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Summary. Upper estimates are obtained for approximation and entropy numbers of the
embeddings of weighted Sobolev spaces into appropriate weighted Orlicz spaces. Results are
given when the underlying space domain is bounded and for certain unbounded domains.
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1. INTRODUCTION

Much work has been done on the estimation of entropy and approximation
numbers of embeddings of Sobolev spaces in I7 spaces or Orlicz spaces (see [1], [2],
[4], [9], [12]). In particular, when 2 is an open subset of R", it is known that in
the critical case in which rp = n, W"?(Q) can be compactly embedded in appropriate
Orlicz spaces (see [3], [13]); estimates for the entropy and approximation numbers
of this embedding were obtained in [2]. In recent years a great deal of effort has
been devoted to the study of embeddings between weighted function spaces (see[6],
[7], [10], [11]), particular attention having been paid to the situation in which the
target space is a weighted Lebesgue space. This paper is devoted to the study of
embeddings of weighted Sobolev spaces W,”(2) in weighted Orlicz spaces L$(%2)
when rp 2 n; we give estimates for the approximation and entropy numbers of
these embeddings first when Q is bounded and then when it is unbounded. Here ¢
and ¢ are nonnegative weight functions which are related by a condition of A4,
type (see [10]). ,

Our results extend those of [2], in whichg = ¢ = 1.

2. PRELIMINARIES

Denote points in n-dimensional Euclidean space R" by x = (x,, ..., X,), and for
each « = (ay, ..., ®,) € N (where Ny N U {0}) put

n n
lof = Yoy, ot =]]ay,
ji=1 j=t
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(1) 1. (5 _ 1) ¢
p \n t
where 1/t + 1/t = 1, and

2) 1<«
r

Let ¢ and o be measurable functions on R" which are positive almost everywhere
and which satisfy the following condition for all g € [p, ):

® {(I—;,f e d)/<l?15| f el d)’} < Ke*,

where the supremum is taken over all cubes Q" in R (with sides parallel to the co-
ordinate axes), |Q| is the volume of Q, K and a are constants and 0 < a < r/n.
Let Q be an open subset of R". The weighted Sobolev space W, "7(Q) is defined to be

{u: D'ue (Q) forall ae N; with |o <71},
endowed with the norm

”u"r'p-ﬂvn o= ( Z ”Dau":)ﬂnn)llp L4
la|sr

where the derivatives are taken in the sense of distributions, functions equal almost
everywhere are identified, and

"v"p,e,n = (_{g |v(x)|" Q(x) dx)!/?

is the norm on L;(Q2). Here the functions may be real- or complex-valued. Note
that since ¢ and ¢ satisfy condition (A),

@ VTV e [ (Q) = Liy(R) ;

hence by Theorem 1.2 of [8], W,"?(®) is a Banach space.

By W;'2(Q) we shall denote the completion (whenever this is meaningful) of the
set C3() (of all infinitely differentiable functions with compact supportin Q) in
W;'P(Q). As shown in Theorem 1.2 in [8], W;'5(Q) is meaningful if, in addition, we
require that

(3) eeL; ().

An Orlicz function is a map ¢: [0, ) — R which is continuous, convex and such
that lim ¢(t)/t = 0 and lim ¢(f)/t = co. Given such a ¢, the weighted Orlicz space

t—0 t— o
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L?(Q) is defined to be the linear hull of the set of all real- or complex-valued functions
u on Q (with the convention that functions equal almost everywhere are identified)
such that

fa ¢(Ju(x)]) o(x) dx < o,

furnished with the Luxemburg norm given by

[u]lg,0.0 = inf{A > 0: [o d(|u(x)]/2) o(x) dx < 1} .
With this norm, L(Q) is a Banach space.
Let X, Y be Banach spaces and let Te #(X, Y), the set of all bounded linear maps
from X to Y. Given any s € N, the s-th approximation number a (T) of T'is defined by

a(T) = inf{||T— F| : Fe B(X, Y), dim F(X) < s},

and the s-th entropy number e,(T) of T'is given by
e(T) = inf {¢ > 0 : T(By) can be covered by 2°~! closed balls
of radius &},

where By is the closed unit ball in X.
Much information about weighted Sobolev spaces is contained in [7]; details

of the main properties of approximation and entropy numbers are given in Chapter II
of [4].

3. THE CASE WHEN @ IS BOUNDED

To obtain our results concerning the entropy and approximation numbers the
following lemmas are required.

Lemma 1. Suppose that i1, > 0 and 0 < p, < 1. Then the series
o
S(2):= Y (s + gyt it
ji=o0

converges for all z > 0 and there is a constant K, depending only on yu, and u,,
such that for all z > 0,

S(z) £ K, exp {(ze)*/(17m) (e*1z) V1 TH)

Proof. Let k be the integer part of p/(1 — ;). For j = k + 1 we have u, +
+ pu,j £ Jj, and for j £ k the inequality uy + H2J = #1/(1 — 1) holds. Thus

ko i /(1 H2) * zZ, .
sz S ) R S s, sy
i=0 jI\1 — pp =k+1]:

Since j** < €'/ we have

e jﬁ‘zl i
Siz) s ¥ = (e2),

j=k+1 j!
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and by the proof of Theorem V.6.6 of [4], there is an absolute constant c, such that
for all z > 0, this last series is majorised by

Co €Xp {(ze)ﬂz/(l - n2) (euxz)ll(l *ﬂz)} .

Moreover,

n1/(1=p2)
O (J_) ¢

1 —p

IIA

u B1/(1=p2)
< (1__1__> exp {(ze)*>/(! 742 (emz)x/(x—,,,)} )
- K2

The result follows.

Lemma 2 For i = 1,...,n let a;, b,€ R be such that a, < b;; let Q = {xeR":

ta; < x; < b;fori=1,...,n}, pe(l,®), reN, te(l, ©], and suppose (1) and
(2) hold and that g = p. Suppose that ¢ and o are weight functions which satisfy (A).
For all ue C'(@) n W,"?(Q) and all x € R put

R ICRE i IR CE ALY

where y, is the characteristic function of Q. Let Q be subdivided into 2" congruent
boxes Q; and set
2nN

(Pyu) (x) = j};xq,-(x) (Prou)(x) (xeR").
Then for all u e C'(Q) with ||u|, ;.0 = 1,
| lu — Pyu,0,0 < C:Kq* (27| QA1) (1 4 gfpr)ttia*tie0r,
where C, is a constant which depends only on n and r.

Proof. For ue C(Q) n W*’(Q) we have for any x e R", by Taylor’s formula
and setting u = 0 outside Q,

o) - (Pog) ()=
= lel % L ) L(l—r)"*<x~y)“mu(rx+y—ry>

drdy —Iafl‘:r;F (%),
Then
[F(x)] = 1Q|7* (9. * xo| D)) (%),

where
gu(x) = fo |x*| =71 x;qo(x/r) dr,
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and Q, is the box centred at 0 and obtained by translation of Q. A routine calculation
shows that

) l9:lm.re = A 27| Q!m " {(r — 1) m + n}Him

provided that (r — n)m + n > 0 and m > 1; here A4 is a constant which depends
only on n and r. (See Lemma V.6.1 of [4].)
Let 1/m = 1 — 1/p + 1/q, 1/s = 1/p — 1/q and suppose that g > p; note that

P(L—mlg)=m, s(l —plg)=p and 1fp’ +1/g + 1fs=1.
Use of Holder’s inequality now shows that

|(9. * xo| D7u]) (X)] = (far l9alx = 2)|"* ™ y(z) 0(2)~*""? dz)'/?" x

X ([algs(x = 2)I" 20(z) [Du(z)|? e(2) dz)'* x

X (Jan x0(2) [D?u(2) =7/ o(z) d2)'" <

< [D7u]7e0 [galmitimn o771k

p.e.Q
X (f&n |9a(x = 2)|" %0(2) lDaulp e(z) dz)'7e.
It follows that

() (Ja~ xo(*) (92 * ol D*u]) (x)|* o(x) dx)'/* =

oy O P A L A T
= N9allmem ™" 758" loli/6 [ Du] 00 -

When p = g, Young's inequality for convolutions gives

(6 (far x0(x)] (94 * XQ|D’u|) (x)]? o(x) dx)*7? <
< 9allerer (D78l 0.00l 777718 1] -

1 1 1
—=—+—~1§(i-—1)t’+l,
q P 49 P n m

we see that the condition

l 1/q ”Dzuuﬂ/q —

P, Q —

Since

(r—=n)mt' +n>0

holds; and
1 r 1
r4r = 1 - > = 1 - + —
pt hmy n o qt

We therefore have, using (4), (5) and (6),
1/me’ ,
O Pratleno s el (4) I g Lol Iiha,
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where C, depends only on r and r. This inequality, with Q; in place of Q, shows that
for all u € C'(Q) with ||u], ,,0 =1,

2nN
ls = Pl = {3, o = Proflta}™ <
¢’ 2nN

s cullol2 ) (2)7 (3,0 1 T, Iuhpa )}

As ¢ and o satisfy condition (A), the Lemma now follows.
Lemma 3. Under the same conditions as Lemma 2, except that the condition

1 < p £ qis replaced by 1 < q < p, we have for all u€ C'(Q) with |u, 00 = 1,
”u - PNu”q o < < C,p""Kq" ('Ql 2—nN)l/q+l/tp

Proof. Using Holder’s inequality and (7) we obtain

lu = Protlgoo < lu = Prgupao (JofeolQ]' ) /a7 <
< Gyl p o= eV 1E" |olleg [lu]

This inequality, with Q; in place of Q, gives

r.p.e,Q "

lu = Paufge0 =

2nN
= {Z (C1|Qj|‘/"‘1p”"|[g‘1/("‘”"1’1’ l“”r“c‘z',"“”r,p,o,Q,)q}”q <

2nN

< Cup (0] 20 2T [ult0) <
< C Pl/t Kq (IQI 2= nN)I/q+1/tp .
Next we introduce several important restrictions on the weight function g, following

the approach of Kufner [7].

Definition 1. Let s: Rt — R* be continuous (R* = [0, c0)). We say that s has
property (H) if, given any positive constants ¢, ¢, with ¢; < c,, there are positive
constants C,, C, such that

¢y St<t<c, implies C, < s(t)[s(x) £ C,.

The function s is said to be of type I if it is non-decreasing on some interval (0, c)
and lim s(t) = 0; it is of type II if it is non-increasing on some interval (0, c),

=0+
hm s(t) = oo and [§ s(t) dt < oo; and it is of type III if it is non-increasing on some
0+
mterval (0,¢), hm s(t) = oo and [§ s(r) dt = 0.
Now let ¢ be a welght function of the form

(8) o(x) = s(d(x)) (xeR),
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where
d(x) = dist (x, 0Q)

and s has property (H). It is known (see Theorems 11.2 and 11.11 of [7]) that if Q
is of class C! then:

(i) C™(Q) is dense in W,*?(Q) if ¢ is of type I or II;

(ii) C3(Q)is dense in W,"?(Q) if ¢ is of type III.

We can now give the main result of this section.

Theorem 1 Let pe (1, ), re N, te(1, co] and suppose that (1) and (2) hold;
let Q be a bounded domain in R" with boundary of class C'. Suppose that ¢ and o
are weight functions which satisfy condition (A), and in addition suppose that

o(x) = s(d(x)) (x € R"), where s has property (H) and g isof type 1, II or III. Let
1 <v<n/{n(l + a) — r} and let ¢ be the Orlicz function given by

¢(b) = exp (b)) — 1 (b 20);
let
I: W;r(@) - 14(@)
be the natural embedding. Then as m — oo,
an(I) = O(m=1?"(log m)~1/»+1/piti+a)
Proof. First consider the case in which s is of type I or II. Let Q be an open cube
in R" such that & = Q and |Q| > 1. By [5], there exists an extension map
E: W;H(Q) > Wn(Q)
such that for all u e W, (),
lulrsea < Bl pee = Kzt pon s

where K, is a constant independent of u; moreover, if u € C'(@2), then Eu e C(Q).
For all ue C'(Q), put # = Eu and U = & — Pyii. Then by Lemmas 2 and 3,
o0 1 _ v
fo #(|0(x)|[2) o(x) dx = ‘le—,(IIU ljv.e0d™")Y" =
j=1]!

-n 21 2 n\a -n tp’ || 5 - v
s 270 3, (GO (10127 e e )
i=1]:

ip\ (1 +ivip'lle
X (1 + L,)
p

IIA

© 1 A —1\jv
<270y, S {CaK(lel 27 7 [l pac? ™'} X
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’

p
where C, = C,p'"'(p’)". Put C3 = C,Ktla+1/t'2)/¥’,
é = {C3(|Q| 2—"~)l/‘p’ ”a"’OPJQ.Ql—l}V ’
py= 1t py=(a+1/tp)y,

Observing that a + 1/t'p’ = {n(1 + a) — r}[n and that consequently u, < 1, we
see with the aid of Lemma 1 that

s\ (1+at’+jv/p’>/t’
14
X (1 + L) ’

=1

Jo 0(:)] () 05 = |01 27() 5, & 8, + mas)*! 5
< Q] 27(1)!1¥ K, exp {(2e)ei-m(gng) 11 -m) < 1
if
(2ey /(eI < log 2N — log {K|Q|()'*},
which is certair.ﬂy true if
Az Cy(2e)""e (|| 27"N) (og 2"V —
— log (K, |Q| (1))}~ ], pp0 =
= Cy(|Q| 27")1/*¥ (log 2" — log Cs)~ /" *** 1 P'||g|, , 00 s SAY -

Hence
l# —Pufso= »
§ C4(|Q| 2-—nN)l/tp (log 2nN _ log Cs)—l/v+a+ 1/t'p ”ﬁ”r,p,o,Q .

Now let u € C"(2), so that @#(x) = u(x) for all xe Q; let
2nN

Pyu =,~z=:1XQ’nnP"Q’a .
Since
lu = Pyully,a < |@ = Pyitfs.o
it follows that
) [# = Pyulls.a <
§ C4(|Ql 2‘"")1/‘P'(10g 2”” - log CS)‘I/V+“+1/tIP' ”iz”’vpra’c é
- £ CK,(|Q] 27mM)! " (log 2"F — log C5)~ 1"+ 1% |u], L0 -

Since C'(£) is dense in W,?(Q), (9) holds for all u e W,*?(2). As the map u — Pyu
is finite-dimensional, with rank at most 2"VM, it follows easily that as m — oo,

am(I) = O(m"ll't"(]og m)—l/v+a+ l/l’p') .

When s is of type III the argument is similar but easier, as E is not needed.
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Remarks. 1. Note that

1:(1—1 t' <rn,
p \n t

with equality holding only when ¢t = oo; moreover,

1 r 1 1_1_5

pt n p p’t'— n

Thus the conclusion of Theorem 1 may be stated as
am(I) = O(m"(r/n—llp)(log m)l—r/n+a—l/v) .

2. A combination of the techniques used above and those used to prove Theorem 1
of [2] may be used to show that, under the same hypotheses as in our Theorem 1,
the entropy numbers e,,(I) satisfy the same estimates as for a,(I).

3. If instead of I we consider the embedding map I: W;'?(Q) — L%(Q), then since
no use is made of density and extension theorems, it follows that

a,,,(IO) s em(Io) = O(m“(’/""”")(log m)l—r/n+a—1/v)

under the same hypotheses as in Theorem 1, save that ¢ and ¢ may be general weight
functions which merely satisfy condition (A) and the requirement that ¢ € L ((Q);
¢ need not be of the form g(x) = s(d(x)); and no restrictions are imposed on 9Q.

4. The (A) condition requires that the weights ¢ and ¢ be defined on the whole
of R". Thus if we are merely given weights defined on Q, we have to extend them
to R" in a way which will ensure that the extended functions satisfy the (A) condition.
To illustrate how this may be done, suppose that ¢ and o are defined on Q by

o(x) = (d(x)", o(x) = (d(x)* (xeQ),

where ¢, = 0and —p < ¢, £ 0. Let K > 0 and define functions s and s; by

1 i < <
s(t)={t if 0<t<K,

K2 if t>K,
s:(1) = 2 if 0<ts£K,
NWTAK®2 if t>K.

Then if K is large enough, the functions g, ¢ defined by

A(x) = s(d(x)), &(x) = s;(d(x)) (xeR")
are extensions of ¢ and ¢ respectively which satisfy the (A) condition with a = 0.
In particular, when & = ¢, = 0, so that g(x) = o(x) = 1 (x€ 2), Theorem 1
shows that the approximation numbers of the embedding I: W"?(Q) — L[#(Q) satisfy

an(I) = O(m™=C"=1P(log m)t=rin=11")
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when 1/p < r/n. When 1/p = r/n this gives Theorem V.6.6 of [4], but under stronger
hypotheses on 9Q2; the same estimate holds for e,,(I), which gives Theorem 3 of [2],
again under stronger hypotheses on 9Q.

4. THE CASE WHEN 2 IS UNBOUNDED
To deal with this situation the following lemmas are required.

Lemma 4. Let u € Co(Q). Then there is a constant Cg, depending only on r and n,
such that for all xe Q,
u(x)] = Cs fnnmx,n,ZoID"u(y)l ly — x| dy,
where
DU = 3 |l

and B(x, 1) is the open ball in R” with centre x and radius 1.

Lemma 5. Let 0 < b < n. Then

fansen [X = ¥ "dy £ @0,b7'(|2 A B(x, 1)|/w,)*",

where w, denotes the (n — 1)-dimensional Lebesgue measure of the unit sphere S"™*
in R".

These lemmas are proved in Chapter V of [4].

To estimate the approximation and entropy numbers of the embedding

Iy Wy ,(Q) - L(Q)

where Q is unbounded, we first assume that (1) and (2) hold and that the weight
functions ¢ and ¢ satisfy

(&) sup {(|BGs | facem (o)) d))1V5.
1Bk, DI fan (2()"0D dx)117 : x e R, 7 > 0} < Kg*

for all g € [p, ), where K and a are constants with 0 < a < r/n. Condition (A’)
is plainly equivalent to (A). We also assume that :

e€ L, (Q),
and define ¢ by
(10) #(s) = s"exp(s’) (s20),
where
(11) l<p<t<o and 1<v<n[{n(l +a)—r}.
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Finally, set
ng = sup {|2 n B(x, 1)|/|B(x, 1)] : xe @} .

Lemma 6. Let Q be an unbounded open subset of R”, suppose that (1), (2) and (A")

hold and let ¢ be defined by (10) and (11). Then for all u € Wg:2(Q), we have
”“”‘#,c,n = sz'hlzm’(IOB na' — log Clo)lﬂ_’/’l_l/v "u"r,p,q,ﬂ .

Proof. Since C3(RQ) is dense in Wg'?(Q) it is enough to prove the lemma when
ueCP(Q). Let 1/s=1/p—~1/q, ¢ > p; put a; =(r—n)t' + n=nlp, a, =
=(1=1/q)(r — n) p't' + n = nfq, v(y) = Y. |D'u(y)|. From Lemmas 4 and 5 we

i=0

see that, with all integrals being taken over 2 n B(x, 1),

WG] = Co o) |5 — 5" dy 5
Col§ P ¥ = " a(3) )0 (§ O ) )"
(J‘ [x - yl(l-ilq)(r—n)p't’ dy)llp’t‘ (J’ Q(y)-p'r/p)llp': <
Cﬁ’lslz/qp"’(wnaz_ 1)1“’"’ "”“Z{;.n HQ_II(p_l)"zl,gr'»B(x,l) X
x ([ o) [x = ¥ ely) dy)* =
S Conlr g e Ol

x ([ o7 |x = y"""e(y) dy)*/e, say.

X A

IIA

Thus
[#]g.e.0 < Cond/® g " u]2ls 0 %
% fa fonno.y [0 VM e b1y [P X = ¥ o(x) o(y) dx dy <
< Cong ™ g 1 ulPls 0 X
x {fa e~ Vlanp.2) [t e(¥) Janse.1 [y = %[ dx)!* x
X (Jans,1y 0'(x) dx)'/* dy}t/a.

By condition (A’) and Lemma 5, we have

[lain S Conior gt [ultls o0 ™ (i ) x

 {Ta(Ka'l By, D[ 10798 o) o(3) )t <

S Cong ™V g 7 ul, g0

where Cg depends only on n, r and p.
Since 1/p't’ = 1 — r/n, we define positive numbers x; and p, by

m=nl+a)—r, po=(L+a-rmv<lt,

6= c e _______j_____ 1+a~r/n " l -1 v=
8o n(l + a) _r u lr,p,e.n

and put
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= (an},""'”u",,p,o,n A71), say.

By Lemma 1, we have

" o ¢(lu(x)]/2) o(x) dx =j§0;_1-! fo lu(x) A=1}i"** o(x) dx <

©
1 . . .
S 103, (Cor ™ [l 471 (i 4+ 047707 5

= (1 +a- "/n)_‘u1 'lnfa/vZ(ﬂt + l‘zj)mwu./j! s
j=o0

< K,(l +a— r/n)_‘“ nnevﬁlv exp {(ze)uz/(l—uz) (emé)l/(l"l‘l)} .
If ¢ 2 1, since t/v < p, we have

e™/s exp {(ze)uz/(l-nz) (euxg)ll(l-uz)} < exp {((ze)nz/(1~#2) + 1)

x (et/v§)1/(l—nz)} ;
and if ¢ < 1, then the corresponding estimate has

et/v exp [(ze)m/(l—uz) em/(l—-m)] .

Thus
Ja ¢(lu(x)] A7) a(x) dx < Cyong exp (€1, 7*2),

and from this the Lemma follows easily.

Lemma 7. Let R > 0, Oz = (—R/2, R[2)". Then under the assumptions of Lemma
6 we have, for all u e W3'l(Qg),

u = Pyufso0x S C,s(R*27mM)Up's

x (log 2" — log R" — log Cy)" =" 1"lul, , 4,00 -
Proof. From Lemma 2 we have, for all g € [p, o) and all u € C§(Qr),

4 = Pas]ocon =
<c K“(R” 2—nN)1/q+1/p’r(1 + 'qr/p)(l/q+1/p')/t'”u"’ 20 OR ¢

Thus with U = u — Pyu,
fox $(JU()] A7) o(x) dx =
=R 2‘""12:0}! {CK(v + ) (R* 27" P 3= u]|, , 0} X
x {1+ (jv+ T)/P'}(l;(j'+')/")/".

Putp, = (1 + tfp' + ta0)lt >0, p, = (a+ 1/tp)v=(1+a—rln)ve(0,1),
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&= {CRATR 27NV (p ) (1)1 47 Jullr pogn}”
Then using Lemma 1 we obtain

Jor #(JUX)| A~ a(x) dx <

< (1)U R 2'""6""j§0 11_' g + pajyr o <

< ()1 KR 27"V exp {(2e)a/(t=h) (ghi £)1/C1 =120} E
Using methods similar to those in Lemma 6 we have

for #(IU()| 477) o(x) dx < C14R" 27" exp (C13¢' /1 7#)
from which it follows easily that

lu = Prufg.0.00 = Cis(R*27")1*%" x

x (log 2"V — log R” — log Cy4)' **~"" =" |u|, 008 -
Since C3'(Qg) is dense in W'Z(Qg), the proof is complete.

We now come to the main result of this section.

Theorem 2. Let Q be an unbounded open set in R", let (1) and (2) hold, let the
weight functions ¢ and o satisfy condition (A) with ¢ € L\,(Q), and let ¢ be defined
by (10) and (11). Let A

Io : W3B(Q) » L2(@)
be the natural embedding and assume that ng = O(R™") as R - oo, where ng =
= sup {|@Q n B(x, 1)|/|B(x, 1)| : max |x;| > R}. Then as s - 0,
15ign

a(Io) = O(s™"/n=1/P12 (Jog 5)t+a=rin=1/7)

Proof. Let ¥ € C3(R") be such that 0 < y(x) < 1 for all xeR", Yy(x) = 1 if
max |x;| £ 4/3, Y(x) = 0 if max |x[ > 5/3 Foreach ke N put y,(x) = y(2x/k),

lln

={xeQ: max[x]<k/2} Q {x € Q:max |x;| > k2}.
15isn

For each ue Co (@), let #(x) = u(x) if ue 2, #(x) = 0 otherwise, (E,&) (x) =
= Y(x) @(x). Then Eiie C3(Qy), &t — Exiie C3(8,). Noticing that there is a con-
stant Cy4 such that for all xe R", all ke N and all e N§ with |e| <,

|DY(x)| < Cie
and using the Leibniz formula, we have

IEt] p.e.0 < C1|d]r.p0.00
and

”u - Eku“rpoﬂ C17"u”rnoﬂk
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For given even N € N, let k, = 2V/? and define a map Py by

— P (an)(x)’ uEQ 0
Pyu(x) = {ON o’:herwise . *

By Lemmas 6 and 7 we have
"u - PNuH¢,,,n = "l‘i - FNu"¢‘¢,Q =
S i = Bty et + |Exolt — PyEroi]g.0.0m, <
é Clz(ko/Z)—"/"”(lOg (ko/Z)" - log C10)1+a_r/"—1/v "ﬁ - Ekoﬁu,,p,o‘m'-l‘-
+ Cls((zko)n 2—-uN)l/tp’(Iog 2nN - log (2k0)” _ log C14)1 +a-r/n—1/y X
X "Ekoa”npm,szo s
£C,, 2—n(N/2—l)/tp’(10g (2—"+nN/2) -
— log Cyo)tHemrim=tl C17”ﬁ"r,p.o.ﬁm +
+ C, 5 27"N2Z=D/t9 (165 2"V _ Jog 2" — log 2"V/2 —
— log Cld)“m“'/”_”v "ﬁ"r,p.o,om .
Thus we see that
Hu - ﬁN“”é,a,!} é C18 2—»N(r/n—1/p/2(log 2nN)1+n—r/n—1/v ”u"r,p,c,ﬂ

when N is large enough. The result follows.

Remarks. 1. When g(s) = o(x) = 1 for all x e Q, the approximation numbers of
the embedding map I, : W}:5(Q) - L(Q) satisfy
a,(lo) — O(s—(r/n—llp)/l(log s)l-r/n—l/v) .

In particular, when 1/p = r/n,

a,(I,) = O((log s)* ~""=11).
2. Under the same hypotheses as Theorem 2, we can also show that e, (I,) satisfies
the same estimates as a,().
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Souhrn
APROXIMACNI CISLA A CISLA ENTROPIE VNORENf{
DO VAHOVYCH ORLICZOVYCH PROSTORU
D. E. EnMUNDS, JIONG SUN
V praci jsou odvozeny horni odhady pro aproximadni &isla a &isla entropie vnofeni Sobolevo-

vych prostoru s vahou do vhodnych vahovych Orliczovych prostoru. Vysledky se tykaji pripadu,
kdy defini&ni oblast je omezena, a n&kterych neomezenych oblasti.
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