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Summary. Assume that for any ¢ from an interval [a, b] a real number u(¢) is given. Summarizing

all these numbers u(f) is no problem in case of an absolutely convergent series . u(f). The
te[a,b]

paper gives a rule how to summarize a series of this type which is not absolutely convergent,

using a theory of generalized Perron (or Kurzweil) integral.
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AMS classification: 40A05, 26A42.

Notation. N is the set of all integers, R is the set of all real numbers. [a,b],
[a, b), (c, d] etc. will be bounded intervals in R. If a point t € R and a set T €R are
given, then dist (¢; T) = inf {|t — s|; se T}. If x € R" is an n-dimensional vector,
then (x); denotes the j-th component of the vector x.

We will make use of the notion of generalized Perron integral, which was defined
in [K] in this way:

A finite sequence A = {0, Ty, &y, ..., %q, Ty, %} is & partition of the interval
[a, b] if
(1) =< <..<o_;<o=>b and
(3] o St S, i=1,2,..,k.

An arbitrary positive function 6: [a, b] — (0, ) is called a gauge on [a, b]. Given
a gauge 6 on [a, b], a partition A of the interval [a, b] is called d-fine if

(3) [a‘_l, !X,] = [Ti - 6(1,), T.' + 5(‘:}.)] Iy i = 1, 2, ceey k.

The set of all 5-fine partitions of [a, b] will be denoted by &(5; a, b) or briefly «#(3).
It is known that for any gauge 6 on [a, b] the set &(6) is nonempty (see [K],
Lemma 1,1,1).
Assume that a function U:[a, b] x [a,b] > R and a partition 4 =
= {ac, Tqy Oy eeey Ogm gy Tpy a,‘} are given. The finite sum

k .
(4) S(U, A) = ‘ZI[U(T‘, (l,) - U(T,', “i—l)]
is called the integral sum corresponding to the function U and the partition 4.
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A function U: [a, b] x [a, b] — R is called integrable over [a, b] if there exists
7 € R such that for every & > O there exists a gauge 6: [@, b] — (0, o) such that
for every A € o/(5) the inequality

IS(U 4) - y| <e¢
holds. The number y € R is called the generalized Perron integral of U over thc
interval [a, b] and will be denoted by ¥
y = [5DU(z, ). |
In [K] a definition of an integral using the concept of major and minor functions
is given, and it is proved that such a definition is equxvalent to the definition given
above. »
The definition using major and minor functions may be formulated in the following
way:
A function U: [a, b] x [a, b] > R is integrable over [a, b] if there exists ye R
such that for every ¢ > 0 there exists a gauge 6 on [a, b] and functions M, m: [a, b] —
— R such that

6) (- DM - ME) 2 (1 - ) (UG D) - U D) 2
2 (t — 1) (m(tf) — m(z)) whenever t,7€[a,b] and
|t — 7} < 6(r) and

(6) y — & < m(b) — m(a) < M(b) — M(a) Sy + ¢.

Then y = 3 DU(t, t).

Let a function u: [a, b] — R be given. The symbol Y u(f) can be met ﬁsua}ly
tefa,b]

in the following situation: there is an at most countable set of indices D < [a, b]
such that u(r) = 0 for any t € [a, b] \ D; this set D w111 be ordered into a sequence

in an arbitrary way, say D = {1, t,, ...}. If the series Z u(t,) is absolutely convergent,

[}
i.e. the series ) |u(t,)| is convergent, we have Y u(t) = 2 u(t,).
k=1 te[a b]

However, if the series is not absolutely convergent, then in order to obtain a rea-
sonable theory we have to give a rule how to order the index set D. In fact, this is
the aim of the present paper.

In the following we will deal only with real-valued functions u; if u is an R"-valued

function with n > 1, then the sum ), u(f) can be defined componentwise:
te[a,b]

(Y wn);= Y (Wy),;, j=12,.
te[a,b] te[a,b]
Definition 1. Assume that a gauge 6:[a, b] — (0, ) is given. By I(3; a, b) or
briefly 1(5) we denote the set of all finite nonempty sets B < [a, b] such that the
following holds:
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(7) If t,t'€B, t <t are neighbouring points, i.e. (1,t') N B = 0, then
' —t < &(t) + 6(t'). Denote t = min B, # = max B; then i — a < &(i),
b—1 < dI).

Lemma 1. (i) For every gauge 6 on [a, b] the set I(0) is nonempty. (i) If a gauge
6:[a, b] = (0, ) is given and a < ¢ < b, then for any two sets By €I(d; a, c)
and B, €1(3; c, b) the set B; U B, belongs to I(d; a, b).

Proof. (i) For every t € (a, b] such that t < a + (a) the set {a} obviously belongs
to I(8; a, t). Denote

(8) ¢ =sup{te(a, b], 1(8;a, 1) + 0} .

We have just shown that ¢ > a. There is ¢, € (a, b] such that I(5; a, t,) + @ and
¢ — §(c) < to. If BEI(3; a, t,) then B U {c} €I(d; a, c) because denoting ¥ = max B
we have the estimate ¢ — ¥ = (¢ — t,) + (1, — ) < 8(c) + (%)

Let us assume .that ¢ < b; then for every ¢’ € (c, b] such that ¢’ < ¢ + &(c) we
have Bu {c} €1(d; a, ¢’) and consequently the set I(é; a, c’) is nonempty, but this
is impossible because of (8). It means that ¢ = b and I(d; a, b) * 0.

(ii) Denote t; = max B, and t, = min B,, then ¢ — t; < d(t,) and t, — ¢ <
< &(t;) by (7). Then t, — t, < &(t;) + &(t,) and consequently the assumption (7)
holds for B; U B, on the interval [a, b].

Definition 2. Assume that a function u: [a, b] - R is given. We say that the series

Y. u(?) is convergent and that its sum is equal to u € R, if for every ¢ > O there is
te[a,b]
a gauge 6 on [a, b] such that for every finite set of indices {t,, t,, ..., t,,} belonging

10 1(0) the inequality

(10) |"§1u(t,,) —ul<e

holds. The series Y, u(t) is defined as the series Y. u(t) with u(b) = 0, similarly
te[a,b) te[a,b]

2 W), D ut).

te(a,b] te(a,b)

Remark. For a given series ). u(t) and for any set B = {1, t,, ..., t,,} < [a, b]
te[a,b]
let us denote

s(B) = ;lu(t,,) .
Then (10) can be written in the form
(Loy |s(B) — u| < e
for every B el(9).
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Lemma 2. Let a finite set B, < [a, b] and a gauge & on [a, b] be given. Assume
that

(11) () < dist(t; By\{t}) for every te[a,b].
Then every set B €1(0) includes B,.

Proof. The condition (11) can be written also in the form

|t — 6| 2 6(z) holdsforany oceB, and te[a,b] such that
T*o0. ‘

Assume that there are B €1(d) and o € B, such that o ¢ B. Let us find neighbouring
points t',t” € B such that t' < ¢ < t". Then

(1) +8(t)y>t" -t =(@"—0)+ (o —1)28t) + ),

which is a contradiction.

Proposition 1. Let real functions u, v: [a, b] — R be given. Assume that there are
points sy, Sy, ..., 5, € [a, b] such that

(12) u(t) = v(t) for every te[a,b]\{sy, 52 ..., 5 -
If at least one of the series Y. u(t), Y, v(t) is convergent, then the other is also
te[a,b] tefa,b]

convergent and the equality
k

S u) - Yuls) = T o) - 3ofs)

te[a,b] ji=1 a,b]

holds.

Proof. Assume for instance that the series Y, u(t) = u is convergent. Then for
te[a,b]
every ¢ > 0 there is a gauge 6 such that (10)' holds for every B e I(6). Let us define

&'(tr) = min {6(), dist (t; C\{t})} where C = {54,585, ..., 5} .
Lemma 2 implies that an arbitrary set B = {t,,1,, ..., t,,} € I(¢’) includes all the
points sy, Sy, ..., Sk

From (12) it follows that u(t,) = v(t,) for every t, € B which does not belong to C.
We have an estimate .

|20 = 3006 = Lts) + ]| =

<15 o) -jgklu(s,.) + F )] + | 5 ute) — o] -

1

= |3 o0 — S| + | T ) — ] = | Zule) = u] <.

tn¢C th¢C
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Since the set B € 1(8") was arbitrary, we get the equality
k k
Y ot) =% ols;) = Lus)) + u.
te[a,b] j=1 j=1
The proof of the other implication is analogous.

Corollary. Let a function u: [a, b] > R be given. Then

T ut) = ¥ ulr) + ub) = ula) + T u)

te(a,b] te[a,b)

provided at least one of the three series is convergent.

Proof. By Definition 2 the series ). u(r) is identical with a series ). v(f) where

te[a,b) te[a,b]
o(t) = u(t) for te[a,b), v(b) =0, and the series Y u(t) is defined as a series
te(a,b]
Y. w(t) where w(t) = u(r) for t € (a, b], w(a) = 0.

te[a,b)
Proposition 1 implies that

%, u(t) - ula) = u(b) = %, oft) — o{a) — ofb) =

te[a,b]

=:e[§b]w(t) — w(a) — w(b), ] ‘

I )~ u@) — u0) = T )~ ) = 5 ol = o)
provided at least one of the series u(t) Y. o(t), Y, w(t)is convergent.

te[a,b] te[a,b] te[a,b]

Proposition 2. The series Y. u(t) is contergent if and only if for every ¢ > 0
te[a,b]

there is a gauge 6: [a, b] — (0, o) such that for every two sets By, B, €1(9) the
inequality ‘ :
(13) |s(By) — s(B,)| < &

holds.

Proof. 1. If the series Z u(t) is convergent and has the sum u, then for every
te[a,b]

& > 0 there is a gauge & such that for every B € 1(5) the inequality [s(B) — u| < ¢/2
holds. Then

IS(Bx) - s(Bz)] < |s(Bl) - ul + |s(B2) - ul <e

for every By, B, € I(9).
2. Assume that for every n € N there is a gauge 8, on [a, b] such that the inequality

(14) Is(B,) — s(B2)| < '_11
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holds for every By, B, € I(6,). We may assume that
8,(t) 2 0x(1) 2 05(r) 2 ..., t€[a, b].
For every n € N let us choose a set B, € 1(3,); then also B, €I(8;) for every k < n.
For a given n > 0 let us find n, € N such that 1/n, < 5. For every m, n € N such
that m > n = n, we have an estimate

(15) |s(B,) — s(B,) < = < 1.

S =

This means that {s(B,)}s>, is a Cauchy sequence in R, which has a limit u € R.
Passing to the limit with m — oo in (15) we get

[s(Bx) — u| =

Let ¢ > 0 be given. Let us find n’ € N such that 1/n’ < ¢/2; then for every B € I(5,.) we
have the inequality

[(8) = u] = [sB) — s(B.)] + |oBa) — ] < 2 5.

Consequently Y u(t) = u.

te[a,b]

Lemma 3. Assume that a convergent series Z u(t) is given; for e > 0 let a gauge
te[a,b]
d on [a, b] be given such that the inequality (13) holds for every By, B, €1(5; a, b).
Then

Is(Cy) — s(C,)| < & for every interval [c,d] < [a,b] and every
Cy, C,el(5; ¢, d).
Proof. Assume that C; = {5,5;, ..., 5}, C2 = {t;, 2, ..., tn}. Let us choose
sets B = {74, ...,7,} €1(6;a,¢) and D = {0y, ...,0,} €l(0;d,b)(ifa =cord = b

then B = @ or D = 0, respectively). According to Lemma 1 (ii) the sets Bu C; U D
and By C, U D belong to 1(8; a, b). By (13) we get the inequality

|s(C1) - s(C2)| = |2::1w(si) - ii::lu(t,)l =
= l[é‘lu(si) +i§1u(n) +i§1u(ai)] -
- [iilu(ti) +i‘=21u(1i) * é 11&(0',):” =

= |s(Bu C;u D) —s(BuC,u D)| <.
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Proposition 3. (i) If the series Y. u(t) is convergent, then Y, u(t) is convergent
te[a,b] te[c,d]
for every interval [c, d] < [a, b]. :

(ii) For ¢ > 0 let a gauge & be given such that |s(B) — Y. u(t)| < & holds for
. te[a,b]

every Bel(d;a, b). Then Is(C) -y u(t)l < ¢ holds for every Cel(5;c,d),
te[e,d]
where [c,d] < [a, b].

Proof. This is a consequence of Proposition 2 and Lemma 3.

Theorem 1. Assume that a convergent series Y. u(t) is given. Let us define
te[a,b] .

(16) f(a) = u(a), f(r) = Z u(t) for te(a,b].

te[a,r]

Then the function f is regulated (l.e. has one-sided limits) and
an limf(s) = f(r) — u{r), te(a,b],
limf(s) = f(r), t€[a,b).

s=t+

Proof. Let ¢ > 0 be given. Let us find a gauge 6 on [a, b] such that
|s(B) — ¥ u(t)| < & holds for every BelI(s; a, b).
te[a,b]
a) Assume that 7 €(a, b]. Let s € [a, ) be such that T — §(r) < s. Take any set
Bel(8; a,s) such that seB. Since {t} €I(§;s, 1), by Lemma 1 the set Bu {1}
belongs to I(3; a, 7). According to Proposition 3 (ii) the following estimate holds:

(18) (@) — u(z) = f(5)] = [f() — [w() + s(B)]| + [/(s) — o(B)] =
= |f(r) = s(Bu {z})| + |f(s) — s(B)| = 2.
b) Assume that a < v < b, let C€I(4; a,7) be such a set that teC (if t = a

then C = {t}). For every s e (r, b] such that s < 7 + &(r) the set {7} belongs to
I(5; 7, s) and consequently C € I(d; a, s). Then .

(19 ) = 1@ £ 15(s) = S(©O)] +|f(x) = o(O)] = 2.
The relations (18), (19) imply (17).

Corollary 1. If the series Y, u(t) is convergent, then the set {t € [a, b]; u(t) + 0}
te[a,b]
is at most countable.

Proof. Since the function f defined by (16) is regulated, it can be discontinuous
only in an at most countable set; according'to (17)'

f(z=) # f(r) ifand only if u(z) * 0.
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Corollary 2. If the series Y. u(t) is convergent then

te[a,b]

limu(s) = 0 for every te€[a,b].

Proof. Let t€(a, b] and & > 0 be given. There is A > 0 such that the following
holds: If T — A < s < 7, then If('r——) —f(s)| < &. Then also If(t—) -f(s—-)| <e¢
for every s € (t — A, 7). Hence

|u(s){ = [f(s) ——f(s—)| < !f(s) —f(r—)l + lf(‘t—) -—f(s—-)| < 2e,
if se(r— A,7). This means that lim u(s) = 0. Similarly lim u(s) = 0 for every
s=t+

te[a, b).

Corollary 3. Assume that the series Y. u(t) is convergent. Let us define
te[a,b]

(20) g(a) =0, g(tj= Y u(t) for te(a,b].

tefa,]

Then the function g is regulated and
(21) lim g(s) = g(1), te(a,b],
lim g(s) = g(t) + u(r), t€[ab).
s=t+
Proof. By Proposition 1 we have g(t) = f(t) — u(z) for every t€[a, b]. If
t€(a, b] then
lim g(s) = lim f(s) — lim u(s) = f(r—) = f(x) — w(7) = g(v) ;

ST~ §T— s—=t—

if tela,b) then

lim g(s) =sl_i’£r1f(s) +sﬁ?lu(s) = f(7) =’g(1:) + u(r).

s=t+

Theorem 2. Assume that a function u: [a, b] - R is given. Let us define a function
U:[a,b] x [a,b] » R by
U(t,t) = u(t) for t<t,
Urt)= 0 for t=1,
Ut, 1) = —u(t) for ©>1t.
Then the series Y, u(t) is convergent if and only if U(t,t) is integrable over:

te[a,b]

[a, b]. We have the equality

DU 1) = 3 u(s).

te(a,b]
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Proof. (i) Assume that the function U is integrable and denote
y = [ DU(7, 1).
For a given & > 0 there is a gauge é on [a, b] such that
IS(U, 4) — 7| < ¢
holds for every A € #(3; a, b). Let us define
0'(t) = min {&(r), b — 7,7 — a} for te(a,b),
0'(t) = min {§(r), b — a} for 7 =4a,b.

Let an arbitrary finite set B = {t,, 1,, ..., t,,} € I(’) be given. By Lemma 2 the set B
contains the points a, b. Assume that

a=t <t <...<t,=b.
Foranyi =1,2,...,m — 1 we have by (7)
fpg — 1, <O() + 6(tivr), e tipg — O(tiny) <t + 6(t).

Hence the open interval (f;,1;.,) N (t;x; — 8 (tiy), t; + 6'(t;)) is nonempty.
Corollary 1 of Theorem 1 implies that there is o; € (¢;, t;41) O (tivy — 0'(ti41),
1; + &'(1,)) such that u(x;) = 0. Denote ¢, = a, a,, = b.

The set A = {ag, t;, &%y, ..., 1y, %,,} Obviously belongs to «(d'; a, b). Consequently

| S ule) - ) + 1] = | () = 7] =

= [ u) + % wlo] = 7| =
= H: Y ult,) +‘";!nu(an)] - )‘l = |S(U, A) - yl <eg.

an-1<tp

According to Definition 2 the series ), u(f)is convergent and ), u(t) = u(a) + y.
te[a,b]

te[a,b]
Hence y = Y u(t).
te(a,b}
(i) Assume that the series ). u(f) = u is convergent. For every gauge J and
te[a,b]

te(a, b] let us denote by I(5) the set of all BeI(d; a, t) such that te B. For t = a
the set I,(8) will consist of a single element {a}.
Let ¢ > 0 be given. There is a gauge 6 on [a, b] such that

(22) |s(B) — u| < & holds for any Bel(s;a,b).
Let us define m(t) = inf s(B), M(t) = sup s(B), te[a, b]. Let us notice that
Bety(3) Bel¢(d)

m(a) = u(a), M(a) = u(a). From (22) it follows that u — & < s(B) < u + ¢ for
every B e I,(6) < I(9; a, b), and consequently
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u—ce<mb)SMb)Su+e,
(23) u — u(a) — ¢ < m(b) — m(a) £ M(b) — M(a) S u — u(a) + ¢.
Assume that a St <t <b and t <7t + &(r). For arbitrary A > 0 there are
By, B, € 1(5) such that

s(By) < m(zt) + A, s(By) > M(z) — 4.

Since {r, 1} €1(d; 1, t), by Lemma 1 (ii) thes sets B; U {r,t} = B, u {t} and B, U
v {1, t} = B, U {1} belong to I(5; a, t); these sets also belong to I,(8) because they
contain t. Hence

m(t) < s(B; U {t}) = s(By) + u(t) < m(z) + A + u(t),
M(t) 2 s(B, u {t}) = s(B;) + u(t) > M(z) — A + u(r).
Since the number . > 0 was arbitrary, we get inequalities .
(24) m(t) — m(z) < u(t) = U(r, 1) — Ulr, 1) £ M(t) — M(7).

Similarly, if a £t <t £ b where © — r) < t, then for an arbitrary n > 0 we can
find C,, C, €1,(6) such that

s(Cy) < m{t) +n, s(Cy) > M(t) —n.

Since {1} €I(4; t, 7), the sets C, U {t}, C, U {1} belong to I,(8) and consequently
m(t) < s(Cyu {t}) = s(Cy) + u(r) < m(t) + n + u(z),
M(7) Z s(C, U {1}) = s(Cs) + u(r) > M(t) — n + u(z).

We get the inequality

25) m(t) — m(t) < u(zr) = U(r, ) — Ulr, £) £ M(t) — M(z).

According to the definition of integral using major and minor functions (see (5),
(6)) it follows from (23), (24), (25) that the function U is integrable over [a, b] and

DU, 1) =u—ufa) = Y, ufr).

te(a,b]

Theorem 3. Assume that real functions u, v: [a, b] — R are given. Let us deﬁne
a function V: [a, b] x [a,b] - R by

(26) V(t,t) = u(t) + v(r) for T<1t,
V(t,t) =0 for ==1t,
V(t,t) = —u(t) — o(t) for T>1t.

Then the series ), (u(t) + v(t)) is convergent if and only if the function V is
te[a,b]

integrable over [a, b]. We have the equality

[eDV(, 1) = v(a) +ts§b)(u(t) + o(t)) + u(b).
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Proof. Let us define
R(t,t) = u(t) + o(t) for T <t,
R(r,1)=0 for 7 =1,
R(t,t) = —u(t) — o(r) for ©>¢t.
By Theorem 2 the series Y. (u(f) + v(t)) is convergent if and only if R is integrable
over [a, b], and , e
@) EDRE = T (W) + i)
holds. Using the definition of the generalized Perron integral, it can be easily proved
that the function ¥(t,t) — R(z, t) = v(t) — v(t) is integrable over [a, b], and
(9  EDV( ) - RE 0] = oa) - o).

Then the function V is integrable if and only if R is integrable. From (27), (28) we
obtain

[2DV(z, ) = [2DR(r, 1) + |2 D[V(z,t) — R(z, t)] =

= (T (0 + o) + (60) + b)) + (o) — () =
= v(a) +‘E(za:.b)(u(t) + v(t)) + u(b).

Corollary 4. The series Y. w(t) is convergent if and only if the function
U':[a,b] x [a,b] > R deﬁt;[;;]by
Uty = u(r) for t<1t,
U, t)= 0  for t=1t,
Ufr,t) = —u(t) for t>1

is integrable over [a, b]; the equality

DU, 1) = 3 u(t)

te[a,b)

is satisfied.

Theorem 4. Assume that functions u,v:[a, b] > R are given. Let us define
a function W: [a, b] x [a,b] = R by
W(t, )= ot) for t<t,
W, t)= 0 for t=t,
W(t, t) = —u(t) for ©>1¢t.

258



If the function W is integrable over [a, b], then the series Y. (u(t) + v(t)) is
te[a,b]
convergent, and the equality :

LD 1) = oa) + T () + 1) + ulb)

holds.

Proof. Denote f; DW(z, t) = 7. Since the values u(a), v(b) have no influence on
the values of W(z, t), we can assume that

(29) u(a) = o(b) = 0.

For a given ¢ > 0 there is a gauge & such that IS(W, A) — yl < ¢ holds for every
A€ A(0; a, b). Let us define

o'(t) = min {é(7), b — 7, — a} for te(a,b),
0'(t) = min {8(z), b — a} fot t=a,b.

Let an arbitrary set {t,, 1,, ..., t.} € I(8'; a, b) be given. Lemma 2 implies that this
set includes the points a, b. We can assume that

a=t; <t <..<t,=b.

Define o = a, &, = b; for every i = 2,3, ..., m — 1 it follows from (7) that there
exists a point a; € (t;, t;41) O (tirg — 8(ti+y), t; + 8(t;)) similarly as in the proof of
Theorem 2. Then A = {og, t;, %y, ..., Up1, I, %} € #(5; a, b). Let us note that
Qg =ty < 0y; Oy <ty =0 €y <t; <o fori=2...,m— 1. We have the
estimate

&> |S(W, 4) — 3| = |[W(ty, a)) — W(ty, t;) +

+:‘;‘21(W(t,-, %) = W(ti, a=y)) + W(tm, t) = W(tn, tm—1)] — 7| =
= |[v(ty) +':2;:(v(ti) + u(ty)) + u(tw)] — 7| =
= | 3 u(t) + of0)) =],

Consequently,
7= T ) + o) = (ua) + o@) + 3 () +o(0) +
+(u(e) + oB) = la) + 3 () + of) + u(t
(we take (29) into consideration).
If we use the known properties of the integrals of functions U or U’ as defined

in Theorem 2 or Corollary 4, we can obtain several properties of the series Y. u(f):
te[a,b]
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Proposition 4. Let a € R be given. If the series ), u(t) is convergent then the

tefa,b]
series Y. (a u(t)) is convergent and
te[a,b]
L (au(n) =a 3 u(t).
tefa,b] tefa,b]

(See [S], Th. 1.5.)

Proposition 5. If the series ), u(t), Y, v|t) are convergent, then
te[a,b] te[a,b]

2, () + o(1) = L wo)+ 2 o).

te[a,b tefa,b

(See [S], Th. 1.6.)

Proposition 6. If ¢ € (a, b) and the series ), u(t) and Y. u(t) are convergent then

te[a,c] te[c,b]

Y ou(t)= Y u(t) + te(zc,b]u(t).

te[a,b] te[a,c]

(See [S], Th. 1.10.)

Proposition 7. Assume that for every c €(a, b) the series Y. u(t) is convergent
te[a,c]

and that there exists a finite limitlim ) u(f) = o. Then the series 3 u(t) is
c—b— tela,c] tefa,b]
convergent and a« = Y. u(t).
te[c b]

(See [S], Th. 1.13.)

Proposition 8. Assume that for every c €(a, b) the series Y, ult) is convergent
te[c,b]

and that there exists a finite limit lim ), u(t) = B. Then the series Y, u(t) is
c—a+ te[a,b] te[a,b]
convergent and B = Y u(t).
te(a,b]

(See [S], Remark 1.14.)

Proposition 9. Assume that ¢: [a, b] - [c, d] is a continuous strictly monotone
function such that ¢(a) = ¢, ¢(b) = d, or ¢(a) = d, ¢(b) = c. If one of the series

z u(t) Y u(e t)) is convergent, then also the other is convergent and
te[a, b]

T i) = Z u(e()) -
tefc,d} [a,b]

(See [S], Th. 1.24))

Theorem 5, Assume that a convergent series ), u(t) = u is given. Then there
te[a,b]
is a sequence {t,}"_, of pairwise different points from [a, b], such that
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2, w1) = Z ()

te[a,b]

and {te[a,b]; u(t) + 0} < {t,,1,, t5,...}.

Proof. Let us denote M = {te[a, b]; u(t) % 0}. Since the set M is at most
countable, there is a sequence {0,},>, < [a, b] such that M < {a,, o5, o3 - ..}. Let
us denote C;, = {o,,0,,...,0;} for every ke N. For any k = 1, 2,3, ... there is
a gauge 6, on [a, b] such that

(30) |s(B) — u| < ]% holds for any finite set B e I(5,) .

Let us choose a set B, €I(8,). There is an integer p, such that B, " M < C,,. Let
us define

45(t) = min {6,(7), dist (t; B, U C,,\{1})} forany rte€[a,b].
Let us choose a set B, € I(4,); then B, = B; U C,, holds according to Lemma 2.

Further, if the set B, has been defined for an integer k, we can find an integer p,

such that B,n M < C,, and we will denote

Ay 4(7) = min {8;44(7), 4(z), dist (t; B, U C, \{1})}
forany te[a,b].

Then let us choose a set By.; €1(4;44). :

In this way we can obtain a sequence {p,} of integers, a sequence {4,} of gauges
and a sequence of finite sets By « B, = ... « B, © B, = ... < [a, b] such that
B, eI(4,) and

(31) B,nMnC, < By,

hold for any integer k.

Let us denote the elements of B; by t; <t, < ... <t,. If t;,15,..., 1, have
been defined for an integer k, let us denote the elements of By, ; \ B, by 1, 4+1 <
<lmz < ... <ly,,  We obtain a sequence of pairwise dlﬁ'erent points {1, o S
such that Bk = {t;, 12, ..., tm,}. (31) implies that

©

{tl’ tz, t3, ...} = U Bk CkL_)lcp" = M .

k=1

0
Let us prove that z u(t,) = u. For a given ¢ > 0 let us find an integer k, such that

1/ko S & If an arbltrary integer N 2 m,, is given, we will find such k 2 ko that
m, < N < my4y. In case that N = m,,, the set {t1, t,, ..., ty} coincides with By,
which belongs to I(41); hence

> 1 1
L;lu(tn) - ul = |S(Bk+1) - ul < m < ];; e
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Now assume that N < m;. ;. Let ¢, be the neighbour of ty inside By, n [tns b] ie
apoint from B, ., satisfying (ty, t,) N Byyy = 0. Then t, — ty < Aq(t) + Apay(ty)
according to Definition 1. There is c € (ty, t,) such that ¢, A,‘H(t) <c<ty+

+ Aiea(ty)-

Itis quite evident that {t;, 15, ..., ty} 0 [a, c] € [(dy1 5 a, ), while {t,, 1,, ..., ty} N
e, b] = {t1, ta, ..., tm} N [c, b] €I(4s; ¢, b). According to Lemma 1 (i) we can
conclude that {t,,t,, ..., ty} €I(4,; a, b); consequently

IZu(t)—u|<—S—é
0
holds by (30).

Proposition 10. Assume that a convergent series of real numbers Y a, is given.
n=1
If {t,}2., = [a, b] is any increasing sequence and we define

wt)=a, for t=t,,
w(t)=0 for te[a, b]\{t;,t;5,...},
then the series Y. u(t) is convergent and 'y, u(t) = Z .

te[a,b] te[a,b]

@©

Proof. Denote ) a, = a. Since the sequence {t,} is increasing in the compact

- a=1

interval [a, b], it has a limit ¢ € (a, b]. For any & > 0 there is an integer N such that
(32) |Za,,-—a| <¢ holdsforany m = N.
n=1

Let us define

t) =t, —t for tefa,ty);

&ty) =t —t;;

5(r) =min{t — t, t,4, — 1} for TE€(tytasy), NEN;

8(t,) = min {t,,y — tn tn — t,_y} for n22;

oc) =c—ty;

r) =t—c for te(c,b].
Let an arbitrary set Bel(5; a, b) be given. Since (t) < Er — c| holds for any
te[a, b] \{c} and &) < |v - tN| holds for any 1€ [a, b]\{ty}, the points #y
and ¢ belong to B.

Let us denote m = max {ne N; t,€ B}. Then m = N. The gauge & is defined
so that

]

8(z) < dist (v; {ty, t2, .r tm} N {7})
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holds for any t€[a,t,]. By Lemma 2 the set B contains all points t;, t2, .-+, tm
consequently

s(B) = iu(t,,) = ian. Since m = N, (32)yields

n=1
m
|s(B) — «| = In;a,, —a| <e.

a0
Theorem 6. Let an absolutely convergent series Y. a, of real numbers and a se-

n=1
quence of pairwise different points {s,};-, < [a, b) be given. Let us define u(t) = a,
ift =s,neN,u(t) =0ifte[a, b]\{s,}s=1. Then theseries Y. u(t)is convergent,

te[a,b]
the function W:[a, b] x [a, b] > R defined by
W, t)=u(r) if t<t, WEt)=0 if 12t
is integrable over [a, b], and

DW= T ul) =3 a.

te[a,b]

-]

Proof. Denote &« = ) a,. Let ¢ > 0 be given. There is an integer n, such that

n=1

i l%l < &. Let us define

n=mo+1

(33) &) = min{lr - s,,|; n=12..,n} for tela, b]\{s}n21;
() = min{lr - s,,|; n=12..,n,n+k} for t=s,,
k=1,2,...,n.

Let a partition A e #(J; a, b) be given, A = {ay, 7,, ..., Ty, %}. Lemma 2 implies
that the set {s;, 55, ..., 5,,} is contained in the set {r,, 1,, ..., 7,}. Moreover, for
every s,, n = 1,2, ..., n, there is an integer i such that s, = 7, < o (if 5, = 7, =
= o; < T;41 then s,€(t;41 — 8(7;41), T;+1) Which contradicts (33)). Denote J =

={neN;s, = 1; < a for some i}; then J. < {s,, s, ..., 5,,}. We have the estimate
k o
50, 4) — o] = | 3u(e) — o] = | S us) ~ S ] =
ty<ay

@© ®
=|Zuls ¥ |al<e.

n=1 +1

n¢J

n=no

Consequently, the function Wis integrable over [a, b] and [, DW(z, t) = a. Theorem

4 (with u() and O instead of v(r) and (7)) implies that the series ). u(t)is convergent
te[a,b)

and has the sum a.
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Theorem 7. Assume that functions u,v:[a,b] = R satisfy | t)l L(t) for

te[a, b]. If the series Y, v(t) is convergent, then
te[a,b]

(i) the series Y u(t) is convergent and | Y. u(t)| £ Y. o?);
te[a,b] te[a,b] te[a,b]
(ii) for every sequence of pairwise different points {s,};-1 < [a, b] such that
{te[a, b]; u(t) + 0} = {s,,5,,53,...} the equality

nzlu(sn) - eza ]u(t)

holds.

Proof. (i) Let ¢ > 0 be given. By Proposition 2 there is a gauge é on [a, b] such
that

] Z v(t ) — U(TJ)I < ¢ holds for every two sets

{ty,ts, ..., ,,,}, {te, 12, ..ot} €(9) .
Let By = {1, 15, ..., t,,} € I() be fixed. Let us denote .
0'(t) = min {&(7), dist (v; Bo\{t})} forany te[a,b].

Then by Lemma 2 arbitrary sets {sy, S5, ..., 8}, {04, 6, ..., 6} €(§’) contain all
points from B,. We have an estimate

|5) = Tlo)] = | 5 ) = 3 wlo =

. S|¢Bo v,ﬂ’o

| Z u(s,)| + l Z w(o)| < v(si) + Z voy) =

St¢Bo Gjﬂio Slﬂ’o U;ﬂ’o
= [T o) = Zo)] + [ L ole) = L ofe)] < 2.

According to Proposition 2 the series ), w(f) is convergent. Since for every finite
te[a,b]

set {t;, 13, ..., tn} < [a, b] the inequality
IZ u(t)| < ¥ v(r

holds, we conclude that
|2, RV RIS

(ii) By Theorem 5 there is a sequence {t,},~; < [a, b] of pairwise dlﬁ'erent pomts
such that

{te[a,b]; o) + 0} < {11, 13, 13,...} and 3 u(z)=§lu(:,)‘.

te[a,b]
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Let an arbitrary sequence of pairwise different points {s;}7, = [a, b] be given
such that

{te[a, b]; u(t) + 0} = {51, 52,53, ...} -
For a given & > 0 there is such an integer N that
|2 0l - T o) <o
te[a,b]
holds for any m = N. There is such an integer K that
{51, 82y e s} O {tadoey = {ty, tas ot} -
Let us mention that if ¢ ¢ {t,};-, then 1(t) = 0. For any k = K we have

La, ]\ ({51, 52, .- s i} 0 {ta}az1) = [a, B]N{ty, 1o, .. ta)

Then
| Z u(t)—Z“\S =] ¥ wol=s ¥ of)=
tela,b]\(s;} 1% te[a,b]\{s;}1%
N
= Y uns Y o= Y o{f) - Y ot) <e.
te[a,b\({sj} 1 *n {tals®)  tela,b]\{ta}1V tefa,b] n=1
o0
Consequently ) u(s;) = Y u(1).
i=1 te[a,b]
Definition 3. Assume that for every o from some index set C a series Y. u*(t)
te[a,b]
is given. We say that the series Y u*(t) = u,, a€ C are equiconvergent, if for
te[a,b]

every ¢ > O there is a gauge 6 on [a, b] such that
m
| > u(t) — u,| <& forevery {ti,t),....t,}€I(6) and aeC.
n=1

Theorem 8. Let for every e C a series Y, u*(t) be given. Assume that there

te[a,b]
are convergent series Y o(t) =v, Y w(t)=w such that v(t) < u*(t) £ w(1)
te[a,b] te[a,b]
for every te[a, b], ae C. Then the series ). u*(t), a € C are equiconvergent and
te[a,b]

there is a sequence {1,};% such that

{ty., = {te[a, b]; ut) % 0 for some aeC};

t,*t, if nfm; Zu(t)—z *(t,) for every aeC.

te[a,b]

Proof. Let ¢ > 0 be given. Let §, be a gauge such that

k k .
| Y o(t,) — o] <& and | Y w(t) — w| <& forall
n=1 n=1
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{t1, t2s ... 1} €1(8p) .
Let S = {sy, 53, ..., 5,} €1(d,) be a fixed set. Let us define

8(z) = min {8o(z), dist (t; {sy, ..., s,} \{1})} for re[a, b].
An arbitrary set {t,, 15, ..., 1,,} € I(8) includes all the points sy, 5z, -+~ Sp- 10€n for
every a € C we have estimates

ngml ua( t’l) B k;plua(Sk) - nglua(t”) = né IW(tn) -

¢S thS

w(Sx) —(ZW) - w) + (w- kz:: w(si)) < 2e-

1

>(Zv(t)—v)+(v Y o(s)) > —2e.

k=1

Analogously Z (tn) —

Consequently

(34) [k;ml;c“(t,,) —nglu“(s,‘)l < 2.

Proposition 2 implies that ). u*(f) is a convergent series and has a sum %,. From
te[a,b]

(34) it follows that | Y u(t,) — u,l < 2e, hence the series Y, u*(t), a € C are equi-
n=1

te[a,b]

“M"' nM'u

convergent.
By Theorem 5 and Corollary 1 there is a sequence {t,}5-; such that ¢, * ¢, for
n * m,

6 T )= ¥ oft) .
(36) {ta}o1 = {te[a, b]; v(t) + 0},

and
(37) {t, = {te[a, b]; w(t) * 0}.

Let « € C. Then u%(t) = v(t) + (u*(t) — v(t)) where w*(t) — v(t) = 0. By Proposition
5 the series Y. (u(f) — v(t)) is convergent. Since u%(t) — v(t) 2 0 for t€[a, b]
te[a,b]

and u%(t) — v(t) = O for every t € {t,}»=, according to (36), (37), Theorem 7 implies
that

L, @) = o)) = 5 00) - o0).

Then )
Y w() = ¥ o)+ ¥ (W) - o) =
te[a,d] te[a,b] te[a,b]
= $ofn) + 5 (w(0) - o) = 40
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Souhrn

NEABSOLUTNE KONVERGENTNI RADY

DaANA FRANKOVA

Necht pro kaZdé ¢ z intervalu [a, b] je d4dno redlné &islo u(f). Neni problém selist vSechna

tato &isla u(f) v ptipadg, Ze fada Y u(¢) je absolutn¥ konvergentni. Clanek podava navod, jak
tefa,b}

seCist fadu tohoto typu, ktera vSak neni absolutn& konvergentni. PouZiva se zde teorie zobecn&-

ného Perronova (neboli Kurzweilova) integralu.
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