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Summary. Boolean cluster point processes with various cluster distributions are exam­
ined by means of their spherical contact distribution function. Special attention is paid to 
clusters with strong independence properties (Poisson clusters) and regular clusters. 
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1. I N T R O D U C T I O N 

Given a stationary random closed set (RACS) X, the spherical contact distri­

bution function (or equivalently, the distribution function of contact distances) is 

the conditional probability that a ball of given radius centred at the origin o hits 

X, conditional on o not belonging to X. Together with the distribution of other 

-andom distances, it creates an important alternative to the commonly used second 

Drder characteristics for the description of the spatial arrangement of a RACS. If 

;he volume fraction p(X) of X is zero (e.g. point, fibre and surface sets), the prob­

ability Pr{o £ X} = 1 a.s. and the spherical contact distribution function is equal 

;o the Choquet (capacity) functional Tx{Br) for a family of balls Br of diameter 

3 < r < oo [10]. 

The main task of this paper is to investigate the capability of the spherical contact 

distribution function to reveal relatively small differences in the local arrangement of 

spatial pa t terns with a particular attention to local regularities. As a model struc-

- ure, the Neyman-Scott processes (i.e. Boolean models with point clusters as primary 

' The authors have been supported by the Grant Agency of the Czech Republic, project 
No. 201/93/2172 
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jrains) will be considered. The types of clusters examined range from deterministic 
irrangement (vertices of simplices and cubes) and random Ar-tuples of points in a 
)all (binomial clusters) to mixtures of clusters random in arrangement as well as in 
he number of points (Matern model [9]). The general results are illustrated by sev-
iral numerical examples showing the behaviour of models depending on the cluster 
)arameters and on the dimension of the embedding space. 

As is well known, the key term in the calculation of the spherical contact distribu-
ion function of a Boolean model is the mean volume of dilation of the primary grain, 
rhis quantity is interesting even in other applications, namely in image analysis, de-
icription of grain growth from germs, spatial tessellations etc. As the results for 
ion-convex grains are rather scarce [4], [7], the conclusions obtained in the present 
>aper can be useful also in a more general context. 

2. BOOLEAN CLUSTER MODEL 

The setting of this note will be the d-dimensional Euclidean space Rd with the 
icalar product (•, •) and the Euclidean norm || • ||. The closed ball of radius r and 
:entre a will be denoted by BT{a); if a = o we write simply Br. Sd _ 1 is the unit 
iphere. The sign © stands for the Minkowski addition of subsets of Ud. Further. vk 

s the fc-dimensional Hausdorff measure in Rd, 0 < k ^ d (in particular, vd is the 
^ebesgue measure) and Kd = vd(B\), Orf_! = ^ ^ ( S ' ' - 1 ) . 

Let Z be the space of all finite subsets of Rd with the induced myopic topology from 
;he space of compact subsets (this topology is metrizable by the Hausdorff metric). 
\ random element Z e Z will be called a random cluster. Its main characteristics 
ire card Z (number of points, called the daughters) and its size, e.g. the diameter 
iiam Z or the volume j/d(conv Z) of its convex hull. Given the distribution of Z, the 
sxpected values will be denoted by N = E(cardZ) and Vz = E(i/d(conv Z)). The 
ninimum interdaughter distance is denoted by oz = min{||j/ - z\\: y / Z,V,Z 6 Z}. 

A Boolean cluster model is the union set of a stationary Poisson point process on 
Z and can be represented in the form 

X=\J{xi + Zi), 
i = l 

vhere {xi: i = 1,2,...} is the realization of a stationary Poisson point process in 
?d (germ process) and Z; are independent copies of a random cluster Z (cf. [5], 
;8.3). The Boolean cluster model is a random closed set in the usual sense (cf. [10]) 
ind its distribution is described by the intensity A > 0 of the germ process and the 
listribution of the cluster Z. The spherical contact distribution function of X has 
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the form 

(1) Fx(r) = Pv{Br n X ^ $} = l~exp(-\Evd(Z®Br)), r > 0 

(see [10], §3.1). Note that for an arbitrary random cluster Z. the Boolean cluster 

models with dispersed clusters XR = \J(xi +RZi) converge weakly as R —> oo to the 

stationary Poisson point process of intensity NX (cf. [5], §§9.1, 9.2). 

3. M E A N CLUSTER DILATION 

The formula (1) indicates that the calculation of the mean dilation volume of the 

cluster Z, 

i>z(r) = Evd(Z®BT), 

is crucial for obtaining the spherical contact distribution function. In this section, 

we shall give formulae for particular random clusters. Since general formulae would 

be too complicated and hardly applicable in practice, we concentrate on two partic­

ular types of clusters, namely deterministic clusters with some strong regularity and 

random clusters with independent elements. 

3 . 1 . N o n - r a n d o m clus ters 

Let Z = {z1,...,zN} be any finite deterministic subset of (R .̂ We have 

N N 

(2) ipz(r) = vd(\J Br(Zi)) =J2"4Br(zi) nWi), 
i = l i = l 

where 

Wi = {x € Rd: ||a; - ft|| < \\x - Zj\\ for all j} 

is the "influence zone" of zi. For r >. 0, bi,...,bn € R and u i , . . . , u . v £ Sd~1, 
denote 

KN(r;u1,b1,...,uN,bN) = ud(BrC\{x: (x,u{) < blt..., (x,uN) ^bN}). 

In this notation we have e.g. 

Vd[Br(zi)nWi) =K$,_1(r;u2,b2,---,uN,bN) 

with uk = (zk - zx)/\\zk - zi | | and bk = \\zk ~ zi\\/2 (analogously for BT(zi) (~l Wi). 

Simplicial c lus ter . If Z is formed by the vertices of an iV-simplex, we have 

N ^ d + 1 and the vectors ut are linearly independent. We shall find a recurrence 

23 



relation for this case. The section of the halfspace {(-,uk) < bk} by the hyperplane 

Lt = {(-,uN) = t} (t G R) is the half-hyperplane 

{(;uk\N) < b'k(t)}, 

where uk\N is the normalized orthogonal projection of uk onto Lt and 

, l-t(uk,uN) 
hW = 7j . =bk-

^/l - (uk,uN)2 

Using the Fubini theorem, we get the relation (1 ^ j ̂ i) 

(3) - « . ( r ; t « i , * i , . . . , t y , 6 i ) 

= J Klf_\ (Vr3 - t-;t._y,t_(t), • • • ,u^iu,6J_.(*)) d*. 

where (6j)* = m a x ( - r , min{r, ft,-}}. In the case j = 0 we clearly have 

A r f(r) = K<*rrf. 

The formula (3) can thus be used iteratively to obtain the dilation volume of a general 

simplex. If the simplex is regular, then all summands in (2) coincide and we have 

(4) ^z{r)^NKU(r;^^v^^,...,^^v^^). 
V IK2 - 2 l | | 2 ||2jV - Zi\\ 2 I 

Explicit formulae for dimensions 2 and 3 can be found in Appendix. 

Rectangular cluster. Let Z be formed by the vertices of an m-dimensional 

rectangular parallelepiped of edge lengths o i , . . . ,a~. in Rrf. Since rotations do not 

affect the dilation volume, we can assume that the edge of length at is parallel to 

the i-th canonical basis vector e; of Rrf. Using the symmetry of Z w.r.t. hyperplanes 

{(•,e;) = | a ; } , 1 ̂  i ̂  m, we get 

i>z(r) = 2mvd{BT n {Xl < \au.. .,xm ^ \am}) 

(5) = A r f
l ( r ; e i , i a 1 , . . . , e m , i a m ) 

(cf. [7]). If, in particular, ai = • • • = a,„ = a (Z is a cubic cluster), then the last 

formula simplifies to 

(6) 0_(r)=2mfcm(»-,§«), 
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with 
km(r,b) =Ki(r;ei,b,...,em,b). 

The recurrence relation (3) reads in this case 

k" 

(7) k)(r,b) = Jky:\(y/r*-t*.b) dŕ. 

Explicit formulae for the lower dimensions are again given in Appendix. 
In the following, we shall consider random clusters with strong independence prop­

erties. 

3.2. Poisson clusters 
In general, a Poisson cluster Z is the support set of a (non-stationary) Poisson 

point process in Rd with finite intensity measure A of expectation 

N = E(A(«d)) 

(mean number of cluster points). Such a random cluster is described by the property 
that for any Borel subset A of Rrf, card(A n Z) is a Poissonian random variable of 
mean A(A). The mean dilation volume is in this case 

Vz(r) = E / lzmBt(x)dx 

= / " ( l - P r { Z n . B , . ( . i - ) = 0})da: 

= / • ! ! - e-MBr(x))\ d l . 

We will consider two particular cases of Poisson clusters. 

P o i s s o n globular cluster. Here A is the Af/(/Cdii'')-multiple of the Lebesgue 
measure restricted to the ball BR. The resulting Boolean cluster model is known as 
the Mate'rn model (see [9], [10]). We have 

(9) A(BrW)=^(BBnBrW) 

and, using the function kd introduced in the preceding section, we can express 

(10) A(Br(x)) = ^ 3 ( f c f ( / ? , - p ) + fcf(r,-9)), 
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where 
_ |lx|[2 + R2-r2 _ \\x\\2 + r 2 - R2 

P~ 2\\x\\ >q~ 2||x|| 

Poisson spherical cluster. In this model, A is the restriction of Vd-i to the 

d-sphere dBR, multiplied by N/(Od-1R
d~1). Then, 

A(Br{x)) = Od-N,Rd-ll,i-l{dBRnBr{x)) 

(11) = ^ t 2 / cos r f-20d0. 
Od-i J 

{p/R§sin»<l} 

In particular, we get 

f f f f - a r c s i n i ) for d = 2. 
A B r W = 2 V 2 *-> 

I f ( l - f ) ford = 3. 

3.3. Binomial clusters 

Given a natural number TV and a probability distribution \i on Rd, the binomial 

cluster Z is the collection of TV independent random points of distribution /J,. In fact, 

the binomial cluster is a Poisson cluster with a fixed total number of points. We 

have 

0_(r) = / ( l - Pr {Z n BT(x) = 0}) dx 

(12) = J(l-(l-»(BT(x)))N)dx. 

We introduce again two types of binomial clusters. 

Binomial globular cluster, fi = A from Eq. (10) with TV = 1. 

Binomial spherical cluster, p, = A from Eq. (11) with A' = 1. 



4. N U M E R I C A L RESULTS 

Five types of clusters in R2, R3 described above will be now compared numerically 

at selected equal values of the mean number of daughters N and equal cluster size 

parameter R € (0,2.5/A1!"1]. R is the radius of the minimum circumscribed ball in the 

case of regular clusters and plays a similar role also in the case of Poisson (binomial) 

globular and spherical clusters (cf. Section 3.2). The selected upper bound for R 

corresponds roughly to five times the mean nearest neighbour distance of the parent 

point process F( l + l/d)/(\Kd)1^d, so that the clusters can overlap extensively. In 

particular, the following clusters are considered: singletons (N = 1), point pairs 

(N'== 2), regular clusters with N = 2d (the clusters formed by the vertices of a d-

cube inscribed into a d-ball of radius R) in R2, R3, and regular simplicial clusters with 

N = 3 (the regular cluster formed by the vertices of an equilateral triangle inscribed 

into the circle of radius R) in R2. The various cases are denoted by the following 

indices marking special cases of Z: BS, BG denote the binomial spherical (circular) 

and globular clusters, resp., the indices PS, PG the corresponding Poisson clusters, 

resp.—hence PG is the Matern cluster; RG denotes the regular clusters. Further, 

P is used for the Poisson point process of intensity A (parent process) and D for 

the Poisson point process of intensity NX ("Poisson point process of daughters"). 

The unit intensity A = 1 of the parent process is assumed in all calculations. The 

mean cluster cardinality TV will be sometimes added in parentheses (e.g., BS(Z) is 

the binomial spherical random cluster with N = 3). 

Before examining the mean volumes of dilations and distributions of spherical 

contacts, the mean cluster sizes Vz = E(i/rf(convi?)) will be compared. 

4 . 1 . C l u s t e r sizes 

The expected volume for binomial clusters, namely for N independent randomly 

distributed points either in the interior of a unit ball - VBG{N) ~ o r o n its boundary -

VBS{N) ~ have been calculated by Miles [6], Buchta [3] and Affentranger [1] (in their 

notation, VNfi, V0
d
N stand for VBG(N), VBS{N), respectively). The expected volumes 

of the convex hulls of the corresponding Poisson clusters are 

(13) VPa{N)= J T VBG(i) Pr{n = i} , VPS{N) = J T VBS{i) Pr{n = i}, 
i=d+l i=d+l 

where n is a random Poissonian variable of mean JV, i.e. Pr{n = i] = e~NN'/i\. 

The corresponding estimates of the expected values of V for all clusters considered 

are given in Table 1 (some higher values of N not considered here are included in 

order to show that the limit values K, 2TC and, in particular, 4TC/3, 4K are approached 

rather slowly). The comparison of the values is partly obscured by the presence of 
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binomial clusters of zero volumes VBS(N)> VBG(N) (N = 1,2 for d = 2 and N = 1. 2.3 

for d = 3). Consequently, the Poisson clusters are greater than the binomial ones 

in all these cases as they always include also clusters of non-zero Lebesgue measure. 

Beginning with N = 4 (6 in K 3), the binomial clusters are always greater than the 

Poisson ones. It can be simply shown that the spherical dilations of regular clusters 

considered are always the greatest ones even when V(BG) = 0. 

N VpG(N) VвG(N) VpS(N) VвS(N) VRG(N) 

1 0.024 0 0.049 0 0 
2 0.123 0(0.905) 0.250 0(1.273) 0(2.000) 

d = 2 3 0.274 0.232 0.554 0.478 1.299* 

4 0.446 0.464 0.889 0.955 2.000* 

5 0.617 0.666 1.210 1.350 2.378* 

10 1.259 1.317 2.252 2.376 2.939* 

1 0.001 0 0.003 0 0 

2 0.014 0(1.029) 0.031 0(1.333) 0(2.000) 
d = 3 3 0.045 0(0.367) 0.102 0(0.628) -

4 0.096 0.053 0.215 0.120 0.513** 

8 0.397 0.403 0.856 0.889 1.540* 
10 0.555 0.573 1.173 1.230 -

* regular polygon, * 

Table 1: Volumes of conv 
with R = 1 for selected 
dimensional measures of 
are given in parentheses. 

regular tetrahedron, ' cube 

sx hulls of binomial, Poisson and regular clusters 
mean numbers of daughters N. The (N — 1)-
•onv Z for binomial clusters with N = 1, 2 and 3 

4.2. M e a n v o l u m e s of d i l a t i o n 

The convex hull of a point cluster can be roughly considered as a convex genu 

of the dilation tf>z{r) ~ ipcomz(r) for sufficiently high r (i.e. exceeding one half of 

the diameter of Z). Consequently, on the basis of Table 1, the following sequence 

of inequalities can be expected for clusters of the same parameter JV and sufficiently 

high r: 

(14) iPD(r) = NtpP(r) % <l>RG(r) Z d-'Bs(r) 

>*pS{r)2il>BG{r)>il>PG{r)>il>p{r). 

Here ipp(r) = K,dXd and the remaining functions are calculated using the formulae 

(2), (5), (8) and (12). Figure 1 demonstrates this behaviour; the seemingly smooth 

passage from WD(r) to i/>p(r) is disturbed only in the case of regular clusters which 

follow the ipD-curve up to one half of the minimum interdaughter distance r = ORC;/2 

and only then start to grow more slowly (ORG = 2R in the case of pairs, 2Rj\J(l 
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0 . 0 5 0 . 2 5 r 

Figure 1. The mean spherical dilation i>z(r) for planar Boolean cluster models with clusters 
of N = 3 points in mean and size R = 0.2 (the regular cluster is formed by the vertices of 
the equilateral triangle). The upper (D) and lower (P) dotted envelopes correspond to the 
daughter and parent Poisson processes, dash-dotted line to regular clusters, dashed lines 
to circular clusters and full lines to globular clusters; thick lines describe Poisson clusters, 
thin lines the binomial ones. 

in the case of 2--clusters and R^/2(l + d~l) for regular simplices). The detailed 

behaviour of ipz(i') at small values of r is seen best by considering the derivative 

9z(r) = dii>z(r)/d(rd), which for the cases P and D takes on the constant values Kd 

and NK,I, respectively -- Figure 2. Note that this derivative equals, up to a constant 

factor, the hazard rate introduced recently by Baddeley and Gill [2] into distance 

methods by analogy with the survival analysis. 

The differences between the shapes of ip(r) for the three basic cases, namely regu­

lar, globular and spherical clusters, as well as the range of substantial changes in the 

passage from ipo(r) to il)p(r) are clearly revealed in Figure 2. At the chosen value of 

R, the inflexion points of gz(r) correspond to the maxima or inflexion points of the 

density function fz(r) = dFz(r)/dr of the corresponding Boolean cluster models 

visible in Figure 3 at r = aRG/2 or slightly below it. These features are much less 

perceptible at other values of R. At small N (especially at N = 1) or at high R, 

the inequality (14) does not hold any more because of the effects considered below 

in connection with the spherical contact distribution function and its moments. A 

more detailed discussion concerning the behaviour of ipz(r) and ~-(r) will be given 

in [8], 
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0 .2 0 .4 0 .6 0 .8 1 

Figure 2. The derivative gz(r) = d^z( r ) /d ( r d ) for the same case as in Figure 1. 

4 .3. Spherical contact distribution function and its moments 

We consider now the spherical contact distribution function (1) of the Boolean 

cluster model corresponding to the given random cluster Z and the Poisson parent 

process of unit intensity. The distribution function will be denoted by Fz(r) and its 

probability density function by fz(r). 

An example of the shape and order of Fz(r) and fz(r) is given in Figure 3 (the 

sequence of inequalities (14) implies an analogous sequence for Fz(r) everywhere 

and for fz(r) in a certain limited range of r ) . The basic frame of the picture are 

the envelopes FD(N)(r), FP(r). The equality FD{N)(r) = FRG(N)(r) holds always 

for r ^ aRG/2 and is the most typical feature of regular clusters. Further, the 

inequalities 

FD{N)(r) Z FRG(N)(r) :> FBS(N)(r) > FBG{N)(r) > FF(r) 

also nearly always hold (the exception is the behaviour of BS clusters of great size, 

see below). The distribution functions of regular and binomial clusters approach 

FP(r) at R —> 0, they shift without crossing toward FD{N)(r) with growing R and 

approach FD(N)(r) at R —> oo. These rules also explain the corresponding values of 

the general moments 

/4fc>= fVdF z (r) . 
./o 

The first moments (k = 1) are given in Table 2. Its inspection shows that the values 

of moments intermediate between those of the parent (fiy = K J 1 ' T(l + d - 1 ) ) and 



F(r) 
l r 

/,'У 
/ /'-> 

/ /'/ 
/ / / 

/ / // 
/ У> 

//// 

0 . 4 0 . 6 

Figure 3. The spherical contact distribution function Fz(r) 
fz(r) for the same case as in Figure 1. 

ad the corresponding p.d.f. 

the daughter (MD'TV) = [NKd^^Tfi +d 1)) Poisson point processes correspond to 

the cluster sizes 0.1 < R ^ 0.5. The values of fiz behave similarly. 

The behaviour of Poisson clusters is more complex and its understanding requires 

a more detailed consideration. The probability of a void cluster Pr{n = 0} = e " ^ 

is appreciable for small N. Therefore, when R. —> 0, the Poisson cluster processes 

approach the Poisson process of "multiple" points of reduced intensity 1 — e~N, which 

is as low as 0.632, 0.856 and 0.950 at N = 1,2,3, respectively. Consequently, the 
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S I N G L E T O N S N = 1 

P PG BG PS BS RG D 

.00001 

.0001 

.01 

.1 

.2 

.5 
1.0 
1.5 
2.0 
2.5 
5.0 

г~ .627124 .627124 .627124 .627124 
.6271 .6271 
.6257 .6256 
.6133 .6079 
.6002 .5904 
.5674 .5517 .5 .5 

.5344 .5239 

.5194 .5153 

.5119 

.5080 

.5112 
.5089 

.5119 

.5080 

.5014 .5003 

1 

P A I R S N = 2 IN T H E PLANE 

PG BG PS BS RG D 

.5348 

.5112 
.5337 
.5013 

.4313 

.3860 

.3696 

.4095 

.3777 

.3688 

.3625 .3596, .3580 

.4970 .4959 .4936 

.4728 .4627 .4441 

.4015 .3850 .3589 .3536 

.3706 .3658 .3536 

.3616 .3613 .3536 

.3566 1 .3536 

P A I R S N — 2 IN T H E SPACE 

PG BG PS BS RG D 

.01 .5789 

.1 I .5578 

.5 

1.0 

1.5 

2.5 

M .5512 

.5540 .4872 

.4533 

.4446 

.4722 

.4480 
4433 

4410 .4409 , .44032 ,.44029 

5514 .5506 .5490 

5298 .5233 .5098 

4685 .4579 .4423 .4397 

4467 .4439 .4397 

4422 .4415 .4397 

44029 1 .4937 

Table 2. The first moment \iy

z' for various Boolean cluster models of different parameters 
0 < R < 2.5 (A = 1). The columns of the table are arranged in the sequence P, PG, BG, 
PS, BS, RG, D, following the inequality (14). The values of moments in rows are arranged 
in the decreasing setup from left to right. Consequently, if some moment value does not 
conform with the prescribed order of columns, it is put into a frame and shifted (the path 
is usually shown and marked by an arrow) to the correct place in the row. The values 

(1) ,.U) elling most of all are denoted by different fonts: iipc are bold, t-ips are italics. 



R E G U L A R TRIADS N = 3 IN THE PLANE 

.5128 

.5090 
.51X8 
.5076 

PG 

.4760 | 

.3708 

BG PS BS RG D 

.5 
.4956 
.4590 

.5 .5 

.4939 .4917 

.4439 .4241 

.2976 

.3189 | .3130 | .3095 
.3041 f .3028 ].2991 | .2980 
.2947 i .2938 
—I < 

3526 .8465.3303 .2962 .2887 
.3051 .2887 

R E G U L A R QUADRUPLES (SQUARE VERTICES) N = 4 IN THE PLANE 

PG BG PS BS RG D 

.5045 .5045 
.4999 
.4595 
.3346 
.2785 

.2590 
.2657 | .2628 
.2568 , .2546 

.5 .5 .5 
.4947 .4927 .4910 
.4505 44)3'9 .4328 .4155 
.3219 .3093 .2974 .2607 .25 

.2687 .2500 
.2618 ,.2596 | .2501 

.2534 * .2500 

.2747 .2718 

1.0 
1.5 
2.5 

R E G U L A R OCTUPLES ( C U B E VERTICES) Ar = 8 IN T H E SPACE 

PG BG PS BS RG D 

.0001 | .55393 | 

.01 

.55391 .55387 

.5540 

.5480 

.4964 

.3401 

.2888 

.55385 .55384 

5477 .5465 .5462 .5453 

.2807 .2806 

.2781 .2778 

.4944 .4825 .4799 

.3360 .3169 .3132 

.2874 .2856 .2845 

.2802 | .2802 

4708 
2888 
2770 
2770 
2770 

(The wandering of Poisson clusters at low values of R is caused by the presence of "void 
clusters" and its range decreases with growing N. The movement of spherical clusters at 
high values of R is caused by their slower convergence to the daughter Poisson process and 
is more important at higher N.) 
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inequalities 

FPG(N)(r) < FPS{N)(r) < FP(r), „£> <: »%{N) <: tfG(N) 

hold in all examined cases for sufficiently small R and the reversed order of distri­

bution functions and moments is the more pronounced the smaller is TV - compare 

Table 2. In fact, in the case of clusters with N = 1, the moments of Poisson cluster 

processes are higher than fip' for arbitrary R and, for N = 2, the above inequalities 

hold even at R = 0.1 in the planar case. 

The second effect is connected with great size clusters and is less pronounced. 

It seems that the convergence of spherical clusters to the daughter process D is 

slightly slower than that of globular clusters; therefore especially the PS clusters 

differ considerably from the process P. The suspicion that this effect'might be caused 

by numerical inaccuracies has not been confirmed. On the other hand, the random 

arrangement of points tied firmly to the sphere is not entirely dissolved unless R is 

very high and some manifestation of it can be reasonably expected. 

In order to summarize the results of Table 2, we can evaluate the relative increase 

due to clustering of given type Z in the moments of the spherical distances, namely 

(neglecting the effect of void clusters occurring at R -> 0 for Poisson clusters and 

important at small N only) 

(fc) 
(15) A « - . Ufa - 1 < Nk'd - 1 = A(

P
4). 

/ ' D 

Hence, the effect of clustering decreases with growing dimension if N is constant 

(compare the results for pairs in R2 and R3) and is independent of dimension for 

2d-clusters. Considering the effect of R, the cluster processes are mutually indistin­

guishable at very small R and the equality in (15) approximately applies. At medium 

values (0.1 < R ^ 0.5), the possibility to resolve various processes is greater and can 

be roughly evaluated by the difference £\PG - A/^L It equals roughly 0.5Ap' for 

pairs and lies between O.lAp1' and 0 . 3 A ^ for 2''-clusters in R2 and R3. At the 

values of R >. 1. the above difference quickly decreases, in particular for d > 2. 

5. APPENDIX 

We shall give explicit formulae for the dilation volume of particular regular clusters 

in dimensions 2 and 3. 

R e g u l a r s implex . Let u, v be two unit vectors in K2 of mutual angle jt/3. If Z 

is formed by the vertices of an equilateral triangle of edge length a, then by (4), 

^(r )=3 ir | ( r ;„ , | , V ) | )=^( | ; U ,M, l ) . 

34 



For its calculation we shall use simple geometrical considerations, rather than the 
recurrence relation (3). The set 

{x e K 2 : | |x | | s: r, (x,«) sc 1, (x,v) sc 1} 

can be partitioned into a finite number of sectors and rectangular triangles and its 
area is 

(
ra-2, r s: 1, 

( i L - 2 a r c c o s i ) r 2 + 2 v
/ r 2 - l , 1 < r s: ^ , 

( f - arccos i ) r 2 + vV2 - 1 + ^ - , r ^ 4 j . 
For the three-dimensional case we obtain by integration 

' f r 3 , r s: 1, 

2-(r 2 - §), 1 < r <= -fc, 
(17) ią(r-u,l,v,l) = { 

• arccos 

+ (rc — arccos ľз-

Cubic cluster. Using the formula (7), the following expressions for the function 

fc*-(r, 1) can be obtained. 

(18) fcí(r,l) = 
2r, r < 1 

(19) ќ 2 ( r , l ) = 

(20) 

r + 1, rЏl 

n r 2 , r sC 1 

(n - arccos \)r2 + vV2 - 1, r > 1 

îir2, r s; 1 

fc^fr, 1) = !, (n - 2 arccos i ) r 2 + 2vV2 - 1, 1 sC r s: \/2 

( f - arccos ~)r2 + / r 2 - 1 + 1, r ^ \ /2 

*!•», r < 1 
(21) fcf(r,l) = 

(22) fc|(r,l)= < 

-(Y + '-2-!) , r>l 

-2 

r sc 1 

2 ^ 2 - f ) , 
^ arccos j a t î + §vV2 - 2 

+ (''2 ~ I ) (я + 2 arcsin ^ 4 = ^ ) , r Џ v-2 
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(23) *|(r,l) = + (6 r 2 -2 )a rcs in^ - - j ) , \ / 2<»-< \ /3 

.resin 7 0 ^ m + v7'-2 - 2 + 1 

+ (3r2 - l)(f + arcsin 7-J-7), r > \/3. 
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