A of (1.4) 
(see also Remark 5) that is larger than the first eigenvalue of A. (Recall that this 
is never the case when K(u) = K, u £ H, i.e. when (1.4) is a standard variational 
inequality, and A is symmetric.) Some of our results, namely Theorems 3,4, deal 
with the situation when int1\(w) = 0 which is important in the applications. Our 
approach is a modification of the method used by P. Quittner and can be briefly 
described as follows: Ineq. (1.2) with A > 0 is rewritten as 

(1.3) Ati-PAlI(>lii + G(Alti)) = 0, 

where Pu : H —• K(u) is the projection onto the convex set K(u). To prove that there 
is at least one bifurcation point of (1.3) between two values Ai, A2 (see Proposition 2) 
we show that there is a jump in the degree of the mapping u —> \u — P\uAu which 
corresponds to the linearized inequality 

(1.4) ueK(u): (\u- Au,v-u) ^ 0 for all v G K(u). 

To determine this degree we give a series of lemmas in Section 3. Finally, an in­
terpretation of our theorems concerning partial differential equations with unilateral 
conditions can be found in Section 4. 
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2. PRELIMINARIES 

Let us summarize the notation used throughout the paper: 

(•,•), | • | denote the inner product and the norm on /I, 
Pu: H —* K(u) is the projection onto K(u) with respect to (•,•), 
T0(A,it) = \u - P\uAu, 

Br(u) is the ball in II with centre u and radius r > 0, 

5 = afli(o), 
d( A) = deg(T0(A, •), fli(0)) (see Remark 6), 
<r+(A) is the set of all positive eigenvalues of A, 

E(\) = Ker(AI - A), 

K*(A) = Ker (A I -A*) , 

K = {ue II; u satisfies (2.9)}, 
Ka = { « £ / / ; (3DC H,D= H)(Vwe D)(3t >0)(u±tu>e A)}, 
un —• u, un —- u denote the strong and the weak convergence in 1I, respectively. 

Let {K(u)\ u e H] be a system of closed convex subsets of II with the following 

properties: 

(2.1) K(u)±H,K(u)±$ for each it G/I, 

(2.2) K(\u) = \K(u) for all u G II, A > 0, 

(2.3) if un —- u,vn —- i;,nn G A'(wn) then t; G Iv'(w), 

(2.4) if ixn —- w, i; G K(u) then there exist i>n G A'(un), i;n —* i;, 

(2.5) if un —± u,vn —+ vyvn e dK(un) then v G dK(u). 

R e m a r k 1. Note that it = 0 is a solution of (1.2) for all A > 0. Indeed, we 
obtain easily from (2.1), (2.2), (2.3) that 0 G Iv(0) and it follows from (1.1), and 
from the continuity of the mapping G that G(A, 0) = 0. 

R e m a r k 2. Let / G H, A > 0. By virtue of (2.2) the inequality 

(2.6) ueK(u): (Ait - Au - / , v - u) ^ 0 for all v G K(u) 

can be rewritten as 

u e K(u): (Ait - (Ait + / ) , v - Ait) ^ 0 for all v G A'(Ait). 

Since the projection Puz of z G H onto A'(it) is the only element of the set A'(it) 

that satisfies 

(Puz -z^v-P^^O for all v G A » , 
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the inequality (2.6) is equivalent to the equation 

Au= PAu(-4u + / ) . 

In particular, Ineq. (1.2) is equivalent to Eq. (1.3). 

Proposition 1. If un —* u,zn—* z then PUnzn —* PuZ. 

P r o o f . First realize that \PUnzn\ ^ C, n = 1,2,.... Indeed, since K(u) is 
nonempty, we can choose t; G A'(u) and we obtain from (2.4) a sequence vn G K(un) 

such that vn —* v. Hence 

(2.7) \zn-PunZn\^\Zn-Vn\ 

and PUnzn = zn + (PUnzn — zn) is bounded. Thus we can suppose PUnzn —* w G H. 

Repeating the same argument we obtain from (2.7) for any v G K(u): 

(2.8) | 2 - w\ -̂  liminf|zn - PUnzn\ ^ limsup|2n - PUnzn\ ^ \z - v\. 

Moreover, (2.3) implies w G K(u) and thus we conclude from (2.8) that w = Puz. 

Now we put v = w in (2.8) to get lim \zn - PUnzn\ = \z - w\. Hence zn - PUnzn —• 
n—*oo 

z — w = z — Puz. D 
R e m a r k 3. Let un —» u, vn —• v, i> G intIC(u). Then i;n G intA'(un) for n 

sufficiently large. Indeed, Proposition 1 implies PUnvn —> Puv and if vn ^ in tK(u n ) 
we would have PUnvn G dK(un). Then it would follow from (2.5) that v = Puv £ 
8K(u). 

R e m a r k 4. As a result of Proposition 1 we obtain the following assertion: Let 

un —> u, vn —• v, An —> A ^ 0 and Anun = PAnu„(-4un + i;n). Then un -+ u and 

Au = PAu(_4u + t;). 

R e m a r k 5. We say that a number A G R is an eigenvalue of the inequality 
(1.4) if there exists a nonzero solution u of (1.4). The solution u is then called an 
eigenvector of (1.4). It follows from Remarks 2, 4 that under the assumption (1.1) 
any bifurcation point A > 0 of (1.2) is an eigenvalue of (1.4). 

R e m a r k 6. Let D be a bounded open region in # , A > 0, T(A,u) = Au — 
P\u(Au + G(A, u)) and let T(A,u) ^ 0 for all u G 3D. It follows from Proposition 1 
that the Leray-Schauder degree - deg(T(A, •), D) - of the mapping T(A, • ) : # — > # 
with respect to 0 is defined. See [9] for the definition as well as for simple properties 
of this degree. Further, let us denote d( A) = deg(T0(A, •), #i(0)) where 

T0(A,u) = Au-PAuv4u. 
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Note that d( A) is defined iff A > 0 is not an eigenvalue of (1.4) and that in this case 
we have d( A) = deg(T0(A, •), BR(0)) for all R > 0. 

The following two propositions follow from the basic properties of the Leray-
Schauder degree. Their proofs are similar to the case K(u) = K which can be 
found in [20]. 

P ropos i t i on 2. Assume that 0 < Ai < A2, At, A2 are not eigenvalues of (1.4). If 

d( Ai) ^ d( A2) tijen there is a bifurcation point oflneq. (1.2) in the interval (X\, A2). 

P ropos i t i on 3. Let f E H, X > 0 be fixed, with X not an eigenvalue of (I A), 
T(X, u) = Xu - P\u(Au + / ) . Tijen fcijere exists R0 > 0 such that 

deg(T(A, ), BR(0)) = d( A) for all R > R0. 

In particular, if the inequality (2.6) ijas no solution then d( A) = 0. 

The points u E H with the following property will be important in our considera­
tions: 

(2.9) v E K(v) => v + u £ K(v); 

we denote 
K = {u E H\ u satisfies (2.9)}. 

It is readily verified that by virtue of the assumption (2.2), K is a closed convex cone 
with its vertex at zero. Notice that in the constant case K(u) = K(0) for all u E H 

we have K(u) = K. Further, following Quittner [19], we define 

Ka = {ueH;(3DCH,D= Jf)(Vu> E D)(3t > 0)(ti ± tw E A')}. 

The following simple lemma, for variational inequalities first proved by Ku£era [11] 
and later generalized by Quittner [19], plays a key role in our method. It provides 
a sufficient condition that the eigenvectors of Ineq. (1.4) corresponding to a given 
eigenvalue A of A, are exactly the eigenvectors u E A'(tx) of the operator A. 

Propos i t i on 4. Let X0 E <r+(A) be such that Ka n ^ (Ao) ?- 0. Tijen any 
eigenvector oflneq. (1.4) corresponding to X0 satisfies X0u = Au, i.e. u E F'(Ao). 

P r o o f . Let u E A'(w) be an eigenvector of (1.4) corresponding to Ao and let 
u* E Ka n ^ ( A o ) . Then for any w E D there exists t > 0 such that u* ± tw E K. 

Hence, u + u* ± tw E A'(w) and this choice of v in (1.4) yields 

(A0tx - Au, u* ± tw) ^ 0. 
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Since (XQU — Au, u*) = 0 we have 

(A0u — Au,±tw) ^ 0, 

(A0u — Au,w) = 0. 

The statement now follows from the fact that D = H. • 

3. DETERMINATION OF d( A) 

As we have mentioned above the method we use to prove bifurcation for Ineq. (V2) 
is based on a jump in the degree, i.e. on Proposition 2. The following lemmas give 
several ways to determine the degree d(A) (see Remark 6). 

Throughout this section let e denote a sufficiently small positive number. 

Lemma 1. Let XQ G 0+(-4) and u0 G int K VI K*(A0). Assume 

(3.1) u £ dK(u) for allO^ue E(XQ). 

We assert 

(a) if 

(3.2) (UQ, UQ) > 0 for some UQ G K(A0) D int K(UQ) 

then d( A) ^ 0 for all A G (A0, A0 + e), 

(b) if 

(3.3) (UQ, U0) < 0 for some u0 G F'(Ao) H int K(UQ) 

then d( A) ^ 0 for all A G (A0 - e, A0). 
P r o o f . In order to prove part (a) of the lemma let us verify the following points 

(I). (II): 
(I) There are no eigenvalues of Ineq. (1.4) in the set (Ao — £, Ao) U (Ao, A0 + e). 

Let us assume that there exist sequences An —• Ao, Xn ^ Ao, 0 ^ un G K(un) such 

that 

(3.4) (Anun - Aun, v - un) ^ 0 for all v G K(un)> 

Remark 2 yields 

(3.5) Antin = P\nUnAun, 
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and we can suppose |uro| = 1, un —- u G H. Remark 4 implies un -* u, \0 = PAOM_4IZ, 
and by Proposition 4, u G -S'(Ao). On the other hand, un G dK(un) for all large n 
since otherwise i/n would satisfy \nun = >ltin, and An would be eigenvalues of Ai 
Hence u G dK(u) by the property (2.5). Since u is nonzero this contradicts (3.1) 
and (I) is proved. 

(II) The inequality 

(3.6) u G K(u): (\u - Au - (A - A0)ti0l v - u) ^ 0 for all u G K(i/) 

has for A G (Ao, Ao + e) the only solution u0. 

Let An \ Ao, un G K(i/n), «n ^ t/o, 

(3.7) (Ani/n - >li/n - (An - \0)u0, v - un) ^ 0 for all v G A'(i/n). 

Since UQ G A', we have un + /̂0
, G A'(i/n) for all n. Setting v = un + i/J in (3.7) we 

obtain 
(Ani/n - Aun - (An - A0)i/o, u*0) ^ 0. 

We have (Aun,u0) = (i/n,ylwo) = A0(i/n,iio) and, consequently, 

((An - A0)iin - (An - \0)u0j u0) ^ 0, 

(An - \0)(un -u0)\tl) ^ 0, 

(un -u0,u*0) > 0, 

( " n X ) ^ (wo,«S)>0. 

Hence 

(3-8) \un\^e>0} n = l , 2 , . . . 

By Remark 2 

(3.9) A*tin = P\nun(Aun + (An - \0)u0). 

Putting wn = rj*r and using (2.2) we rewrite (3.9) as 

(3.10) \nwn = PAnWn (,4t/;n + (An - A o ) ^ - ) . 

Assuming wn -* w E H and using Remark 4 we obtain from (3.8), (3.10) \0w = 
P\ou,Aw together with wn —> it;. Proposition 4 gives nv G ^(Ao). Moreover, 
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Ineq. (3.7) ensures un G dK(un) for n sufficiently large. Indeed, let un G int K(un). 
Then (3.7) would imply Aniin — Aun = (An — Ao)tio and, since An is not an eigen­
value of A for n large, we would have tin = u0. This is a contradiction and therefore 
iin G dK(un), i.e. wn G dK(wn). Thus (2.5) implies w G dK(w) which contradicts 
(3.1). The proof of (II) is complete. 

To complete the proof of Lemma 1 we define 

(3.11) T(A, ti) = An - PXu(Au + (A - A0)ti?). 

It follows from (II) that for A G (A0, A0 + e) 

(3.12) deg(T(A, •), BR(0) \ Br(u0)) = 0 

where r > 0 is sufficiently small, R > 0 sufficiently large. By the additivity property 
of the degree we have 

deg(T(A, •), BR(0)) = deg(T(A, •), Br(ti0)) + deg(T(A, •), BR(0) \ Br(u0)). 

Since A0ii0 G int K"(A0ii0) we obtain from Remark 3 that there is r > 0 such that 
Au + (A - A0)ti0 G K(\u) for all A G (A0, A0 + e), u G Br(u0). Hence 

T(A, u) = \u - Au - (A - A0)w0 = A(w — u0) - A(u - u0) 

for such A and u. On the other hand, the element u0 is the only solution of the 
equation Au — Au = (A — A0)ti0. Using Schauder's formula (see e.g. [18]) we get 

(3.13) deg(T(A, -), Br(ti0)) = deg(AI - A, Br(0)) = (-\f^\ 

where 

(3.14) /?(A0) = YL dim ( Q Ker(AI - A)A. 
\>x0 ^p= l ' 

Consequently, deg(T(A, •), BR(0)) ^ 0 for all R sufficiently large. The assertion (a) 
now follows from Proposition 3 as deg(T(A, •), BR(0)) = d( A) for large values of R. 

To prove the part (b) we need to show that ii0 is the only solution of (3.6) for 
\ £ (Ao — £, A0). As above we proceed by contradiction. Let An / A0, un 9- ti0, 
un e K(un) satisfy (3.7). Since tig G K we can take v = tin + u0 G K(un) in (3.7) 
to obtain 

(Aniin - Aun - (An - A0)ti0, u*0) ^ 0, 

(An - A0)[(tin, tij) - (ti0, uj)] ^ 0, 

(un>v0) ^ (u0)u0) < 0 , 
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and therefore | t in | > e > 0, n = 1, 2 , . . . . The rest of the proof follows the same lines 
as that of (a). D 

R e m a r k 7. Let K(u) = A', u G H in Lemma 1. Then it can be easily verified 

that the assumption int K D E*(X0) ^ 0 together with (3.1) imply dirn£'(Ao) = 1. 

So, Lemma 1 can be used only with simple eigenvalues Ao if (12) is a variational 

inequality. This is not true in general and one can easily construct examples of 

quasivariational inequalities in R3 with multiple eigenvalues Ao of the operator A 

satisfying the assumptions of Lemma 1. Nevertheless, we shall prove the following 

lemma which admits multiple eigenvalues even in the constant case K(u) = A'. 

(Cf. [19], Theorem 4.) 

R e m a r k 8. Let A0 G cr+(A), Ka C\ E*(X0) ^ 0. Then the closed convex cone 

with its vertex at the origin A' n ii7*(Ao) is not a linear space. Indeed, if —u0 G K for 

an element u0 G Ka we would have A' = H which would contradict (2.1). By [20], 

Lemma 2, there exists an element u\ G K C\ E*(X0) such that 

(3.15) u\ 7-0, (u\,u*)^0 forallu* G KnK*(Ao). 

L e m m a 2. Let A0 G ^+(-4) be such that int K C\ E*(X0) -̂  0. Assume 

(3.16) Vue E(x0) ndi<(u) nS3u* e E*(X0) n A : («,u*) < o 

and 

(3.17) u G int K(u) for all u G E(X0) n (E*(X0)
1 0 {cu\; c ^ 0}) n 5, 

where u\ G K n F^Ao) is a vector satisfying (3.15). Then d( A) ?- 0 for X G 

(A0,A0 + e). 

P r o o f . We shall first prove that 

(I) Ineq. (1.4) has no eigenvalues in (A0, A0 + e). 

Assume that there exist sequences An \ A0, un ^ 0, un G K(un) that satisfy 

(3.4). As in the proof of Lemma 1 we get un —* ti, |un | = 1, u G i5(A0) n dK(u). By 

the assumption (3.16) there exists ti* G E*(X0) C\ K such that (u,u*) < 0. Putting 

v = un -h u* G K(un) in (3.4) we obtain 

(Xnun -Auniu*) ^ 0, 

( A n - A 0 ) ( t i n , i i * ) ^ 0 , 

( u n , O ^ Q . 
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This contradicts (u,u*) < 0, and (I) is proved. 

(II) the inequality 

(3.18) ueK(u): (Xu-Au-u*,v-u) ^ 0 for all v G K(u) 

has for A G (Ao, Ao + e) exactly one solution which satisfies u G int K(u). 

In order to prove (II) let us first consider the solutions u € dK(u) of (3.18). 
Assume that there exist un e dK(un), Xn \ Ao satisfying 

(3.19) (Aniin - Aun - u\yv - un) ^ 0 for all v G K(un). 

Since u* e K we can put v = un + u\ in (3.19) to obtain 

( « n , t i t ) ^ (A„-A 0 ) - 1 | « t | 2 , 

which implies |un | —* oo. Further, putting ivn = r ^ j we can rewrite (3.19) as 

Xnwn = P\nWn [Awn + -—--T) . 

We can assume wn -^ u and Remark 4 yields wn —» u G S\ Xoit = P\oUAu. Moreover, 
taking into account Proposition 4 and the property (2.5), we get u G E(Xo)DdK(u). 

By the assumption (3.16), there exists an element u* G K D K*(Ao) with (u, u*) < 0. 
On the other hand, the choice v = un + u* in (3.19) together with (3.15) yield 

(Xn-XQ)(un)u*)Z(ulu*)>0, 

which implies (n, n*) ^ 0. Hence a contradiction and there is no solution u G dK(u) 

of (3.18). Further, any solution u G int .K"(ti) of (3.18) satisfies Xu — Au = u*. Thus, 
it is sufficient to prove that the (unique) solution of this equation with A G (Ao, Ao+e) 
satisfies u G in tK (u) . It was proved in [19], p. 291 that if An \ Ao, Ao G (T+(A), 

u* G ^ ( A o ) and Aniin — Aun = tij, n = 1,2,... then 

—i^ue E(X0) n (£*(A0)
X e {cu\ ; c > 0}) 

for a suitable subsequence of {un}. By (3.17), u G int K(u) and therefore un G 
int K(tin) for n large, which completes the proof of (II). 

In the rest of the proof we proceed as in Lemma 1; putting 

(3.20) T(A, u) = Xu - PXu(Au + u*x) 

we prove deg(T(A, •), BR(0)) = (-1)0(A°) for A G (A0, A0 + £) and R sufficiently large. 
The assertion then follows from Proposition 3. Q 
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Lemma 3. Let \0 G <M-4) be such that Ka 0 E*(\0) ^ 0. Then we assert 

(a) if 

(3.21) Vu G £?(A0) H /f (u) n S 3u* G £*(A0) O K: (u, u*) > 0 

then d( A) = 0 for all A € (A0 - e, A0), 
(b) if 

(3.22) Vu G £?(A0) fl K(u) n S 3u* G E*(A0) n K : (u, u*) < 0 

then d( A) = 0 for all A G (A0, A0 + e). 

P r o o f . We will confine ourselves to proving part (a), the proof of part (b) 
being similar. As in Lemma 2 one can prove 

(I) Ineq. (1.4) has no eigenvalue A in (A0 — e,A0). 

Further, we shall consider Ineq. (3.18), where 0 -̂ u* G K*(Ao) C\ K is a vector 
satisfying (3.15) (see Remark 8), and we shall prove 

(II) Ineq. (3.18) has no solution for A G (Ao — £, A0). 

Assume there exist un G 1\"(un),An / \0 satisfying (3.19). As in the proof of 
Lemma 2 we get T^T —• u G K(A0) n K(u) O S. By the assumption (3.21), there 
exists u* G E*(\0) n K such that (u,u*) > 0. Putting v = un + u* in (3.19) we 
obtain 

( A n - A o ) ( u n , u * ) ^ ( u t , u * ) ^ 0 , 

which implies (u,u*) ^ 0. This is a contradiction and (II) is proved. 
Finally, defining T(A, u) by (3.20), we obtain from (I), (II) and from Proposition 3 

d(A) = deg(T(A,.),Bfi(0)) = 0 

for A G (A0 — e, Ao) and R sufficiently large. D 

L e m m a 4. Let \0 G *+(,4), K(A0)n{u G H; u G K(u)} = {0}, K*(A0)nIv'a ^ 0. 

Tlien d( A) = 0 for all A G (A0 - e, A0 + e). 

P r o o f . By the preceding lemma, d(A) = 0 for A close to A0, A -̂  A0. In 
particular, there is no eigenvalue of (1.4) in (Ao - £, Ao) U (A0, A0 + e). Further, it 
follows from Proposition 4 and from E(A0) H {u G H ; u G K(u)} = {0} that A0 is 
not an eigenvalue of (1.4) and d(A0) is defined. If d(A0) / O w e would obtain a 
contradiction with Proposition 2, putting Ai = A0 - \e, A2 = A0. See also Remark 5. 

• 
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Being a generalization of [19], Theorem 5, the following lemma admits operators 

with multiple eigenvalues as well as systems of sets K(u) with empty interiors. The 

important assumption is that A is symmetric. 

Lemma 5. Let A be a symmetric operator, Xo G &+(A) and UQ G Ka C\ E(XQ). 

In addition, let there exist UQ G E(X0) H A'(u0) H S such that 

(3.23) (иo,uS)>0, 

and 

(3.24) 

we[JE(X) 

un Є Я, un -+ u 

u Є K(u) П E(X0) ns 

= > щ±tw £ K(un) 
for some t > 0 

aii ?г large. 

Then d( A) / 0 for aii A G (A0, A0 + e). 

R e m a r k 9. It follows from Remark 3 that (3.24) is satisfied if 

(3.25) i/0 G int K(u) for all u G E(X0) C\ K(u) H S. 

If H is finite dimensional then (3.24), (3.25) are equivalent. 

R e m a r k 10. Note that if K(u) is independent of u, i.e. if K(u) = K for all 

u € H, then all assumptions of Lemma 5 reduce to the following one: there exists 

an element t/0 G E(Xo) such that for arbitrary w G (J F'(A) there is t > 0 with 
A€R 

u0±tw£ K. Cf. Theorem 5, [18]. 

P r o o f . We shall consider again the inequality (3.6) and prove 

(I) Ineq. (3.6) has the only solution uo for A £ (Ao, A0 -f s). 

Assume there exist sequences An \ X0,un -̂  txo that satisfy (3.7). Using (3.23) 

we proceed as in the proof of Lemma 1 to obtain (3.8), (3.10) together with 

wn = r^- -+ u e E(X0) n K(u) n s. 
lun\ 

We shall prove u = u0. Rewriting (3.7) we get 

(3.26) 

wn £ K(wn): (Xnwn - Awn - —.—r-^-^o, v - wnj > 0 for all v G K(wn)-
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Let 7r: H —> Ho be the projection onto the space 

/ /„=©£( A). 
Л>Л 0 

Since H0 is finitedimensional, the following fact follows from (3.24) which we shall 

use several times in the sequel: 

Let u n , tx be as in (3.24) and vn 6 Ho, n = 1,2,.... Then t/0 + t;n 6 Iv(un) for n 

large. 

Hence t/0 -|- 7r(u;n — u) E K(wn) for n large. Putting v = w0 + 7r(wn — w) in (3.26) 

we get 

0 ^ (AntDn - AtDn —r^-uo>uo - u + (TT- /)tv n) 
V I tin I / 

An — A0 = ( AntDn - Awn r-̂ -tlo, u0 ~ u) 
\ \un\ / 

+ (AntDn ~ Awn, (% - I)wn) --j — (w0, (7T -I)wn): 
\un\ 

Since tz0 € Ho, the last term equals zero. Also, (Awn, u0 — u) = A0(tvn, u0 — u) and 

therefore 

(3.27) 0 .$ (An - A0)(u;n - - p i - , t i 0 - u) + (AntDn - v4uvn, (it - I)uv«). 

Let us prove that the second term in (3.27) is ^ 0. Indeed, let A ̂  A0, tD £ H be 

arbitrary. Let {u(8)} be an orthonormal basis of the eigenvectors of .A, w =s J2C*U(*)' 

Then 

*w = Yl C*M(*)> ( ^ - / ) u ; = - - ] P cfti(,), 
A,^Ao A,<Ao 

Att; - J4W = ]P(A - A5)c,ti(,). 
s 

Thus we get 

(Aw--4t/ ; , (7r- I)w) = ( ] > J ' - A,)c4w(,), - ] P C5W(*)) 
* A,<Ao 

(3.28) = - 5 Z (A " A ' ) ( c*)2 < ° f o r a U A > Ao, tx; € H. 
A , < A 0 

Moreover, equality in (3.28) occurs if and only if w E H0. Thus (3.27) yields 

0 ^ ( t z ; n , t / 0 - t i )~ ( r A , « o - u ) . 
\ | u n | / 
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Since |u 0 | = \u\ = 1, we get (u0,u0 - u) ^ 0 and so 0 ^ (u>n ,u0 - u ) . This implies 

0 t$ (u, uo — u) and u = u 0 . By virtue of (3.28), the second term in (3.27) is zero and 

therefore wn G H0. Hence A(wn — u 0 ) G I/0, n = 1,2, . . . . As above we get using 

(3.8) and (3.24) 

wo + A 0
l 7 4 ( t v n - u0) + \Q1——r-5-uo G K(\0

l\nwn) 
\Un\ 

for n large. Hence 

Awn + ——----- u0 = A0u0 + A(wn - u0) + - ^ — — u0 G A(A n tv n ) 

and (3.10) implies 

. . An — Ao 
Anuvn - Awn = — j — — u0 . 

Since AnI — A: H —-> II is an isomorphism for 7? large, the last equation has the 

only solution ivn = A°-r. Finally, | ivn | = |uo| = 1 implies u n = wn = uo. Hence a 

contradiction and the assertion (I) is proved. 

(II) Ineq. (1.4) has no eigenvalue in the interval A G (Ao, \Q + e). 

Assume there exist sequences u n G H, \un\ = 1, An \ A0 such that (3.4) holds. As 

in the proof of Lemma 1 we obtain (3.5) together with un —-> u,u G E(\0)C\ K^i)C\S. 

Since x is a projection onto the finite dimensional space H0, the assumption (3.24) 

yields u 0 + n(un — u) G K(un) for n large and so we get from (3.4) 

0 ^ (A n u n - ^ u n , u 0 - f - 7 r ( u n - u)-un) 

= (\nun - Aun,u0 -u + (w- l)un) 

= (\nUn -Aun,U0-u) + (\nUn - Aun,(x - I)un) 

(3.29) = (An - A 0)(u n , u0 - u) + (A n u n - Aun,(ir - I)un). 

By (3.28), the last term is ^ 0, which implies (?/n, u0 - u) ^ 0. Hence (u, u0 - u) ^ 0, 

and \u\ = 1, |u 0 | = 1 yield u0 = u. Using again (3.28) for w = un together with (3.29) 

we get cs = 0 for all A, < A0 and therefore u n = 7run. Hence A(un — u 0) G IIo and by 

a similar argument as above we get from (3.24) Aun = A 0 u 0 - M ( u n - u 0 ) G A'(A nu n ) 

for all n large. Thus (3.5) yields A n u n = Aun. This contradicts An \ A0 and (II) is 

proved. 

(III) For any A £ (Ao, A0 + e) there exists r(\) > 0 such that deg(P(A, •), Br(u0)) ^ 0 

for all r £ (0 , r (A)) , where T(A,u) is given by (3.11). 
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Let e > 0 be such that there is no eigenvalue of A in (Ao, Ao + e). We take a fixed 
value A E (A0, A0 + e) and put / = (A — A0)tio, 

H(t, ti) = Ati - tPXu(Au + /) - (1 - t)(Au + /) 

for tiG H,0^ * ^ 1. Then 

II(l,ti) = T(A,ti), 

II(0, w) = An - Au - (A - \0)u0. 

Obviously, the equation H(0,ti) = 0 has the only solution ti = u0. Using Schauder's 
formula (see [18]) we get 

deg(H(0, ), Br(u0)) = deg(AI - A, Br(0)) = (-1)«*°) f o r a „ r > 0 > 

where /?(A0) is from (3.14). To prove deg(H(l, •), Hr(ti0)) = deg(II(0, •), Br(u0)) for 
r > 0 small it is sufficient to show 

(3.30) II(l,it) 7- 0, for all 0 -̂  ^ 1, w G Br(u0). 

Assume H(tn,un) = 0 for tin —* tio, tn G [0, 1], tin ^ u0y n = 1,2, We have 

Atin - *nPAun(^tin + /) - (1 - *n)(jltin + /) = 0, 

A(tin - tio) = tn(PXun(Aun + /) - (Aun + /)) + ;4(tin - U0). 

Let 
ł f i _ un - t i p _ PXlin(Aun + /) - (Aun + /) 
wn __ zn — j . . 

\un-u0\ \un-u0\ 
Then 

(3.31) \wn=tnzn+ Awn. 

Let tin — ti0 = J2 c"u(s)i w = 1,2,..., s0 > 0 a fixed integer. Then 
s 

Aun + / = Ati0 + .4(tin - ti0) = Ati0 + ] P **cslu(s) 
s 

so 

= Ati0 + __ ̂ ^ ( o + Yl *'c?u{iy 
в = l 3 > 5 0 
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Since un --> u0 G K(u0) H .£(A0) 0 5 we get from (3.24) that 

uo + A ^ ^ A ^ u / , ) E K(wn) 

so 

for all n large. Thus Xu0 + 53 A*c* w(-0 € ^ ( A u n ) and by the definition of the 

projection PAU: H —+ K(\u) 

\Aun + / - PAun(^t/n + / ) U | £ A ' c ? w ( o | ^ l A J • K - ti0|. 

We have proved \zn\ ^ |A5o| for n sufficiently large. Since A5 —> 0 as s —* +oo, we 
get zn —* 0. We can suppose wn -* w and (3.31) implies ivn —> w / 0, Xw = v4uv. 

This is a contradiction since A G (Ao, Ao + e) is not an eigenvalue of A Thus (3.30) 
holds and (III) is proved. 

The rest of the proof is similar to the proof of Lemma 1. D 

Lemma 6. Let the system {K(u)}, in addition to the properties (2.1)—(2.5), 

satisfy 

(3.32) u = *PU0 for some 0 ^ t ^ 1 ==> u: = 0. 

Then d( A) = 1 for all large A. 

R e m a r k 11. Note that (3.32) holds if 0 G K(u) for all u G / / . 

P r o o f . We put H{t,u) = Xu — /PAuj4t/ and prove 

#(*, u) ?- 0 for all 0 ^ * ̂  1, u 6 5, A large. 

Assume on the contrary that there exist sequences un, tn, Xn such that \un\ = 1, 

0 ^ tn ^ 1, An -» +oo and 

Xnun = tnPxnUnAuny 7 i = l , 2 , . . . . 

Dividing by An we obtain 

**n =tnPUn[—Aun). 

Assuming un -* u> tn —• t G [0,1] we get from Proposition 1 and from the complete 
continuity of A that un —• ti, ti = JPw0. Hence |u| = 1 and simultaneously u = 0 by 
(3.32). D 
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4 . EXISTENCE OF BIFURCATION POINTS 

Using our lemmas from the preceding section together with Proposition 2 we obtain 
bifurcation points of the quasivariational inequality (1.2). For instance, if 0 < Ai < 
A2 are such that d( A) = 1 for A € (Ai, Ai + e) and cl( A) = 0 for A E (A2 - e,\2) 

then there exists a bifurcation point A of Ineq. (1.2) in the interval (Ai, A2). Thus we 
obtain a bifurcation point of (1.2) between two positive eigenvalues of the operator A 

satifying certain assumptions. Similarly, if we prove d( A) = 0 for all A £ (Ao, Ao -f-er) 
and d(A) = 1 for A sufficiently large we come up with a bifurcation of (1.2) that 
is larger than a given eigenvalue Ao of A. The following theorem is an immediate 
consequence of Lemma 1 (a), Lemma 3 (a) and of Proposition 2. 

Theorem 1. Let 0 < \\ < A2 be two eigenvalues of the operator A such that 

(4.1) 3w0 e E(\x) Hint K(u0) 3u*Qe E*(\i)D'mt K: (u0)u*0) > 0, 

(4.2) u £ dK(u) for all 0 ± u G F(Ai), 

(4.3) K*(A2)nint/i 7-0, 

(4.4) VueE(\2)ni<(u)ns 3u* e E*(\2)r\K: (u,u*) > o. 

TAen there exists a bifurcation point A £ (Ai, A2) of Ineq. (L2). 

Using Lemma 1 (b) together with Lemma 3 (b) we can see that Theorem 1 remains 
valid if we swap the roles of Ai and A2 and reverse the inequalities in both (4.1) and 
(4.4). Further, Lemma 2 together with Lemma 3 (a) give 

Theorem 2. Let 0 < \\ < A2 be two eigenvalues of the operator A and let 
u\ e K C\ E*(\\) be a nonzero element satisfying 

(u*i}u) ^ 0 for all ueKn E*(\x). 

Let the following hold: 

int/i'nE ,*(A1)-/0, 

Vug dK(u) n £?(Ai) n S 3 u* € K n E*(\x): (ti, u*) < 0, 

u € int K(u) for all u e E(\x) n (£*(Ai)x e {cu*; c ^ 0}) n 5, 

inttfn£*(A2)7-0, 

Vu€K(u)C\E(\2)nS3u* £ Kf)E*(\2): (u,u*) > 0. 

TAen tAere exists a bifurcation point A € (Ai,A2) of Ineq. (1.2). 
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The following theorem uses Lemma 5 and Lemma 3 (a). It admits systems of 
convex sets K(u) with empty interiors but holds only for symmetric operators. 

Theorem 3. Let A: H —> H be a symmetric operator, 0 < X\ < X2 two eigen­
values of A. Let there exist two elements u\ G K(u\) n F(Ai) n S, u* E Ka n E(X\) 
such that 

( i i i , i i * ) > 0 > 

we [j E(X) 
AeR for some t > 0, 

u cHu ->u = > ui±««>Gtf(ii„) 
uneii%un->u all n large. 
ueK(u)r\E(X\)ns 

Moreover, let 

Ka n K(A2) 7- 0, 

Vtx £ K(u) n F(A2) n S 3u* e K n F(A2): (u, w*) > 0. 

Then there is at least one bifurcation point X of Ineq. (1.2) in the interval (X\,X2). 

As we have pointed out in Introduction it is well known that if A is symmetric 
and (1.4) is a variational inequality then no eigenvalue of (1.4) (and therefore no 
bifurcation point of (1.2)) can be larger than the largest eigenvalue of A. The next 
theorem, based on Lemma 3 (b) and Lemma 6, shows that this is no longer the case 
if we let K(u) vary with u. Indeed, the quasivariational inequality (1.4) can have an 
eigenvalue A > Ao, Ao being the first eigenvalue of A. See also Example 2. 

Theorem 4. Let Ao > 0 be an eigenvalue of A, Ka (1 E*(XQ) ^ 0 ajjci let the 
following condition hold: 

(4.5) Vti e E(X0) n K(u) n s 3u* e E*(X0) n K : (u, u*) < o. 

Moreover, let 

(4.6) u = *PU0 for some O^t^l = > u = 0. 

Tijeu tijere exists a bifurcation point A > Ao of Ineq. ( 12 ) . 

E x a m p l e 1. We shall give the following interpretation of Theorem 3: 

Let Q be an open subset of Rn with sufficiently regular boundary and let H = 
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H!(fi) be equipped with the scalar product (tx,v) = Yl fa DluD^v dx-f fn uv dx. 
i = l 

We define 

(.4u,v) = / 1 
Jn 

uv dx for all u, i; G II, 

(G(A,u) ,v)= / g(\,u)vdx for all u, t; G II, A G R, 
Jn 

where #: R x R —• R is a smooth function satisfying 

g(A, u) '. 
am ——— = 0 uniformly on compact A-intervals, 
u -o \u\ J l 

such that the Nernyckij operator g: R x II —» L2(fi) is completely continuous. (See 
for instance [8] for such functions.) Then A: H —• II and G: R x II —> II are 
completely continuous, A is symmetric and (1.1) holds. Further, let T be an open 
subset of dQ, and (p G L2(dQ) a given function. We define 

K(u) = \v G II^fl); v(x) ^ / <^dx a.e. on r ) . 
L Jan j 

Then {K(u)} is a system of convex sets satisfying the conditions (2.1)-(2.5). The 
properties (2.3)-(2.4) follow from the well known trace theorem for Hl(Q)y see Lions, 
Magenes [14]. For instance, to verify (2.4) it is sufficient to put vn(x) = v(x) + 
(fdfl<pun dx — fda<pudx). In this setting, the solutions of Ineq. (1.2) for A > 0 are 
the weak solutions of the problem 

(4.7) AAu + ( l - A)u + </(A,u) = 0 on fi 

(4.8) ^ = 0 on3fi\r 
ov 

(4.9) T T ^ ^ O , u$> j cpudx, -TT(U- I <pudx) = 0 on T. 
ov JdCl dv\ Jdn ) 

Further, the elements of F(A), i.e. the eigenfunctions of A, are the solutions of the 
Neumann problem 

(4A0) Aw -f —-̂ — u = 0 on Q 
A 

(4.11) | ^ = 0 ondfi. 
ov 

We have E(\) C Cl(tt) and K = {u G Hl(Q); u ^ 0 a.e. on T}. We can see that 
u G Iv a for any function u G /IflC(fi) such that u^ e on r, £ > 0. (It is sufficient to 
put D = CX(Q.) in the definition of I\a.) Theorem 3 gives the following proposition: 
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Let 0 < Ai < A2 be two eigenvalues of (4.10), (4.11). Then there exists a bifurca­
tion point A £ (Ai,A2) of the problem (4.7)-(4.9) provided 

(i) there exist tii, wj € E(\\) f) S such that 

( t * i , t i t ) > 0 

ti* ^ e > 0 on T 

u\ ^ I (pu\ dx on T 
Jan 

tii > / ^>tidx on T for all u £ E(\\)nS, u^ ipudx on F, 
Jan Jan 

(ii) there exists ti2 £ £ ^ 2 ) such that 1*2 ^ £ > 0 on T, 
(iii) for any u £ I?(A2) C\ S such that u ^ / a n y?udx on T there exists ti* £ E(\2) 

such that n* "̂  0 on T and (ti, u*) > 0. 

E x a m p l e 2. Using Theorem 4 we shall show that inequality (1.2) can have 
bifurcation points A > Ao, Ao being the first eigenvalue of a symmetric operator A. 
Let ft = (0,1), H = {u £ Hl(n); u(0) = 0}, (u, v) = /^ u'v'dx and let .4, G be as 
in Example 1. Consider the system of convex sets in II 

K(u) = {v G / / ' (0 ,1); v(0) = 0, «(1) > T(U)}, 

where T: / / —• R is a continuous functional on H such that T(AU) = AT(U) for A > 0, 
u G H. The solutions of Ineq. (1.2) are the solutions of the problem 

(4.12) Au" + u + i?(A,u) = 0 on (0,1) 

(4.13) u(0) = 0 

(4.14) ti'(l) >. 0, u(l) >. T(U), u'(l)(u(l) - r(u)) = 0. 

The elements of E(X) are the solutions of 

(4.15) Au" + u = 0 on (0,1) 

(4.16) «(0) = 0, u'(l) = 0. 

We have 

K = {u G Hl(0,1); u(0) = 0,u(l) >. 0}, A"* = int A' = {u G K; u(l) > 0}. 

Let Ao be the largest eigenvalue of the problem (4.15), (4.16). We have A0 = 4/ix2, 
E(XQ) = {csinfa:; c G R} and the condition Ka C\ E(X0) £ 0 is fulfilled. Clearly, 
(4.5) is satisfied if 
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(i) t i ( l ) < T(U) for any 0 ^ u £ K(A0). 

Indeed, in this case we have E(X0) f l { « 6 / f ; « G ^ ( l / ) } = {0}- Further, the 

projection w = P u 0 is tv = 0 if r(w) -̂  0 and iv(ic) = T(U)X, X G [0, 1], if T(U) > 0. 

Thus , (4.6) is satisfied if the following condition holds: 

(ii) if u(x) — ax, x £ [0, 1], a > 0 then T(U) < a. 

By Theorem 4, the assumptions (i), (ii) imply the existence of a bifurcation point 

A G ( 4 / K 2 , - | - O O ) of the problem (4.V2)-(4.14). To satisfy (i), (ii) one can take for 

instance T(U) = a f0 \u(x)\ dx with ^K < a < 2. 

For more examples of quasivariational inequalities see [5] where partial differential 

equations corresponding to systems of reaction-diffusion with unilateral conditions 

on the boundary were considered. Note that such inequalities involve nonsymrnetric 

operators A. 
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