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Summary. In this paper the notion of an interval in a partial monounary algebra is introduced
and pairs (4, f), (4, g of partial monounary algebras are investigated such that each interval
in (A4, f) is also an interval in (4, g), and conversely.
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1. PRELIMINARIES AND RESULTS

G. Birkhoff and M. K. Bennett [4] dealt with pairs of partially ordered sets P,
and P, which arc¢ defined on the same underlying set such that each convex subset
of P, is, at the same time, a convex subset of P, and conversely. For further related
results of the same authors cf. [1]—[3]. V. Slavik [8] studied an analogous question
for lattices, replacing convex subsets by intervals. The system of all intervals of
a lattice was studied by M. Kolibiar [7].

Pairs of partial monounary algecbras defined on the same set and having the same
convex subsets were investigated in [5].

In the present paper the notion of an interval in a partial monounary algebra will
be defined (by applying the notion of a convex subset). Pairs of partial monounary
algebras (4, f) and (4, g) possessing the same intervals will be dealt with.

For the basic definitions and notation concerning partial monounary algebras
cf. [5]. Let % be the class of all partial monounary algebras. If 4 = 0 is a set, then
F(A) is the system of all partial mappings of 4 into A. The set of all {positive) integers
is denoted by Z(N).

To each partial monounary algebra (4, f) there corresponds a directed graph
G(A,f) = (A, E) without loops and multiple edges which is defined as follows:
an ordered pair (a, b) of distinct elements of A belongs to E iff f(a) = b. (The
nonexistence of loops is a consequence of the fact that in our definition of an edge
(a, b) it is assumed thata + b.) -

A subset B of A is said to be convex (in (4, f)) if, whenever a, b, and b, are distinct
elements of A such that by, b, € B and there is a path (in G(4, f)) going from b, to b,
and containing a, then a belongs to B as well.
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Let a, be A. Assume that therc is ne N U {0} such that b = f"{a). The least
convex set containing @ and b will be called an interval in (A, f) and denoted by
[a,b],.

We denote by Int (4, f) the system of all intervals in (4, f) including @ and by
Co(4, f) the system of all convex subsets of (4, f). Both these systems are partially
ordered by inclusion. Then Co(4, f) is an atomic lattice (cf. [6]) and Int(A /) fails
to be a lattice in general.

The notion of coherency for connected partially ordered sets was introduced
by Birkhoff and Bennett [4]. In [5] an analogous notion for connected partial
monounary algebras was defined; by this definition a connected partial monounary
algebra (4, f) is non-coherent if either {i) card 4 = 2, or (ii) there are a,c€ A4,
a #+ c with f(a) = ¢, f~'(a) = 0 and either f(c) = c or f(c) does not exist. A partial
monounary algebra (4, f) will be called coherent, if no connected component of
(A. f) is non-coherent.

In [5], Thm 6.3, all partial operations g on A with Co(4, f) Co(4, g) were
described for a given partial monounary algebra (4, f).

By applying results of [5] the following theorems will bs proved in Section 2 of
the present paper. v

1.1. Theorem. Let (A,f), (4,g)e%. Then Int(d,f) = Int(4,g) implies
Co(4, f) = Co(4, g). :

1.2. Theorem. Let (A, f) € %, let (A, f) be not coherent. Then there exists (4,9)€
€ U such that Co(4, f) .= Co(4, g) and Int(A, f) + Int(4, g).

1.3. Theorem. Let (A,f),(A4,g)e% be coherent. Then Co(A, f) = Co(4, g)
implies Int(4, f) = 1nt(4, g).
Let (4, f) be a given partial monounary algebra. In Section 3 we describe all partial
monounary algebras (4, g) such that Int(4, f) = Int(4, g).

2. PROOFS OF 1.1—-1.3

Proof of Thm. 1.1. According to the definition of intervals and convex sets
we have

(1) BeCo(d, f) < (Vby, by € B) (if [by, b,], exists then [b,, b,], < B).
If Int(4, f) = Int(4, g), then (1) yields that the following conditions are equivalent
(i) Be Co(4, f)
(ii) (Vby, b, € B) ([by, b2] exists = [b, b,], < B),
(ii) (Vby, bz € B) ([, b2], exists = [by, b, ], < B),
(iv) BeCo(4, 9)- ;
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Proof of Thm. 1.2. Let (4, f) € %, let (A, f) be not coherent. Then there exists
a connected component A, of (4, f) such that either (i) card 4; = 2 or (ii) there
are a, c € A, a * ¢ with f(a) = ¢, f~!(a) = 0 and either f(c) = ¢ or f(c) does not
exist. First, let card 4, = 2, A; = {u, v}. Put

g(x) = f(x),‘ if xed-4,,
X, if xed,.
It is obvious that Co(4, f) = Co(4, g). Further, [u, v], = {u, v} ¢ Int(4, g), hence -
Int(4, ) # Int(4, g). Now let (i) hold. Put
9(x) = [f(x), if xed - {a},
x, if x=a.
Obviously, Co(4, f) = Co(4, g), [a,c]; = {a,c} ¢ Int(4, g), thus Int(4,f) *
+ Int(4, g).

2.1. Lemma. Let (N, f,)(fori = 0, 1,2, 3) be such that fo(n) = n + 1, fi(n + 1) =
= fo(n + 1) = f3(n + 1) = n for each neN, fi(1) = 1, f5(1) = 2 and f,(1) does
not exist. If g€ F(N), i € {0, 1, 2, 3}, then Co(N, f;) = Co(N, g) implies Int(N, f,) =
= Int(N, g).

Proof. Let i€{0,...,3}, (N, g)e#. Then Co(N, g) = Co(N, f,) if and only if
g € {fo, f1,f2, f3} (cf. [5], Thm. 5.3.2). Further, if g € {fo, f1, /2, f3}, then the relation
Int(N, g) = Int(N, f;) follows immediately from the definition of intervals.

2.2. Lemma. Let N, = {1,2,...,n}, n > 2 and assume f,(k) = f1(k) = f3(k) =
=k — 1 for each keN, — {1}, fi(1) =1, f(1) does not exist, f5(1) = 2. If
g€ F(N,),ie{1,2,3}, then Co(Ny, f;) = Co(N,, g) implies Int(N,, f;) = Int(N, g).

Proof. Letie {1, 2, 3}. Putf,(k) = fs(k) = fe(k) = k + 1foreach ke N, — {n},
fu(n) = n, fs(n) does not exist, f¢(n) = n — 1. According to [5], Thm. 5.3.3,
{9 € F(N,): Co(Ny, f)) = Co(Ny, 9)} = {f1s f2 -+ S} -

It is clear that Int(Ny,f;) = Int(Ny,f;) for each je({l,...,6}, thus Co(N,, f,) =
= Co(N;, g) implies Int(N, ;) = Int(Ny, g).

2.3. Lemma. Let (Z, f) be such that f(k) = k + 1 for each k € Z, g € F(Z). Then
Co(Z,f) = Co(Z, g) implies Int(Z, f) = Int(Z, g).

Proof. Put h(k) = k — 1 for each k € Z. Then (in view of [5], 5.1), {g ¢ F(2):
Co(Z, f) = Co(Z, g)} = {/, h}, and the assertion of the lemma is obvious.

2.4. Lemma. Let (A, f) be a Eonnected monounary algebra possessing no cycle
and such that there are a,be A, a + b with f(a) = f(b). Further, let g e F(A).
Then Co(A,f) = Co(A, g) implies Int(4, f) = Int(4, g).
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Proof. The assertion follows from the fact that {g € F(4): Co(4, f) = Co(4, )} =

= {f} (cf. [5], 5.1).

2.5. Lemma. Let (A, f) be a coherent partial monounary algebra and let c be
an element such that one of the following conditions is satisfied: (a) f(c) = ¢,

card f ~!(c) = 2, (b) f(c) does not exist, card f ~!(c) = 1, (c) f~(c) = {f(c)} * {c}.
If (A, g) € U is coherent, then Co(A, f) = Co(A, g) implies Int(A, f) = Int(4, g).

Proof. Put fy(x) = fa(x) = f3(x) = f(x) for each xe 4 — {c}, fi(c) = ¢, fa(c)
does not exist and f3(c) = a, where {a} = f~*(c) — {c} (such a exists and is uniquely
determined). We have

{g € F(A): (4, g) is coherent, Co(4,f) = Co(4, 9)} = {f1,f2.f3} >

in view of [5], 5.4.2. Since Int(4,f) = Int(4,f;) for i = 1,2,3, we obtain that
Co(4, f) = Co(4, g) implies Int(4, f) = Int(4, g).

2.6. Lemma. Let (A, f) be a coherent partial monounary algebra and let ce A
be such that card (f~*(c) — {c}) 2 2 and either f(c) = ¢ or f(c) does not exist..
If (A, g) € % is coherent then Co(A, f) = Co(A, g) implies Int(4, f) = Int(4, g).

Proof. Let f}, f, be defined analogously as in 2.5. Then [5], 5.5.2 implies

{g € F(A): (4, g) is coherent, Co(4, f) = Co(4, g)} = {f1,f2} -
We obtain the assertion of the lemma similarly as above.

2.7. Lemma. Let (A, f) be a coherent connected monounary algebra possessing’
a cycle with more than 1 element. Assume that there exists no c € A satisfying the
condition f~*(c) = {f(c)} # {c}. If g e F(A), then Co(A4,f) = Co(4, g) implies:
Int(4, f) = Int(4, g).

Proof. Let C = {cy, ..., ¢,} be the cycle of (4, f) and let S, be the set of all
permutations of 1, 2, ..., n. For a € S, put f,(x) = f(x)foreachx e 4 — C, f,(c,i)) =
= cyi+1yforcachie{1,2,...,n — 1}, f(csm) = Cu(1)- According to [5], Thm. 5.6.2,,
we have

{g € F(4): Co(4,f) = Co(4, g)} = {fu: € S,} .

Further, Int(4, f,) = Int(A, f), which proves the assertion of the lemma.

2.8. Corollary. Let (A, f),(4,g) be coherent connected partial monounary-
algebras. Then Co(4, f) = Co(4, g) implies Int(4, f) = Int(4, g).

Proof. Since (4, f) is connected and coherent, we have card 4 > 2. If (4, f) is.
complete, contains no cycle and there are a, b € 4, a + b with f(a) = f(b), then the
assertion follows from 2.4. If (4, f) is complete, contains no cycle and f(a) = f(b).
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implies a = b for each a, b € A, then (4, f) is isomorphic to (N, f,) from 2.1 or to
(Z, fo) from 2.3. If either (4, f) posesses a cycle with at least 3 elements or (4, f)
possesses a cycle with 2 elements c,, ¢, and there are d,,d, e A — {c,, ¢;} with
f(dy) = ¢y, f(dy) = c,, then (A4, f) possesses a cycle with more than one element
and there is no ¢ € 4 with f~'(c) = {f(c)} # {c}; in this case the required assertion
is obtained by virtue of 2.7. Now assume that (A4, f) possesses a cycle {c,d}, ¢ + d
and that f!(c) = {d}. Then (4, f) satisfies the condition (c) of 2.5 and thus 2.5
implies the assertion. If there is ce€ A with f(c) = ¢ and card(f "'(c) — {c}) 2 2,
then 2.6 yields that the assertion is valid. If ¢ € 4, f(c) = c and card(f ~*(c) — {c}) <
< 2, then card(f~*(c) — {¢}) = 1, card f7!(c) = 2 and we can use 2.5(a). Now
assume that there is ¢ € A such that f(c) does not exist. Again, either card(f ~'(c) —
—{c}) 2 2 or card(f7'(c) - {c}) < 2, ie., either card(f " *(c) — {c}) 2 2 or
card f7(c) = 1; hence 2.6 or 2.5(c) yield that the assertion of the corollary holds.

Proof of Thm. 1.3. Lat (4, f), (4, g) be coherent partial monounary algebras
such that Co(4, f) = Co(4, g). It follows {rom [5], Thm. 4.9, that (4, f) and (4, g)
have the same connected components. Further, ii’ A’ is a connected component of
(4, f) and of (4, g), then Co(4’, /) = Co(A4’, g). According to 2.8 we obtain

Co(A4’,f) = Co(4’,g) implies Int(4’,f) = Int(4’, g),

and hence the assertion of Thm. 1.3 is valid.

3. PAIRS OF PARTIAL MONOUNARY ALGEBRAS
WITH COMMON INTERVALS

Let (4, f) be a given partial monounary algebra. In this séction we describe the
method of construction of all partial monounary algebras (4, g) such that Int(A f)
= Int(4, g).

3.1. Lemma. Let (A,f)e %, x, y € A. Then x and y belong to the same connected
component of (A, f) if and only if there exist z € A and B,, B, € Int (4, f) such that
{x,z} = B, and {y,z} = B,.

Proof. If x, y belong to the same connected component of (4, f), then there are
m,neNu {0} such that f"(x) = f™(y). Put z = f"(x). Then {x,z} =[x, z] €
elnt(4, ), {», z} < [y, z]; e Int(4, f). Conversely, let z € 4, {x, z} < By €Int(4,f),
{y,z} < B, €Int(4,f). Then x and z (y and z) belong to the same connected com-
ponent of (4, f), therefore x and y belong to the same connected component of (4, f).

3.2. Corollary. Let (4,f), (4, g)e %, Int(4,f) = Int(4, g), 0 + B < A. Then B
is a connected component of (A, f) if and only if B is a connected component of

(4, 9).
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3.3. Lemma. Let (A,f), (4, g) e, Int(A,f) = Int(4, g)andlet B < A, card B >
> 1. Then B is a coherent connected component of (A, f) if and only if B is a co-
herent connected component of (A, g)-

Proof. Let B be a coherent connected component of (4, f). According to 3.2,
B is a connected component of (4, g). Further, the relation Int(4, f) = Int(4, g)
implies Int(B, f) = Int(B, g), thus Thm. 1.1 yields Co(B, f) = Co(B, g). In view of
[5], 6.3 and 6.2.2 we obtain that (B, g) is coherent.

3.4. Lemma. Let (A,f)e%, ae A. Suppose that the connected component of
(A, f) containing a has more than two elements and is non-coherent. Then the fol-
lowing conditions are equivalent:

(i) f(a) = a or f(a) does not exist;
(i) if X = {xe A — {a}:{x,a} eInt(A, f)}, then card X Z 2 and {a, x,, x,} ¢
¢ Int(A, f) for each x,, x, € X, x; * x,.

Proof. Let (i) hold. According to the definition of intervals, X is the set of all
x€A — {a} such that f(x) = a. Since the connected component containing the
element a is non-coherent, there is x € X with f ~!(x) = 0. Further, this component
contains more than two elements, thus there is ye X, y # x. It is obvious that
{a, x;, x,} ¢ Int(4, f) for x,, X, € X, x; + x,. Now suppose that (ii) is valid and that
(i) fails to hold. Put f(a) = b. Then b # a, b e X. Since card X 2 2, there is x €
€X — {b}. Then xef~'(a), but {x,a, b} €Int(4, f), which is a contradiction.

From 3.2, 3.3 and 3.4 we obtain

3.5. Corollary. Let (A, f), (4, 9) € %, Int(A, f) = Int(A, g). Suppose that a e A,
the connected component of (A, f) containing a has more than two elements and
is non-coherent. Then the following conditions are equivalent:

(i) f(a) = a or f(a) does not exist;
(i) g(a) = a or g(a) does not exist.

3.6. Lemma. Let (A, f), (4, 9)e %, Int(A,f) = Int(A, g). Suppose that ac A,
the connected component B of (A,f) containing a has more then two elements and
is non-coherent. Further, assume that either f(a) = a or f(a) does not exist. If

x € B — {a}, then f(x) = g(x).
Proof. According to 3.2 and 3.5 we obtain

(1) Bis a connccted component of (4, 9),
(2) either g(a) = a or g(a) does not exist.
Thm. 1.1 implies that Co(B, fj = Co(B, g)- Put

B, ={yed—{a}:f(y) =a, f'(y) =9}
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Then (1), the relation Co(B, f) = Co(B, g) and [5], 3.2 yield
B, ={yed - {a}: 9(y) =a, g7 Y(y) = 0}.
Therefore we obtain
(3) g(») = f(y) for each y € B,.

If B — B, = 0, then the assertion nnder consideration is valid. Let B, = B — By ¥ |
% (. We get that B, is a coherent connected subalgebra of (4, f) (if B, is non-
coherent, then the definition implies that there is x € B, — {a} with f(x) = a,
f~Y(x) = 0,i.e., B; n B, * 0). Further, B, is a coherent connected subalgebra of
(4, g) and Co(B,, f) = Co(B,, g). Then (B,, f) is isomorphic to some of the partial
algebras considered in 2.1, 2.2, 2.5 or 2.6. In the proofs of these lemmas we have
described (up to isomorphism) all partial algebras (B,, k) with Co(B,, f) = Co(B;, h).
Hence in view of (2) the relation Co(B,, f) = Co(B,, g) implies that g(x) = f(x) for
each x € B,. According to (3), g(x) = f(x) for each x € B — {a}.

3.7. Notation. For (A, f) € % let C(f) be the set of all elements of A which belong
to a coherent connected component of (A,f) possessing more than one element.
The set of all a € A such that the connected component containing a has more than
two elements, it is non-coherent and either f(a) = a or f(a) does not exist, will be
denoted by the symbol T(f). Further, let Q(f) be the set of all xe A — T(f) which
belong to the same connected component as some a € T(f).

3.8. Theorem. Let (4, f), (A4, g) € %. The following conditions are equivalent:

(i) Int(4, f) = Int(4, g);

(i) (a) (A, f) and (A, g) have the same connected components;
(b) C(f) = C(g) and Co(C(f),f) = Co(C(g). 9);
(c) T(f) = T(g);
(@) Q(f) = Q(g) and f(x) = g(x) for each x € Q(f).

Proof. Let Int(4, f) = Int(4, g). Then 3.2, 3.3 and 3.5 imply (a), (b) and (c).
Using (a)—(c) we obtain that Q{f) = Q(g) and then 3.6 yields that (d) holds. The
converse implication follows from Thm. 1.3 and the definition of intervals.

Let us now describe how we will proceed by looking for all partial monounary
algebras (4, g) such that Int(4, f) = Int(4, g), if a partial monounary algebra
(A, f) is given. (In this procedure we shall repeatedly apply Thm. 3.8 without men-
tioning it explicitly.) '

The partial monounary algebras (4, f) and (4, g) must have the same connected
components. Thus it suffices to investigate all § = B < A, where B runs over the
set of all connected components of (4, f).

Let B be a connected component of (4, f). There are three possible cases:
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1) card B £ 2. Then g on B can be defined in an arbitrary way, only B must be
a connected component of (4, g).

2) B = C(f), i.e., B is a coherent connected component o (4, f), card B > 1.
Then we consider the condition Co(B, f) = Co(B, g) and look for all g on B fulfilling
this condition. Here we have to proceed as in [5], § 5. The partial algebra (B, f) is
isomorphic to some of the partial algebras considered in 2.1-2.7. In the proofs
of 2.1-2.7 we have described (up to isomorphism) all partial algebras (B, g) with
Co(B, f) = Co(B, g). E.g., if (B, f) is isomorphic to (Ny, f,) from 2.2, then for g
on B we have six possibilities.

3) Bn T(f) = {a}, i.e., there is a € B such that cither f(a) = a or f(a) does not
exist, where card B > 2 and B is nocn-coherent. Then we have two possibilities for g
on B: either g(a) = a or g(a) does not exist, and if x € B — {a}, then g(x) = f(x).
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Sthrn

INTERVALY V PARCIALNYCH MONOUNARNYCH ALGEBRACH

DaANIcA JAKUBIKOVA-STUDENOVSKA, KoSice
-

V ¥lanku se zavadza pojem intervalu v parcialnej monounérnej algebre. VySetrujii sa dvojice
(4,/), (A, g) parcidlnych monounérnych algebier takych, Ze kazdy interval v (4, f) je tieZ inter-
valom v (4, g) a obratene.
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