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ON SOME APPLICATIONS OF HARMONIC MEASURE 

IN THE GEOMETRIC THEORY OF ANALYTIC FUNCTIONS 

JAROSLAV FUKA, Praha, Z. J. JAKUBOWSKI, Lodz 

(Received April 7, 1993) 

Summary. Let & denote the well-known class of functions of the form p(z) = l+qiz-r... 
holomorphic in the unit disc D and fulfilling the condition Rep(z) > 0 in D. Let 0 -̂  6 < 1, 
b < B, 0 < or < 1, be fixed real numbers and F a given measurable subset of the unit circle 
T of Lebesgue measure 2%a. For each r £ (—TC, TC ), denote by F r = {£ € T; e~XT £ € F} 
the set arising by rotation of F through the angle r . Denote by ^ ( B , 6 , o ;F) the class 
of functions p £ £P satisfying the following condition: there exists r £ (—ix,Tt) such that 
Rep(e* ) ^ B a.e. on F T and Rep(e' ) ^ b a.e. on T \ F T . 

In the paper the properties of the class ^ ( B , 6, o:; F) for different values of the parameters 
B, 6, or and measurable sets F are examined. This article belongs to the series of papers 
([4], [5], [6]) where different classes of functions defined by conditions on the circle T were 
studied. The results of papers [5], [6] are generalized.* 

Keywords: harmonic measure, Caratheodory functions, extreme points, support points, 
coefficient estimates 

A MS classification: Primary 30C45 

ì . 

As usual, we shall denote by C the complex plane, by D = {z 6 C; \z\ < 1} the 

unit disc, by T = {z 6 C; \z\ = 1} the unit circle. In our further considerations, 

we shall treat T on the one hand as a subset of C with the induced topology, on 

the other hand as a set homeomorphic to T, namely, as the subset (—7i,rc) of the 

real line R, endowed with the factor topology R/2rcZ where Z is the set of integers. 

Therefore we shall sometimes treat the function / ( e ^ ) : T —• C as a function f(t): 

( - 7 l , K ) - > C . 

*The research of the first author was supported by the internal grant No. 11957 of CSAV. 
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Let & denote the class of functions of the form 

(1) p(z)= \ + qiz + ... + qnz
n + ... 

holomorphic in the unit disc D with Rep(z) > 0 in D ([2]). 

Let us recall some properties of real parts of functions from ^ , which will be 

essential in what follows: 

(a) Every function Rep(z), p G £?^ has the Poisson representation by means of a 

unique positive measure ([3], pp. 21-24, [7], pp. 11-12) 

(2) . Kep(z)= f Retf^-d,i(t) 

where d//(/) ^ 0 and f_ndp(t) = 1; conversely, every function p holomorphic in D 
whose real part is given by (2), where dp(t) ^ 0 and f*nd[i(t) = 1, and for which 
Imp(O) = 0, belongs to &>. 

(b) Let d/i(t) = / ( 0 f £ + da(t) be the Lebesgue decomposition of the represent­
ing measure fi with respect to the normalized Lebesgue measure ~ on (—rc,7i), i.e. 
f_nf(t) dt < oo, / ^ 0 almost everywhere (a.e.) on (—K,K) with respect to ~ and 
d<7 is singular. Then Rep(z) has nontangential limits a.e. on (~n,n) (to be denoted 
Rep()) and 

(3) Rep(eid) = f(eld) a.e. on (-it, K) . 

(see [7], Chapter 1, Th. 5.3.). 
In [5] the following subclass &(B,b\a), 0 ^ 6 < 1, 6 < 1?, 0 < a < 1, of &> was 

introduced: p G &(B, b\ a) if there exists an open arc 1a = Ia(p) of T of length 2rca 
such that 

(4) Hm Rep(z) ^ B for each ZQ G /« 
Z—+ZQ, z&O 

and 

(5) lim Rep(z) ^ b for each ZQ G T \ Ia. 
z—*z0, z&D 

Among other results, the following properties of &(B,b\a) were proved in [5]: 1) a 
necessary and sufficient condition on the parameters B, 6, a for ^(B,b\a) to be 
nonvoid was given; 2) &(Byb\a) is compact in the topology given by the uniform 
convergence on compact subsets of D; 3) &(B,b\a) is not convex. 
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In this paper we generalize all these results to the situation where arcs are replaced 
by measurable subsets of T. 

The authors are indebted to Prof. M. Essen for suggesting this generalization 
during his visit in Prague in 1991. 

We start with the following reformulation of conditions (4), (5). 

Lemma 1. Let IQ C T he a given open arc and let p G 2?. The following 

conditions are equivalent: 

(c) p fulfils conditions (4) and (5); 
(d) p fulfils the conditions 

(6) Rep(e '*)^ B a.e. on Ia, 

(7) Rep(eie) > B a.e. on T \ Ia. 

Recall that Rep(e'*) are nontangential limits of Rep which exists a.e. on T by (b). 

P r o o f , (c) = > (d). Clear by (b), 
(d) ==> (c). Assume there exists a point ZQ G Ia for which Jim Rep(z) = 

z-+z0l z£D 

B' < B. Denote D(z0yr) = {z G C; \z - ZQ\ < r). By the definition of limes 
inferior, there exists an e > 0 such that Rep(z) < B+ f l < B on D(zo,e) flD and, 
simultaneously, the arc D(ZQ, e) C\ T does not intersect the complementary arc T \ Ia. 
Then (6) cannot be fulfilled on the subarc of Ia of measure 2 • 2ne > 0. Similarly we 
proceed in (7). D 

Now, we are in position to give our main definition. 

Definition 1. Let 0 ^ 6 < 1, 6 < .6, 0 < a < 1, be fixed real numbers and F 
a given measurable subset of the unit circle T of Lebesgue measure 2rca. For each 
T G (—K,K), denote by FT = {£ G T; e""IT£ G F} the set arising by rotation of F 
through the angle r . Denote by £P(B, 6, a; F) the class of functions p G 9* satisfying 
the following conditions: there exists r = r(p) G (—rc,rc) such that 

(8) Rep(e**) ^ B a.e. on F r 

and 

(9) Rep(e10) ^ b a.e. on T \ FT . 

It follows directly from Definition 1 that, for B > 1, the class ^(Byhta;F) does 
not contain the function po(z) = 1, z € D. I f B ^ l , then, clearly, po G ^*(-9,6, a; F) 
for arbitrary admissible values of the parameters 6, a and the set F. 
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In our further considerations, if it is not otherwise stated, we shall always assume 
that By b} a, F and r fulfil the conditions from Definition 1. 

2. 

Theorem 1. If ^ (S ,6 ,cv ;F) £ 0, then 

(10) l ^ a B + ( l - a ) 6 . 

P r o o f . Let p G 3*(Byb,a\F). So, there exists r = T(P) G (—TC,7I) such that 
(8) and (9) are fulfilled. Let u?(-;Fr) be the harmonic measure of the set F r with 
respect to D, i.e. 

\u (ii) w ( z ; F ' ) = i £* F - ( e i < ) R e i f e 
where x~* ls the characteristic function of the set &/. Clearly, 0 < OJ(Z,FT) < 1 in D 
and, by (3), cj(e ! t;F r) = 1 a.e. on F r and u;(e l t;F r) = 0 a.e. on T \ F r . Put 

uT(z)=zb + (B-b)uj(z;FT). 

Then uT(z) = b a.e. on F r and uT(z) = b a.e. on T \ F r (again in the sense of 
nontangential limits). Since, by (8) and (9), Re(p(e^) — u r(e^)) J> 0 a.e. on T, we 
have, for each z 6 D, by (2) and (3), 

/

* exi 4- z 1 /** e'1 4 : 

Re -^-— <\fi(t) ^ — / Rep(eu) • Re -r-2— dt 

^lf 5.Re!!l±icu+-i / b.Re-vtidt = Wr(̂ ), 
2TI j F r e " - * 2nJj\Fr e« - z n ; ' 

hence 

(12) Kep(z) $> b + (B - 6)w(«;FT), 2 G D. 

For -r = 0 we obtain, with respect to (1) and w(0;F r) = a, inequality (10). • 

R e m a r k 1. Inequality (12) corresponds to the well-known two-constant theo­

rem for bounded holomorphic functions ([1], p. 39). 
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Theorem 2. Let condition (10) hold. Then, for each r G (—rc,7t), there exists a 
function pfr £ ^ (Z? ,6 ,a ;F) such tAat Repfr(e

l$) = B a.e. on FT and Repfr(e
lB) = 

b a.e. on T \ F r . 

P r o o f . Since the disc D is simply connected, therefore the function 

(13) h(ziFT) = «>{z\FT) + )L>*(z;FT), 

where u>*, u>*(0) = 0, is the harmonic conjugate of u>(z;Fr), is holornorphic in D for 
each r E (—71,71). 

Let the equality in (10) hold. Then 

(14) pFr(z) = b+(B-b)h(z;FT), z € D , 

has the required property. 

If Ha+ 6 ( 1 - a ) < 1, then the function pfr(z) = 6 + (B - 6)/i(;r;Fr), z E D, fulfils 
(8) and (9) but does not belong to ^ ( H , 6 , a ; F ) since PFr(0) = -9a + 6(1 - a) < 1. 

So, it is natural to achieve the required normalization by adding a proper multiple 
of ------ij, 7 real. Since we have f r^f — 0 a e - o n T, therefore, clearly, 

PF T (2 )=W r (* ) + ( l - i ? ) ^ - - ^ , ZED, 

where 

(15) t) = Ba + 6(1 - a ) , 

is the required function. • 

Corollary 1. The class &(B,b,ot\F) is nonvoid if and only if inequality (10) 

holds. If in (10) the equality holds, then 

^ ( B , 6 , a ; F ) = { p F r ; r € { - 7 t , 7 i ) } 

wijere pfr is the function (14). 

P r o o f . The first assertion follows from Theorems 1 and 2. The second; assertion 

follows from (1), (12) and the minimum principle for harmonic functions ([1], p. 39). 

• 
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Theorem 3. Tije class ^»(_9,fc,o:;F), where B, b, a satisfy condition (10), is 
compact in the topology given by the uniform convergence on compact subsets of D. 

P r o o f . Since &>(B,b,a\F) C &* and the class 3P is compact, it suffices to 
prove that &>(B,b,a\F) is closed in 2?. So, let {pn}^°=1 be an arbitrary sequence 
of functions in 2?(B,b,a\F) converging to a function p G &* uniformly on compact 
subsets of D. For every pn there exists rn G (~K,)i) such that (8) and (9) are fulfilled 
on FTn and T \ F T n , respectively. From {Tn}n

<Lx we can select a subsequence { n ^ } ] ^ 
converging to some r G {-rc,rc) for fc —• oo (if rnfc —> rc, we put r = —rc). Without loss 
of generality we can suppose r = 0 (by considering the functions pn(z) = pn(^e"" , r)) 
and denote the subsequence by { T H } ^ again. Since FTn = {eiTn£; f G F}, we have 
XFrm(0. = Xp(elTn£)t for each £ G T, and since \ F is integrable on T, and thus, the 
mapping r —• \j>T, where ^>T(0 = Xp(e , (<+r )), is continuous in the L 1 ( ( - K , rc))-norm 
(see e.g. [10], Th. 9.5, p. 183), from 

XF r .(e") - XFÍe") = XFÍe'1^-'-)) - XF(e") 

we obtain 

(16) / I X F ^ t e ^ - X F t e ^ J I d t - O as n - > co. 
J —K 

Now, fix z G D. The harmonic measure of the set FTn with respect to the point 
z G D is 

(17) a ; ( , ;F T J = i y \ F r J e i < ) R e ( ^ ^ ) d t , 

and so, by (12), we have 

(18) Repn(z) ^ b + (B - b)u>(t;FTn). 

We can take limits for n —• oo on both sides of (18). From the assumption we 
have that Pn(z) —> p(z), z G D, as n —• oo. On the other hand, by (16) we have 

(19) M * ; F ) - « ( - ; F T . ) | = | i - £ (xF(e") - X F , . ^ ) ) Re ( ^ ± | ) 

<ST3R£'»'-<e,,)-^el')ldt^0 

if n —> oo. 

Consequently, by (18) we have 

(20) Rep(z) ^ 6 + ( 0 - t)w(z; F) for each * € D. 
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Now, by (20), by property (b) and by the boundary properties of w(z\F), we 
obtain for the function p inequalities (8) and (9) on F and T \ F, respectively, so 
pG 3?(B,b,a\F). • 

R e m a r k 2. It is evident that in the proof of Theorem 3 we have shown, more 
generally, that 3?(B,b, a; F) is closed in 3? in the topology given by pointwise con­
vergence. Moreover, from (19) it follows that u(z\FTn) —• w(z\FT) uniformly on 
compact sets in D if rn —» r . 

In this section we shall study sets F3P(B, 6, a; F) and supp 3P(B, 6, a; F) of extreme 
points and support points of :^(1?,6,a;F), respectively. 

Let us recall ([8], p . 44, p. 91) that 1) a point x G A C Ar (X is a vector space over 
C or R) is called an extreme point of A if a, 6 G -4, 0 < A < 1 and x = Xa + (I — A)6 
implies a = 6 = x\ 2) if X is a topological vector space over C or R, then a point 
x G A C X is called a support point of the set A if there is a continuous linear 
functional J on X such that Re J is nonconstant on A and ReJ(x*) = max{ReJ(<7); 
ere A}. 

For this purpose we denote, for a fixed r G (—TC, TC ), by 3?(B} 6, a; F, r) the set of 
all functions from 3?(B, 6, a; F) satisfying (8) and (9) on FT and T \ F T , respectively. 

Clearly, 3?(B, 6, a; F, r) is convex, compact and 

(21) <^(H,6,a;F) = (J <^(#, 6,a;F, r). 
re ( - i t ,n : ) 

Propos i t ion 1. (i) «^(H, 6, a; F, r) = {ppr + (1 — i))v\ P £ «^} where pFr is t/ie ' 
function (14) and ?/ is given by (15). 

(ii) For every r the correspondence p —»PFr+(1 — 7/)P between the classes 3? and 

3?(B, 6, a; F, r) /s one-to-one. 

(i i i)pG ^ ( £ , 6 , a ; F , r i ) if and only if p(z) = p(ewz) G 5*(J3,6,a;F,ri + r ) . 

P r o o f , (i) For 7/ = 1 this follows from the second assertion of Corollary 1. So, 
let 0 < 7/ < 1 and take q G ^ ( - 9 , 6, a; F, r ) . Put P(z) = y ^ ('/(<?) ~ PFr (*)) . ^ D . 
By (12), (13), (14) and the minimum principle we have Rep(z) ^ 0, z G D, and since 
q(0) = 1 and PFr(0) = r/, therefore p(0) = l , s o p G ^ and q — pFr + (1 — ?/)p. 

(ii) and (iii) are obvious. • 

Now, denote by <f (H, 6, a; F, r) the set of all p(z\ 7, FT) G ^ ( # , 6, a; F, r) of the 
form 

(22) p(z.1}FT)=b+(B-b)h(z;FT) + (l-J,)C~, 7-real, 2 € D, 
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and by S?{B, 6, a; F, r ) the set of all s(z\ F r ) e &{B, 6, a; F, r ) of the form 

1 + XkZ 
(23) s(z;Fr) = b + (B-b)h(z;FT) + ([-v)ThrL±]!l, ^ D , 

rzí i - *k* fc = l 

where A* ^ 0, ]C A*. = 1 a n ( l lx*l = ^ ™ = 1,2,.... 

From Proposition 1, from the description of extreme points and support points of 

& given in [8] (p. 48 and p. 94) and from (21) we immediately obtain 

Corollary 2. For arbitrary admissible B} 6, a, F, r, we have 

(24) 

(25) 

(26) 

EØ>(B, b, а; F, r) = S(B, b, а; F, r ) , 

supp &(B, b, а; F, r) = <^(ß, b, а; F, r) 

E ^ ( ß , 6 , a ; F ) C [j <f(ß,6,o;F, r ) . 
тЄ(-п,ҡ) 

P r o o f . Assertions (24) and (25) follow immediately from Proposition 1, from 
formulae (22) and (23) and from the description of extreme points and support points 
of 2P given in [8], Theorem 5.2 and Theorem 7.3, respectively. Formula (26) follows 
directly from (21), (24) and the obvious inclusion EIJA/ C \JBAj. • 

Theorem 4. Let p £ £P(By 6, cv;F) have an expansion (1) in D. Then, for n = 

1,2,. . . , 

dt + i - ? / (27) l « n | ^ 2 [ ( f l _ 6 ) ^ /e"in'' 

This estimate is sharp and is attained only for functions (22) where 

7 = - i ( a r g / e~ in tdt+2k7t), Jb G Z 
n JFr 

(for / F r e~ in t dt = 0 we put a r g / F r e~ int dt = 0j. 

P r o o f . Since it is sufficient to verify estimate (27) for the extreme points of 

^(Z?, 6, a; F) (see e.g. [8], Th. 4.6, p. 45), by (26) we have only to make sure that the 

estimate holds for all functions of the form (22) for all r £ (-7r,7i) and is attained 

on some of them. So, we have only to write the Taylor expansion of the functions 

(22). Since 

e[t + z 
R * -

l + 2^2e-',ntzn, zeD, 
4 = 1 
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and the series converges uniformly in (-*,*) for \z\ < Q < 1> w e can integrate term 
by term and obtain by elementary calculations (cf. (11), (13)> (15), (22)) 

^ T . F T ) . . + ( B - . , /^ i + ( l - , ,^± i 

= 1 +2J2 \(B - 6) / e"inldt+(l - r;)e-in7]z", 

qn = 2[(B - 6)1 j e~inl dt+(1 - v>'>ny] • 

hence 

Denoting <pT = arg J F r e" i n t dt if ff e~mt dt ^ 0 and putting <£>r = 0 in the opposite 
case, we have 

7n = 2 [ (B-6) l | / e-',Btdt +(l_, ,) e- i^+ v" )]e i^, 

hence 

Ы = 2 

= 2 

(ß - 6 ) 1 | / e- i n t dt | + (1 - ,,)e- i (n^+,ŕ' ; 

( ß - 6 ) l | / e - i n l d l | + ( l - V ) e ~ť(u-y + V>т) 

Since the first term of the sum is nonnegative, we obtain the estimate (27). D 

R e m a r k 3. Using definition (15) of T/, we can rewrite the estimate (27) as 

follows: 

(28) | Ч „ U 2 Í l - 6 - ( ß - 6 ) f a - l ^e- in ldt ) 

R e m a r k 4. When the parameters B, 6, a lie on the boundary of the three-
dimensional set given by the inequalities in Definition 1 and inequality (10), we 
obtain the following limiting cases: 

<P(0 ,0 , a ;F )=3» , a € (0,1), 

&{B,B,a\F)=&D, « G ( 0 , 1 ) , fl€(0,l), 

^ ( B , 6 , a ; F ) = {^ F r of the form (14), r £ ( - * , - . ) } , a € (0,1), J J = 1 , 

^(f l ,6 ,0;F) = 5>t, 0 ^ 6 < 1 , 6 < B, 

^ ( B , 6 , 1 ; F ) = ^ B , 0 < _ 6 < . B < 1 , 

3 » ( l , l , « ; F ) = {Po}. 
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Here ^ , 0 ^ /3 < 1, is the class of functions (1) with values in the half plane Re z > 

f3. Passing suitably to the limits, we obtain form (28) the well-known coefficient 
estimates in the classes ^ ([9]) and & ([2]). 

4. 

As we have mentioned above, the classes £P(B,b, o ;F , r) are convex and hence 
also connected. In this section we shall discuss the question of convexity and con­
nectedness of the class 3?(B, 6, a; F) . In the sequel we denote by £(A) the normalized 
Lebesgue measure on T (^(T) = 1). We shall need the following geometric lemma. 

Lemma 2. Let F C T be a closed set, £(F) = a, 0 < a < 1. Then for each 

r £ (—7t, TC) there exists 6 > 0 such that l{JFT+h HF r ) < £(F r) for each h} 0 < |/i| < 6. 

P r o o f . Without loss of generality we can choose r0 = 0 and F 0 to be perfect 
(because the set of isolated points of F 0 is countable and hence a set of Lebesgue 
measure zero). Denote by Df(J the set of density points of Fo (i.e. £ £ Dfo if and only 
if lim *(F°n*K»r)) = l where fl(£, r) is the subarc of T with centre at the point f and 

i(B(Z,r)) = 2r). Then (see [10], Exercise 11, p. 177) t(Dfo) = £(F0) = a > 0. Hence 
each interval containing a point of Fo contains a point of DfQ. Denote Go = T \ Fo, 
so £(GQ) = 1 — £(FQ) = 1 — a > 0. Go is an open subset of T, hence Go is the sum 
of a nonvoid finite or countable family of mutually disjoint open arcs G, C T. Let 
^(£*o) ^ *(Gi) ft>r e v e r v ? anc* P u t 6 = '(^»o)- T l i e endpoints £o, 6 of Gt0 are lying 
in F 0 . So, by rotating F 0 through any angle /?, |/i| < 6, Gt0 fl F 0 contains £o and 
£i, and so, in any case, a point £ £ Dfo and an arc £(£,ro). Take 0 < r < r0 such 
that ^(F0 O B(£,r)) > ±C(B(Cr)) = r. Then F 0 H F* C F 0 \ (F0 n flfor)), so 
<(F0 H F O <$ *(F0) - r < <(F0), q.e.d. D 

Theorem 5. If 0 < a < 1, then ^ ( J 3 , 6 , C Y ; F ) is not convex. 

P r o o f . By Theorem 2 there exists a non-constant function p £ ^(B,6,cv;F) 
such that Rep(e'*) = B a.e. on F, Rep(e'*) = b a.e. on T \ F (cf. (12)). By similar 
arguments as in the proof of Lemma 2 there exists r ?- 0 so that £(FT fl F) < a. 
Define pT(z) -= p(e~2Kirz), z £ D. Obviously, p r £ ^ ( B , 6, cv;F, r ) . Join p, p r 

by the segment pA = XpT + (1 - A)p, 0 ^ A ^ 1. Clearly, PA(0) = 1. One has 
RepA(0 ^ A6 + (l - A)fl < B on T \ F r for A > 0 and RepA(0 ^ XB + (\ - A)6 < S 
on T \ F for A <̂  1. So, RepA(f) ^ -9 can be fulfilled only a.e. on FT OF. Hence, for 
each A £ (0,1), pA does not belong to £?(B, 6, a; F). • 
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T h e o r e m 6. g?(B,b, a ;F) is arc wise connected (and thus connected). 

P r o o f . Let p\,p2 G &*(B, b, rv;F). Then there exist TX,T2 G (—-K, TT ) such that 

Pk G £P(Byb, cv;F,Tjt), fc = 1,2. Since the classes t?(B,b,tt,F, r ) are convex, we 

can join Pi, P2 by a segment with ppr. ~h 1 — ?̂, PFT2 -f 1 — -7, respectively, and then 

PFr. + - — *? w-th p F r 2 -f 1 — ?/ by the arc r —• pp r 4-1 — n, T\ ^ T ^. T2 (cf. Remark 2). 

D 

R e m a r k 5. In the case B ^ 1, the assertion of Theorem 6 is obvious because 

po G ^ ( . f l , 6 , a ;F ) for each r G (- i t ,n) . 

R e m a r k 6. All the properties of the class £P(B,b,c*;F) which we have exam­

ined up to now (i.e. compactness, convexity and connectedness) require non-trivial 

means from real analysis for their proofs, but can be proved almost trivially if we 

restrict our attention to the classes £?(B, b, a; F, r ) . In this context, the following 

properties can be of some interest. 

L e m m a 3. For each T G (—rc.rc) we have 

Hmo^(Fr+fcnFT) = f(FT). 

P r o o f . We can suppose r = 0 and write FT = F0 . Since XFfcnF0 = Xfh *XFo> 

we have 

clţ 
2л /

* dt [* 

( X F o - X F o X F h ) ^ = / (XFo ~ XFo • X F J 
= / XF0(XFo ~ X F j ^ ^ / I X F O ~ X F J ^ 

JV-F„(< + !»)-#o(0l^ 

where we denoted # „ ( < ) = XF0(e i')- B u t Jl™/-- I^FoO +!») - V>Fo(0ldt = 0 (•« 

e.g. [101, Th. 9.5, p. 183) and lim ^(F 0 n F h ) = C(F0), q.e.d. D 

Theorem 7, Let i] < \. Then there exist r,- = r,(F), i = 1,2, such that for each 

r € (-r,-, r,), i = 1,2, we have 

(i) ^ ( S , 6 , o ; F , r ) ? &(B,b,a;F,0) for 0 < | r | < r,, ifF is closed, 

(ii) &(B, b,«; F, r ) n &(B, b, o; F, 0) -i 0 for | r | < r2. 

P r o o f , (i) By Lemma 2 there exists r t > 0 such that, for each r € (—ri,rj), 

onehas£(FnF T ) < ^(F). Hence the function P F ( - ) = b+(B~b)h(z;F)+(l—>i)^^, 
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7 real, z € D, does not belong to &(B,b,a\F,r) since Repp(e'*) = b < D a.e. on 
FT \ F, and t(FT \ F) = t(FT) - £(FT n F) = <(F) - *(F n FT) > 0. 

(ii) Define 

f(eu) = B o n F u F , , 

f(eH) = b o n T \ ( F u F T ) 

and 
1 /* . e

i ť + z 

Then Rep(e !') = B a.e. on F u F r , Rep(e'*) = 6 a.e. on T \ ( F u F r ) . U is clear that 
Rep fulfils condition (8) a.e. on F and FT and condition (9) a.e. on T\F and T \ F r . 
An easy calculation gives 

(29) P(0) = -~ f Дe i ł ) «t = n + (B - b)[t(F) - Є(F U F,)]. 

However, by Lemma 3, l i m f ( F u F T ) = f(F). Hence, by (29) and on account of 
r—>0 

7] < 1, there exists r2 > 0 such that p(0) < 1 for |r| < r2. Then the function 

p(z) = p(z) + (1 - p ( 0 ) ) ^ ^ , T real, z G D, 

belongs to p(B,6, a; F, r)H &(B, 6, a; F,0) for each r G (-r 2,r 2). D 

5. 

Next, we introduce 

Definition 2. Let 0 ^ 6 < 1, 6 < B, 0 < a < 1, be fixed real numbers. Denote 

by &*(B,b,a) the class of functions p € 3* such that the exists a measurable subset 
F of T of Lebesgue measure 2na such that p G -0*(B, 6, a; F). 

It follows directly form Definition 2 that 

(30) 0>(B%b,a) = \J&{B%bta;F) 

where F C T satisfies the conditions mentioned above. 

Let p € ^( .8,6 , a) have the expansion (1)* Then form (30) and Theorem 4 we 
obtain 

(31) | g n U 2 ( l - , , ) + i ( S - 6 ) Q „ , , , = 1,2, . . . , 
Tt 
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where 

(32) Qn = sup IQJF) := /V i n Mt | l , n = l,2,..., 
F€P I IJF |j 

and F is the st of all measurable subsets of the circle T of Lebesgue measure 2KG:. 
Estimating roughly the real and imaginary parts of JF e~m* dt, we obtain Qn(F) ^ 
4na for each F € F, therefore Qn < oo, ?i = 1,2, — 

In view of the rotation-invariance of the Lebesgue measure on T we have 
ff e~lnt dt = e inT f¥r e~mi dt, F G F, r G (-*, K). Taking r = r* = I arg / F e~ int dt, 
we obtain Qn(f~) = / F m cos?i<dt. From here we easily see that 

(33) Qn = sup / coswfdt. 
F6PJF 

The following lemma is the clue for estimating Qn. We write m(A) for the 
Lebesgue measure of A C R. 

L e m m a 4. Let a, 6 G R and let E C («, 6) be a measurable subset of the interval 
(a, 6) and / a bounded nondecreasing function on («,6). Then 

pa+m(E) /» /•& 
(34) / f(t) dt^ / /(<)dt$ / /( /)dt. 

Ja JE Jb-m{E) 

P r o o f . Choose e > 0 arbitrarily. Clearly, it is sufficient to suppose 0 < 
m(E) < b — a. By definition, there exist a compact set F and an open set G such 
that F C E C G and m(G\ F) < e/(2M) where 0 < M < oo is the upper bound for 
| / | on (a, 6). From £ \ F C G\F and ( 7 \ £ C G\F it follows that m(F \F ) < e/(2M) 
and m((7 \ E) < e/(2M), respectively. G is the sum of disjoint open intervals /*., 
fc= 1,2,.... 

oo 
Moreover, \J h D F and hence one can choose a finite set of disjoint intervals Ii, 

s 
/2, . . . , /, such that / = \J h D F. We order them in such a way that a\ < a2 < 

. . . < a, where a* is the left endpoint of /*, k = 1 , . . . , s, and outside of (a, 6) we put 
/ = 0. Then m(I \ E) ^ m(G \ E) < e/(2M) and m(E \ I) ^ m(E \ F) < e/(2M). 
Since both the sets E\J(I \ E) and / U (E \ I) are decompositions of / U E in two 
disjoint sets, we have 

/ /(0 dt + / /(£) dt = / /(() dt + / f(t) dt, 
JE Jl\B Jl JB\I 
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and so 

However, 

and 

hence 

/ /(t) dt = / /(O dt + / /(<) dt + / [-/(t)} dt. 
JE JI JE\I JI\E 

í /(<) dt ^ M • m(E \ /) < M • e/(2M) = e/2 
JE\I 

I [ - / (<)] Aí^M m(I\E)<M • e / ( 2 M ) = e /2 , 
Jl\E 

(35) . / Д ť ) d t < / Д<)d t+e. 

It remains to estimate fff(t) dt = J2 fj f(t) dt from above. In view of the 

translation-invariance of ?7i on F and since / is nondecreasing, we have, for any c, r/, 

a ^ c < d .^ 6, and for each r E (0,6 — </), 

/ f(l)dt= [ r / ( < - r ) d t ^ / ' / ( O d t . 
Jc Jc+r Jc+r 

s 
Let c = aki d = 6*, rk = 6 - 6* - 51 m ( ( ? ) where /* = (ak,bk). Since r* E 

j=*+1 
(0,6 — 6jt), therefore 

/ / (°d t = / 
«*+*•* *-Ľ'=fcm(/,) 

Ьk+Гk

 v -^-j = fc + l "'V-Ј.I 

(36) f f(t)dt^ f / ( | ) d t = / /(/)dt, foг fc= 1 . 2 . . . . , * - 1 

and also 

(37) f f(t)dt^ f f(t)dt. 
Jl, J6-m(/,) 

By adding (36) and (37) we obtain 

ff(t)dt^f /(/)dt, 

Jl J6-m(/) 

and so, by (35), 

/ /(/)dt< / f(t) dt+e. 

JE J6-m(/) 

Since e > 0 was arbitrary and F C / C G, the right-hand side in inequality (34) 

is proved. The proof of the left-hand side in inequality (34) follows the same lines. 

D 
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R e m a r k 7. If g is nonincreasing on (a,6), then, applying Lernma 4 to the 
function / = — </, we obtain 

pb r pa+m(E) 

(38) / g(t) dt^ / 0(0 d t ^ / 0(0 d t . 
Jb-m(E) JE Ja 

T h e o r e m 8. Let p G 2?{B,h, a) have the expansion (1) in D. Then, for n = 

1,2,... 

(39) k n | ^ 2 [ — — s i n a n + 1 - i j ] . 

The estimate (39) is sharp and is attained only on the function p*(z) = p(ez;F), 

|e| = 1, z € D, where 

F = F n = i j F n and F„ = {z G T; - = e W ' , - ^ < , < - £ } , 
Jk = l 

and so 

(a + 2fc)7i/n 
/.«x / --x , B — b ^ /* e1' + z , /t x l + z ^ 

(40) p(r,F) = 6+-^-V2 y _ _ ( l t + ( l + „ )__ , 2 € D . 
fc-1(-a+2Jk)n/n 

P r o o f . Fix 7i and divide the interval (—71, rc) into n disjoint subintervals 

m I -7l + 2(Jfc-l) -7l+2ifc\ , A rt .„ . 
Tib = ( * — - -,7t — ), £ = 1,2,. ..,7i, if 71 is odd 

\ 71 11 / 

and 

/ - n + 2k - 1 - n + 2fc+lx 
T* = (rc ,rc , k= 1,2,... , 7 i - 1, 

\ 7i n / 

Tn = (rc ,rc J U ( — 7i,— K H—J, if 7i is even. 

Then 

n 
(41) Qn(F) = S^I cosnsds 

l ^ j F o T , 

(here and in the sequel, a subset of the unit circle T is identified with the set of 

the corresponding points of (—rc,n)). Denote m ( F n T * ) = 2natk. Since cosns is 
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increasing on the left half T£ of Tk and decreasing on the second half Tj* of Tk (for 

n even, k = n: T,j = (rx - J , K ) , F,; = ( -n , - - + *) ) , we obtain by (34) and (38) 

-«+**-- +2ltttjW 

0 ^ / cos ns ds ^ / cos ns ds, fc = 1 , . . . , n, for n odd 
JFnTfc J lғnn 

.__ц2_r±_2 l l a(i) 

and 

n T - » « f c 

0^1 cos n.s ds ^ / cos n.s ds, k = 1, 2, . . . , n — 1 
JFnTfc J 

^ - - - L - 2 i t a ( 1 ) 

аnd 
- i t+2n« ( 2 ) 

0 -$ / cos ns ds .$ / cos n.s ds, + / cos ns ds 
JFnTn J J 

- _ 0 - , v ( l ) " I t it — 2 п « 

if n is even, where 2rcaj.^ = m(F O T/.), i = 1,2. Since cos7t(-n + 2k + 1) = 1 for 

nodd; cos7t(—n + 2k) = 1, cos(±7irc) = 1 for n even and cos(—x) = cosx*, these 

integrals are not greater than 

n _ ^ + 2 r t _ ^ _ „ _ ^ + 2 l t _ ^ i _ . 

/ COS7!#ds, / COS 715 d s . 

„__^_2„:_^ n̂ _2,_i_4____ 
4l)+«[2) 

- - it + 2it * 2 * 

/ cosnsds+ / cos ?is ds, 

o - i l ) + 4 2 ) 

1T-2TC fc 2 * 

respectively. 

However, aj. ' + aĵ  = afc and so we finally calculate 

/ 2 
/ cos ns ds t$ — sin nnotk, k = 1,2,..., n; 

JFnn n 

thus we have 

(42) / cos ns ds = \] / cos ns ds ^ — V* s u l n™k • 
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Now, we notice that 27tajfc .^ ~ and, of course, 0 ^ a*. ^ a, so 0 .^ a*. ^ n-in(£, a ) . 
Hence (31), (32), (33), (41) and (42) imply 

i i ^ o / t x 2 ( B - 6 ) f l A . I 
\qn\ ^ 2(1 - 7]) + sup< - > sinnrca* >, 

* = 1 

where the upper bound is taken over all systems ( a i , . . . , a n ) such that 0 ^ a* ^ 
n 

rnin(£, a) and YL <*k = <*. But because 0 ^ ak ^ £, we have 0 ^ una* ^ rc. On the 

interval (0, TC) the function sinx is concave and so 

1 n 1 n 

— >^sinnTtafc -̂  sin — Y^nKak = sinaK. 
n£[ ntl 

The equality holds if and only if a* = ^, k = 1,2,..., n (notice that £ < £•). 

The form of the extremal functions is a consequence of the form of the set F 
shown in Theorem 8 and follows form formula (22). Since ^ (£? ,6 , a ;F i U F2) = 
S?(B, 6, a; Fi) for an arbitrary measurable set Fi and an arbitrary set F2 of Lebesgue 
measure 0 therefore, for a fixed n, the function (40) is the only function realizing the 
maximum of \qn\ in the class @>(B,b,a). 

The theorem is proved. • 

From Definitions 1 and 2, Lemma 1 and Theorem 8 we get 

Corollary 3. Let p G &(B,b\a) have the expansion (I) in D. TAeu, for n = 

1,2,.... 

(43) \qn\ ^ 2 [ -^-^ sin art + 1 - n] . 

R e m a r k 8. The estimate (43) for n = 1 is sharp. For n = 2 , 3 , . . . , it is not 
sharp because the function (40) belongs to the class &>(B, 6, a) but not to &(B> 6; a ) . 
The sharp estimate in the class ^ ( # , 6; a) for n = 2 , 3 , . . . is ([6]) 

Wn\ ̂  2 |sinna7t|+ 1 - n . 
L I17C J 

The estimate can also be obtained directly from (27). 

73 



References 

[1] L. V. Ahlfors: Conformal invariants: Topics in geometric function theory. McGraw-HШl, 
New York, 1973. 

[2] C. Carathéodory: Uber den Variabilitätsbereich der Fourierschen Konstanten von posi-
tiven harmonischen Funktionen. Rend. Сirc. Math., Palermo 32 (1911), 193-217. 

[3] P.L. Duren: Univalent functions. Grundlehren der mathematischen Wissenchaften, 259, 
1983. 

[4] J. Fuka, Z.J. Jakubowski: On certain subclasses of bounded univalent functions. Ann. 
Рolon. Mth. 55 (1991), 109-115; Pгoc. of the XІ-th Instructional Сonference on the 
Theory of Extremal Problems (in Polish), Lódź, 1990, 20-27. 

[5] J. Fuka, Z.J. Jakubowski: On a certain class of Сarathéodory functions defined by 
conditions on the circle, in: Сurrent Topics in Analytic Function Theory, editors H.M. 
Srivastava, S. Owa, Woгld Sci. Publ. Сompany, 94-105; Proc. of the V-th lиtern. Сonf. 
on Сomplex Analysis, Varna, September 15-21, 1991, p. 11; Proc. of the XШ-th Instr. 
Сonf. on the Theory of Extremal Problems (in Polish), Lódź, 1992, 9-13. 

[6] J. Fuka, Z.J. Jakubowski: On extreme points of some subclasses of Сarathéodory func-
tions. Сzechoslovak Academy of Sci., Math. lnst., Preprint 12 (1992), 1-9. 

[7] J.B. Garnett: Bounded analytic functions. Academic Press, 1981. 
[8] D.J. Haìlenbeck, T.H. MacGregor: Linear Problems and convexity techniques in geo-

metric function theory. Pitman Advanced Publ. Program, 1984. 
[9] M.S. Robertson: On the theory of univalent functions. Ann. Math. 57(1936), 374-408. 

[10] W. Rudin: Real and complex analysis. McGraw-Hill, New York, 1974. 

Author's addresses: Jaroslav Fuka, Mathematical Institute, Academy of Sciences of 
Сzech Republic, Žitná 25, 115 67 Praha 1, Сzech Republic; Zbigniew Jerzy Jakubowski, 
Сhair of Special Functions, University of Lódź, ul. S. Banacha 22, 90-238 Lódź, Poland. 

74 


		webmaster@dml.cz
	2020-07-01T11:56:46+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




