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Summary. The edge-domatic number of a graph is the maximum number of classes of a partition 
of its edge set into dominating sets. This number is studied for cacti, i.e. graphs in which each 
-edge belongs to at most one circuit. 
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In [1] E. J. Cockayne and S. T. Hedetniemi have introduced the domatic number 
of a graph. One of its variants is the edge-domatic number of a graph; introduced 
in [2]. 

We shall consider finite undirected graphs without loops and multiple edges. 
Two distinct edges are called adjacent, if they have a common end vertex. 

A subset D of the edge set E(G) of a graph G is called dominating, if for each 
e e E(G) — D there exists an edge / e D adjacent to e. An edge-domatic partition 
of G is a partition of E(G), all of whose classes are dominating edge sets of G. The 
maximum number of classes of an edge-domatic partition of G is called the edge-
domatic number of G and denoted by ed(G). 

It is sometimes convenient to consider edge-domatic colourings instead of edge-
domatic partitions. A colouring ^ of edges of G is called edge-domatic, if each edge 
of G is adjacent to edges of all colours of ^ different from its own. The maximum 
number of colours of an edge-domatic colouring of G is the edge-domatic number 
of G. This definition is evidently equivalent to the previous one. 

In this paper we shall investigate cacti. A cactus is a connected graph which has the 
property that each of its edges is contained in at most one circuit. 

Thus each block of a cactus is either a circuit, or a complete graph K2 with two 
vertices. If a cactus contains only one block, it will be called trivial; otherwise it 
will be called non-trivial. A cactus in which all blocks are circuits will be called 
round. 

The edge-domatic number of G is evidently equal to the domatic number [1] of 
the line graph of G. Therefore it easily follows from the results in [1] that ed(G) ̂  2 
for each graph G, none of whose connected components is K29 and ed(G) ̂  Se(G) + 
-f 1, where Se(G) is the minimum degree of an edge of G. (The degree of an edge is 
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the number of edges adjacent to it.) As any circuit is isomorphic to its line graph, the 
edge-domatic number of a circuit is equal to its domatic number. Thus we have the 
following propositions. 

Proposition 1. The edge-domatic number ofK2 is 1. 

Proposition 2. The edge-domatic number of a circuit is 3 if and only if its length 
is divisible by 3; otherwise it is 2. 

Thus, in the sequel we shall study only non-trivial cacti. We shall prove a theorem 
concerning round cacti. Before formulating it, we prove some lemmas. 

Lemma 1. Let G be a round cactus. Then ed(G) = 3. 

Proof. For trivial cacti this follows from Proposition 1 and Proposition 2. Let G 
be a non-trivial cactus. Let C be a terminal block of G, i.e. a block containing only 
one articulation of G. (Such a block must always exist.) The block C is a circuit and 
thus it contains two adjacent vertices u, v which are not articulations of G. The 
vertices w, v have degree 2 and thus also the degree of the edge uv is 2. Thus Se(G) = 2 
and, according to the above mentioned inequality, ed(G) = 8e(G) + 1 ^ 3 . • 

Now we shall define a certain property of a graph. 
A graph G is said to have the property P, if ed(G) = 3 and there exists an edge-

domatic colouring of G with colours such that each vertex of G is incident with edges 
of at least two colours. 

Lemma 2. Let G be a non-trivial round cactus, let C be its terminal block. Let G0 

be the union of all blocks of G except C. Let ed(G0) = 3 and let G0 have the property P. 
Then ed(G) = 3 and G has the property P. 

Proof. Let #0 be the colouring of G0 satisfying the condition of the property P. 
Let a be the articulation of G contained in C. By the assumption the vertex a is 
incident in G0 with edges of at least two colours of #0 ; without loss of generality we 
may assume that these colours are 2 and 3. Let c be the length of C and let the vertices 
of C be ui9..., uc and its edges UiUi+i for i = 1,..., c — 1 and ucul. Let a = ut. 
We shall colour the edges of C in such a way that each edge u-ui+i for i = 1 , . . . , 
c — 1 obtains the colour congruent with i modulo 3 and the edge ucut obtains the 
colour congruent with c modulo 3. This colouring together with ^ 0 gives 
a colouring ^ of G with the property that each vertex of G is incident with edges of 
at least two colours of <€. It remains to prove that <€ is edge-domatic. As # 0 is an 
edge-domatic colouring of G0, any edge of G0 is adjacent to edges of all colours 
different from its own. The edge M1M2 has this property, too, because its colour is 1 
and it is adjacent to edges of G0 of the colours 2 and 3 which are incident to a = ut. 
The edge ucui is adjacent also to these two edges of G0 and moreover to uiu2 of the 
colour 1. If 2 ^ i ^ c — 2, then the edge u(ui+1 has the colour congruent with i 
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modulo 3 and is adjacent to the edge M^JUJ of the colour congruent with i - 1 
and to the edge ui+1ui+2 of the colour congruent with i + 1 modulo 3. This proves 
the assertion. D 

Lemma 3. Let G be a cactus consisting of two circuits Cl9 C2 of lengths cl9 c29 

respectively, let c1 -£ 1 (mod 3). Then ed(G) = 3 and G has the property P. 

Proof. Denote the vertices of Cx by ul9..., uCl and the vertices of C2 by vl9..., vC2 

in an analogous way as in the proof of Lemma 2. Let the articulation of G be a = 
= «i = vv We colour the edges of Cx in such a way that utui+1 is coloured with 
the colour congruent with i modulo 3 for each i = 1,..., c1 — 1 and uClut with 
the colour congruent with ct modulo 3. As cx =£ 1 (mod 3), the edges incident 
with a have different colours. Now let <p be a cyclic permutation of {1, 2, 3} such that 
<p(l) is the colour different from the colours of the edges of C1 incident with a. We 
colour the edges of C2 in such a way that vtvi+1 for i = 1,..., c2 — 1 is coloured 
with the colour <p(j), where j e {1, 2, 3},j = i (mod 3), and vC2v1 with the colour <p(./), 
where j e {1, 2, 3}, j = c2 (mod 3). Analogously as in the proof of Lemma 2 we 
prove that this colouring is edge-domatic and satisfies the condition of the property P. 

D 

Lemma 4. Let G be a cactus consisting of two circuits of lengths congruent with 
1 modulo 3. Then ed(G) = 2. 

Proof. Suppose ed(G) = 3. Denote the circuits and their vertices in the same way 
as in the proof of Lemma 3. Without loss of generality let u1u2 be coloured with 1. 
Then M2M3, having the degree 2, must have a colour other than 1; without loss of 
generality let it be 2. Then the colouring of all edges utui+1 for i = 1,..., cx — 1 
is uniquely determined; each edge utui+1 must have the colour congruent with i 
modulo 3. The edge uClu1 must have the colour 1. Thus both the edges of C\ in­
cident with a have the colour 1. Analogously the edges of C2 must be coloured in 
such a way that both edges incident with a have the same colour. If this colour is 2 
(or 3), then uxu2 (or utuCl) is not adjacent to an edge of the colour 3 (or 2, respective­
ly). If this colour is 1, then u1u2 is not adjacent to an edge of the colour 3, either, 
and u1uCl is not adjacent to an edge of the colour 2. This is a contradiction and 
therefore ed(G) = 2. D 

Lemma 5. Let G be a round cactus with three blocks. Then ed(G) = 3 and G 
has the property P. 

Proof. Let Cl9 Cl9 C3 be the blocks of G; they are circuits. If some of them has 
the length not congruent to 1 modulo 3, then the assertion follows from Lemma 3 
and Lemma 2. Thus suppose that the lengths cl9 cl9 c3 of Cl9 Cl9 C3 are all congruent 
with 1 modulo 3. The graph G can have either one or two articulations. Consider 
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the first case. Let <px be the identity permutation of {1, 2, 3}, let <p2> <P3 be the cyclic 
permutations of {1, 2, 3} such that <p2(i) = 2, <p3(l) = 3. Let the vertices of Cy 

for j = 1, 2, 3 be u[J\ ..., u(
e
J\ and let the edges be u\J)uJ

J+
{
t for i = 1,..., Cj - 1 

and u[J}u[J). Let the articulation of G be a = u[X) = u(j2) = u^K We colour any edge 
M^M+i w^h ^ e colour congruent with <py(i) modulo 3 and any edge u{

c
J]u\J) by j. 

The reader may verify that G has the property P. Now consider the second case. 
The vertices and edges of Cj and C3 will be the same as in the preceding case. The 
articulations will be a1 = u^ and a2 = u[*\ Both al9 a2 will be contained in C2, 
Then C2 is the union of two edge-disjoint paths Pl9 P2 connecting a1 with a2. Let 
JPi> Vi be their lengths. We have pt + p2 == c2 =1 (mod 3); therefore (without loss 
of generality) either p1 = 1 (mod 3) and P2 = 0 (mod 3), or pt = p2 = 2 (mod 3). 
Let the vertices of Pt (or P2) be v09..., vpi (or w0,..., wP2) and let the edges be 
vtvi+i (or wtwi+1) for i = 0,..., px - 1 (or i = 0,..., p2 - 1, respectively). The 
notation will be chosen so that vt = wx = a1? t^ = wP2 = a2. If pt = 1 (mod 3) 
and p2 = 0 (mod 3), we colour each edge v£v£+1 with the colour congruent with (p3(i) 
modulo 3 and each edge wtwi+1 with the colour congruent with i modulo 3. Then the 
edges of C2 incident with at have the colours 2 and 3 and the edges of C2 incident 
with a2 have the colours 1 and 2. Now we colour the edges of Cx and C3 in the same 
way as in the preceding case. The graph G has the property P, as the reader may 
verify himself. If p1 = p2 = 2 (mod 3), then we colour the edges of C2 in the same 
way. The edges of C2 incident with a1 have again the colours 2 and 3, and the edges 
of C2 incident with a2 have the colours 1 and 3. The edges of C1 will be coloured as 
in the preceding case and the edges of C3 in such a way as the edges of C2 in the case 
of the articulation. Again G has the property P. • 

Now we can prove a theorem. 

Theorem. Let G be a non-trivial round cactus. Then ed(G) = 2 if and only if G 
consists of two circuits of lengths congruent with 1 modulo 3; otherwise ed(G) = 3. 

Proof. According to Lemma 1 we have ed(G) ^ 3. If G consists of two circuits 
of lengths congruent with 1 modulo 3, then ed(G) = 2 according to Lemma 4. 
Otherwise G contains a subcactus G0 consisting either of two circuits, at least one 
of which has a length non-congruent with 1 modulo 3, or of three circuits. Then from 
Lemma 3 or Lemma 5 by using iteratively Lemma 2 we obtain the assertion. • 

For cacti which are not round the theorem does not hold. For trees (which are 
a particular case of cacti) it was proved in [2] that ed(G) = 8e(G) + 1. 
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Souhrn 

HRANOVĚ DOMATICKÁ ČÍSLA KAKTUSÜ 

BOHDAN ZELINКA 

Hranov domatické číslo grafu je maximální počet tгíd rozkladu množiny jeho hran na do-
minantní množiny. Toto číslo je v článku studováno pro kaktusy, tj. grafy, v nichž každá hrana 
patří do nejvýše jednoho cyklu. 

Authoťs address: Katedra matematiky VŠST, Sokolská 8, 460 01 Liberec 1. 
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