
Mathematica Bohemica

David Eric Edmunds; Jiong Sun
Approximation and entropy numbers of embeddings in weighted Orlicz spaces

Mathematica Bohemica, Vol. 116 (1991), No. 3, 281–295

Persistent URL: http://dml.cz/dmlcz/126169

Terms of use:
© Institute of Mathematics AS CR, 1991

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/126169
http://dml.cz


116 (1991) MATHEMATICA BOHEMICA No . 3, 281-295 
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Summary. Upper estimates are obtained for approximation and entropy numbers of the 
embeddings of weighted Sobolev spaces into appropriate weighted Orlicz spaces. Results are 
given when the underlying space domain is bounded and for certain unbounded domains. 
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1. INTRODUCTION 

Much work has been done on the estimation of entropy and approximation 
numbers of embeddings of Sobolev spaces in IF spaces or Orlicz spaces (see [1], [2], 
[4], [9], [12]). In particular, when Q is an open subset of Rn, it is known that in 
the critical case in which rp = n, Wr,p(Q) can be compactly embedded in appropriate 
Orlicz spaces (see [3], [13]); estimates for the entropy and approximation numbers 
of this embedding were obtained in [2]. In recent years a great deal of effort has 
been devoted to the study of embeddings between weighted function spaces (see[6], 
[7], [10], [11]), particular attention having been paid to the situation in which the 
target space is a weighted Lebesgue space. This paper is devoted to the study of 
embeddings of weighted Sobolev spaces Wr,p(Q) in weighted Orlicz spaces ifJjQ) 
when rp — n; we give estimates for the approximation and entropy numbers of 
these embeddings first when Q is bounded and then when it is unbounded. Here Q 
and a are nonnegative weight functions which are related by a condition of Apq 

type (see [10]). 
Our results extend those of [2], in which Q = a = 1. 

2. PRELIMINARIES 

Denote points in /t-dimensional Euclidean space Rn by x = (JC1? ..., xn), and for 
each a = (a1?..., aw)e N0 (where IV0TV u {0}) put 

n n 

|a| = £ a,, a! = fT a, , 
; = i ; = i 
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x* =Y\x*j\ D"-I I (a /3*y) ' ' . 
j=i j=t 

Let P e (1, oo), r e IV, * e (1, oo] and suppose that 

P \n tj 

where l/f + l/f = 1, and 

(2) 1 < - < t. 
r 

Let Q and a be measurable functions on Rn which are positive almost everywhere 
and which satisfy the following condition for all q e [P, oo): 

<A) T id i ly d*rw0
(*)r""df'}SK*-' 

where the supremum is taken over all cubes Q1 in R (with sides parallel to the co­
ordinate axes), |Q| is the volume of Q, K and a are constants and 0 ^ a < rjn. 

Let Q be an open subset of Rn. The weighted Sobolev space WQ'P(Q) is defined to be 

{u: D%u e LP
Q(Q) for all a e 1V0

n with |a| ^ r} , 

endowed with the norm 

M r . M l 0 : - ( E ML,«) 1 / P > 
l«ISSr 

where the derivatives are taken in the sense of distributions, functions equal almost 
everywhere are identified, and 

HHlM.-:=!(J-l«'WI'cW^)1/' 
is the norm on LP

Q(Q). Here the functions may be real- or complex-valued. Note 
that since Q and a satisfy condition (A), 

Q-W-»eIlJp)clUQ)\ 

hence by Theorem 1.2 of [8], WQ
r,p(Q) is a Banach space. 

By WQ^(Q) we shall denote the completion (whenever this is meaningful) of the 
set CQ(Q) (of all infinitely difFerentiable functions with compact supporting) in 
WQ'P(Q). As shown in Theorem 1.2 in [8], WQ\P(Q) is meaningful if, in addition, we 
require that 

(3) QGLIC(Q). 

An Orlicz function is a map <f>: [0, oo) -> R which is continuous, convex and such 
that lim <f>(t)\t = 0 and lim (£(')/' = °°- Given such a 0, the weighted Orlicz space 

t-*0 t-*oo 
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L$(Q) is defined to be the linear hull of the set of all real- or complex-valued functions 
u on Q (with the convention that functions equal almost everywhere are identified) 
such that 

in <HK*)I) °(x) dx < °° > 
furnished with the Luxemburg norm given by 

HI,,,,,. = inf {X > 0 : j n <f>(\u(x)\IX) a(x) dx g 1} . 

With this norm, L%(Q) is a Banach space. 
Let X, Ybe Banach spaces and let Te @(X, Y), the set of all bounded linear maps 

from X to Y Given any s e IV, the s-th approximation number as(T) of Tis defined by 

as(T) = inf{ | |T- F|| :Fe@(X, Y), dimF(X) < s} , 

and the s-th entropy number es(T) of Tis given by 

es(T) = inf {a > 0 : T(BX) can be covered by 2S~* closed balls 
of radius e} , 

where Bx is the closed unit ball in X. 
Much information about weighted Sobolev spaces is contained in [7]; details 

of the main properties of approximation and entropy numbers are given in Chapter II 
of [4]. 

3. THE CASE WHEN Q IS BOUNDED 

To obtain our results concerning the entropy and approximation numbers the 
following lemmas are required. 

Lemma 1. Suppose that fit > 0 and 0 < fi2 < 1. Then the series 

S(z):=fzJ(fi1+li2j)^^lj\ 
1 = o 

converges for all z > 0 and there is a constant Kl9 depending only on fit and fi2, 
such that for all z > 0, 

S(z) = Kx exp {(zer / (1-*2) (eulz)1/(1-*2)} . 

Proof. Let k be the integer part of ^i/(l - fa)- For j ^ k + 1 we have ^ + 
+ fi2j <L j , and for j <; k the inequality H + Hij .= i"i/(l - V2) holds. Thus 

k ~J / „ \ M i / ( t - ^ 2 ) °° ZI 

*(*) * I - P M + £ V + " = s^z) + s '«> s a y • 
H ; ! \ 1 - nj -f«*+ij! 

Since y"1 ^ e"u we have 
00 -H2j 

l ! ; = * + i j ! 
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and by the proof of Theorem V.6.6 of [4], there is an absolute constant c0 such that 
for all 2 > 0, this last series is majorised by 

c0cxp{(ze)' ,a/(I^>(e , ,'2)1/(1- | ,2)}. 
Moreover, 

v / . l / ( l -ni) 

s . ( 2 ) j i ( _ £ - _ \ e± 

exp{(zey*'(l-»>(e>iz)ílii-''*} 

The result follows. 

Lemma 2 For i = 1,..., n let ai9 ftfei? be such that af < bf; let Q — {xeRn : 
: a,. < xf < br/or i = 1,..., n}, p e ( l , OO), re /V, fe (1, oo], and suppose (1) and 
(2) hold and that q ^ p. Suppose that Q and a are weight functions which satisfy (A). 
For all u e C(§) n WQ

r>p(Q) and all xeRn put 

(P,,Qu)(x)~*& I f XQ(y)(^-D*u(y)dy 
\Q\ \*\*r-iJRn a! 

where XQ is the characteristic function of Q. Let Q be subdivided into 2nN congruent 
boxes Qj and set 

2"I* 

(IV) « = I XQi(x) (Pr,Qju) (x) (x € *") . 
J - = l 

Then for all u e C(Q) with ||u|r>p>(?>G = 1, 

«« - IVIL.Q = c1Ka»(2-^|Q|1^+1^'')(l + . / / p ' ) ^ - 1 ^ ' ' , 

where CY is a constant which depends only on n and r. 

Proof. For ueC(Q)n Wr'p(Q) we have for any xeRn, by Taylor's formula 
and setting u = 0 outside Q, 

«(x)-(Pr>Qu)(x) = 

= *(»(*) |Ql_1 Z -̂  f xaOO f I- - ^ ) r _ 1 (* - j')" /)•«(« + j ' - T.V) 
W=<-a!J*» Jo 

dt dy = £ — F„(x) , say . 
|« |=r(X! 

Then 

where 
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and Q0 is the box centred at 0 and obtained by translation of Q. A routine calculation 
shows that 

(4) Uff.lU... _ A 2--/-|e|i/«+'!- {(r -n)m + „}--/« 

provided that (r — n) m + n > 0 and m > 1; here .A is a constant which depends 
only on n and r. (See Lemma V.6.1 of [4].) 

Let l/m = 1 — 1/p + l/#, 1/s = Ijp — 1/q and suppose that q > p\ note that 

p'(\ - mjq) = m , s(l - p/q) = p and l/p' + l/q + l/s = 1 . 

Use of Holder's inequality now shows that 

\{ga*XQ\D*u\){x)\ :g (JR„ |a,(x - z ^ " " ^ ^ ^ - ' ' / ^ ^ 1 / ' ' x 

x (Ja-M* - -)|mZQ(z) \D'u{z)\>Q{z)dzy> x 

x (JRnZe(z)|D««(z)^1-^)e(z)dz)1/s £ 

^ M ^ . e lldfe- Ik-''"!!/* x 
x (J«. |fc.(* - z)|" XQ(Z) \D*u\> 8{z) dz)1* . 

It follows that 

(5) (J«- *e(*) |(0. * Zal^l) (*)|« <r{x) dx)^ £ 

^ W* ||(f''*|#' l^||^,fl Ikll̂ .V | | « l°"«,fl = 
= |*„U_. |c.-''*|ft' N# l-^Ua • 

When p = q, Young's inequality for convolutions gives 

(6) (J*. XQ(*)\{9* * uWu\) (x)\' <r{x) dx)l'> g 

glkll.^ll^lUclle-^l^'llal1^. 
Since 

1 1 1 1 r \ , 1 
9 P <1 p \n } m 1 

we see that the condition 

(r - n) mt' + n ^ 0 

holds: and 

-L-.1-.!. Л = 1 _ ľ + 1 
p'ť n' mt' n qť 

We therefore have, using (4), (5) and (6), 

(T> |« - Pr,A,a,a § cjei1/"' ( i ) 1 ' * ' \\Q-">\\)% N & - M,.,.... 
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where c. depends only on n and r. This inequality, with Q} in place of Q, shows that 
for all « e C(Q) with ||«|r,p.(,.Q = 1, 

2nN 

II" " PMUa - { I I W« - -WW-.*}1'* --
1=1 

^ CM^1'" ($" {^\*-'''\Vl M & ««|,,„>Q;>r*-
As g and cr satisfy condition (A), the Lemma now follows. 

Lemma 3. Under the same conditions as Lemma 2, except that the condition 
1 < p gj q is replaced by 1 < q < p9 we have for all u e C(Q) with \\u\\rfPfQtQ = 1, 

||« - j>i,.,.fl g Qp^'-^iel 2 - T / 4 + 1 / , P ' • 

Proof. Using Holder's inequality and (7) we obtain 

||« - PrifluUfl ^ II" - ^^IL.-ad^kalel1"')1'4-1"' ^ 
^ c-ierv'*!*-1'*-1'!,1.'*' M# «»IU.a-

This inequality, with Qy in place of Q, gives 

1" - IV-IU.c = 
2nN 

- { I(Ci|Gy|wV/l«-1/('-1)|.1j8;H,,jg,|«I,^.flj)«}1/» ^ 
1=1 

= cy/'XIfil 2-"1Y'l'W(le| 2-"71/g+1/p')/f (Z IIHI^^)1/<! = 
1=i 

= Cj^/^K^de^-^)1/^1/^'. 
Next we introduce several important restrictions on the weight function Q9 following 

the approach of Kufner [7]. 

Definition 1. Let s:R+ -> R+ be continuous (R+ = [0, oo)). We say that s has 
property (H) if, given any positive constants ci9 c2 with cx < cl9 there are positive 
constants Ci9 C2 such that 

cl ^ t ^ T ^ c2 implies Ct ^ s(t)\s(x) S C2 . 

The function 5 is said to be of type I if it is non-decreasing on some interval (0, c) 
and lim s(t) = 0; it is of type II if it is non-increasing on some interval (0, c), 

r->0 + 

lim s(t) = oo and Jo s(t) dt < oo; and it is of type III if it is non-increasing on some 
f->0 + 

interval (0, c), lim s(t) = oo and Jo s(t) dt = oo. 
f-+0 + 

Now let Q be a weight function of the form 

(8) e(x) = s(d(x)) (xeXr), 
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where 

d(x) = dist (x, dQ) 

and s has property (H). It is known (see Theorems 11.2 and 11.11 of [7]) that if bQ 
is of class C0'1 then: 

(i) C°°(;Q) is dense in Wr'p(Q) if Q is of type I or II; 

(ii) C%(Q) is dense in Wr>p(Q) if Q is of type III. 

We can now give the main result of this section. 

Theorem 1 Let pe(l, oo), re IV, te(l, oo] and suppose that (1) and (2) hold; 
let Q be a bounded domain in Rn with boundary of class C. Suppose that Q and a 
are weight functions which satisfy condition (A), and in addition suppose that 
Q(X) = s(d(x)) (xeRn)y where s has property (H) and Q is of type I, II or III. Let 
1 < v < n\{n(l + a) — r) and let <f> be the Orlicz function given by 

<f>(b) = exp (by) - 1 (b = 0) ; 

let 

I: Wr
Q>p(Q) -+ I+(Q) 

be the natural embedding. Then as m -» oo, 

am(l) = O^-^'Xlogm)-1^1^'**). 

Proof. First consider the case in which s is of type I or II. Let Q be an open cube 
in Rn such that D cz Q and \Q\ > 1. By [5], there exists an extension map 

E: WQ
r>p(Q) -> WQ

r>p(Q) 

such that for all u e Wr>p(Q), 

\Mr,P.e.a S \\Eu\\r,P,e,Q = K2\Mr.p,9,a> 

where K2 is a constant independent of w; moreover, if u e C(D), then Eu e C(Q)» 
For all u e C(Q), put u = Eu and TJ = u - PNu. Then by Lemmas 2 and 3, 

lQrt\V(x)\n)a(x)dx = i -(wow^x-y^ 
j=lj\ 

= 2-le | i -Ac2K(jviPy(\Q\2-'T'p'MUe,Q^1}JV x 
.-•;! 

(-5)' 
(l+Jv/p'//ť 

< 

= 2-1ß|I. i{C-.K(|ß| 2-*)1'»'|в||WtвA-1p x 

28Ѓ 

y ^ ; ! 



*K)' (l+ať + jv/p'У/ť 

where C2 = CIp
1/,'(p')''- Put C3 = C2~Ti<«+*/.>'>/.', 

« - { C , ( | f i | 2 - - w ) ^ ' | - | W H S J l - - } ' , 

A*I = i/t'. h = (-»+ -/*y) v. 

Observing that a + ijt'p' = {M(1 + a) - r}/« and that consequently fi2 < I, we 
see with the aid of Lemma 1 that 

rc \0(x)IX\ a(x) Ax < |6| 2-»\t<y»- £ I ^ + /.2/r+"27' = 
y = i j ! 

^ |Q|2-""(.')1/''-K1exp{(2«)'"/(t-^)(c'"1J)1«1--^)} ^ 1 
if 

(2eY-/(t-«>(e"'.J)1l1-" <. log 2"" - log {X.lQK*')1"'} , 

which is certainly true if 

I ^ C3(2e)"2/V'/v(|g|2-")1/''>'{log2"" -

-iog(K1|e|(ol/*')}-1/"+-+1/»'''||i"il,^.0-
= C4(|Q|2-"'v)1/"''(log2"^ - logC5)-

1"+"+1"'"'|.7lr.p,e,Q, say. 

Hence 
|fi -PA*,Q ^ 

<. C4(|Q| 2-»y'»>'(log2»N - log Cs)-
1»+-+l't'>' \\a\\r,p,e,Q. 

Now let u e C(D), so that ii(x) = u(x) for all x e Q; let 
2nN 

PN" = I XQjcnPr,QjU • 
1=1 

Since 

it follows that 

(9) IJii - P,,«||,>n <. 

<. C4(|e|2-"w)1/"'(log2"w - logC..)-1'-*"1"''' \\H\r,P,e.Q tz 

< C4Ka(|fi|2-»*)J/"'(log2"r - logC,)-1^"*1"'"' \\u\\r,p,e,„. 

Since C(H) is dense in W'-^Q), (9) holds for all u e Wr'"(Q). As the map u t~ PNu 
is finite-dimensional, with rank at most 2nNM, it follows easily that as m -» co, 

am(l) = 0(m-l'"'(log m)-1/y+a+1"'"') . 

When s is of type III the argument is similar but easier, as E is not needed. 
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Remarks. 1. Note that 

p v» fJ P 

with equality holding only when t = oo; moreover, 

1 r 1 1 r 
— = and — = 1 . 

p't n p p't' n 

Thus the conclusion of Theorem 1 may be stated as 

ajl) = 0(m-^n-1/p\logmy-r/n+a-1/v). 

2. A combination of the techniques used above and those used to prove Theorem 1 
of [2] may be used to show that, under the same hypotheses as in our Theorem 1, 
the entropy numbers em(l) satisfy the same estimates as for am(l). 

3. If instead of I we consider the embedding map I0: WQ,P(Q) -> Lt(O), then since 
no use is made of density and extension theorems, it follows that 

am(Io) , em(l0) = 0(m-W-1/">(log m f - ^ - ^ ) 

under the same hypotheses as in Theorem 1, save that Q and a may be general weight 
functions which merely satisfy condition (A) and the requirement that Q G l)loc(Q); 
Q need not be of the form Q(X) = s(d(x)); and no restrictions are imposed on dQ. 

4. The (A) condition requires that the weights Q and a be defined on the whole 
of Rn. Thus if we are merely given weights defined on Q, we have to extend them 
to Rn in a way which will ensure that the extended functions satisfy the (A) condition. 
To illustrate how this may be done, suppose that Q and a are defined on Q by 

Q(x) = (d(x)J\, a(x) = (d(x)Y (xeQ), 

where e_ J_ 0 and — p < e2 __ 0. Let K > 0 and define functions s and st by 

M _ f f " i f 0<t<K, 
S W-" [£ . • - i f t > K > 

f ř C 2 

S l « - \K> 

12 if 0 < í = K , 
B2 if t>K. 

Then if K is large enough, the functions p, a defined by 

p(x) = s(d(x)) , &(x) = st(d(x)) (x e Rn) 

are extensions of Q and a respectively which satisfy the (A) condition with a = 0. 
In particular, when e_ = e2 = 0, so that Q(X) = <r(x) = 1 (xe Q), Theorem 1 

.shows that the approximation numbers of the embedding /: Wr,p(Q) -> If(Q) satisfy 

am(l) = 0(m-Wn-i/p)(logm)l-r/n-1/v) 

289 



when ijp ^ rjn. When 1/p = rjn this gives Theorem V.6.6 of [4], but under stronger 
hypotheses on dQ; the same estimate holds for em(l), which gives Theorem 3 of [2], 
again under stronger hypotheses on dQ. 

4. THE CASE WHEN Q IS UNBOUNDED 

To deal with this situation the following lemmas are required. 

Lemma 4. Let u e C0(Q). Then there is a constant C6, depending only on r and n> 
such that for all xe Q, 

\u(x)\ <. C6 /„„,,,.., i |D'u(y)| \y - x | ' - dy , 
i = 0 

where 

\DHy)\2 = I \vu(y)\2 

and B(x, 1) is the open ball in Rn with centre x and radius 1. 

Lemma 5. Let 0 < b < n. Then 

W . i ) I* - y\"-n ^ <= aJb-^Q n B(x, l)|K)fc/" , 

where con denotes the (n — l)-dimensional Lebesgue measure of the unit sphere Sn~l 

in Rn. 
These lemmas are proved in Chapter V of [4]. 
To estimate the approximation and entropy numbers of the embedding 

J0: WS;F(Q) -> L+(Q) 

where Q is unbounded, we first assume that (1) and (2) hold and that the weight 
functions Q and cr satisfy 

(A) sup{(|B(x)r)|-ifB(x>r)(<r(x))'dx))1/". 

• (\B(x, r)\~l fB(JC,r) (Q(X))-"^-^ dx)1""' :xeR",r>0}^ Kq" 

for all q e [p, oo), where K and a are constants with 0 ^ a < rjn. Condition (A') 
js plainly equivalent to (A). We also assume that 

QeL\0C(Q), 

and define tj> by 

(10) 0(s) = stexp(sv) (»1>0), 

where 

(11) 1 < p < T < oo and 1 < v < n/{n(l + a) - r} . 
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Finally, set 

t]Q = sup {\Q n B(x, l)|/j_3(x, 1)| : x e __} . 

Lemma 6. Let Q be an unbounded open subset ofRn
9 suppose that (1), (2) and (A') 

hold and let 4> be defined by (10) and (11). Then for all u e WQ1*(Q), we have 

H * * * = C12r,^'(logri^ - l o g Q o ) 1 * - ^ - 1 ^ H ™ * • 

Proof. Since C"(_) is dense in FFo;£(_) it ts enough to prove the lemma when 
ue -£(_). Let 1/s = ljp - Ijq, q > p; put a. = (r - n) t' + n = «/p, a2 = 

r 

= (1 - 1/a) (r — n) p't' + n = n/a, v(y) = Y, |_'u(y)|. From Lemmas 4 and 5 we 
i = 0 

see that, with all integrals being taken over _ n _(x, 1), 

| « ( x ) | g C 6 J i . ( y ) | x - y | ' - d y ^ 

= C6(J Ky)|p |„ - _ |'"" e(y) dy)1'" (J |w»|» <?(y) dy)1" x 

x (jfx - y[<1-1/*)('-»)'''''dy)1/','r'(/[2(>')-p'"p)1/p', _ 

= c^'Xco^y*'*' \vfjin le-^-^l'U^ x 
x(iKy)\'\x-y)<-"Q(y)dyY"£ 
_ c7^'''a1^'''||e-

1^-1>||0^,1)l«|]f';,e>0 x 
x (f | -» | ' I* - . I'-" e(y) - » 1 / f , say . 

Thus 

W, . , .- = Q *_ 9P''y/p'1l«IP/;,e,« x 
x ioionm,.i) h~1/(,~1)JIW^M \v(y)\p\* - y|r-"<TWe(y)dxdy = 

x {j_ ll--1'^-1'!!^^^, Ky)MM_-*>,,> |y - *r">«'dx)'"' x 
xa„n^,i)<7'(x)dx)1/'dy}1/«. 

By condition (A') and Lemma 5, we have 

x Ur_(*qlGn_^^^^ ^ 
^c8^+1^v^/pvf|w | |r>^? 

where C8 depends only on n, r and p. 
Since 1/PY = 1 — rjn9 we define positive numbers fit and ju2 by 

/_! = n(l -f a) - r, /*2 = (1 + a - r/n) v < 1, 
and put 
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= (C9n
l
a»''Ht„,0X-*y, say. 

By Lemma 1, we have 

J0 <H|"0)|M) a(x) dx = Z~, Jo l"M *~T+X <*) dx = 
j = oj\ 

-oŽ-7 l(C.-i /"'N^^^ iy+ t(/v + T)<-+-"-*"+,) á 
1 = ojî 

= (1 + a - r /»)-" ^ " / v I > i + /i2j)"
1+"2y/j! ^ 

i=o 

= X.(l + a - - /n)-" f/0e'*/v exp {(2e)"^1-^ (e"*£)1/(1 ~M2>} . 

If £ _ 1, since T/V < fit we have 

etu/':exp{(2c)''j/(1-«>(e''^)1/(1-''j)} = exp {((2e)«/(,-"2) + 1) 
x (e</'£)i/a-/.г)} . 

and if { < 1, then the corresponding estimate has 

^ e x p ^ ) ^ 1 " ^ ^ ^ 1 - ^ ] . 

Thus 

la ¥\u(x)\ I'1) <x) d* ^ C^a exp ( C u ^ 1 ^ ) , 

and from this the Lemma follows easily. 

Lemma 7. Lef K > 0, QR = (--R/2, #/2)w. Then under fhe assumptions of Lemma 
6 we have, for all u e WQ*{QR), 

\\u-PNuU,a,QR^C15(R"2->TP''x 
x (log 2"" - log*- - log C14y

+-"»-l<*\\u\\rtPie,QR . 

Proof. From Lemma 2 we have, for all q e [p, co) and all u e C%(QR), 

I" ~ JPiV«||«,*.C» = 

= C. K"(R" 2-Ny>9+l,P''(1- + 9'IPr/<,+1/p'}"'Mr>p,etQR . 

Thus with U = u - PJV«, 

Jfa^l-IWM'1)^)^--

= R"2""Nf -ACrKQv + T)«(JR"2-w)I"'«A-*|I«|r,M,<t}^+« x 
; = 0 j ! 

x { l + ( ; v + t)/p'}<1+^+^'»/«'. 

Put /.. = (1 + r/p' + *'<.#' > 0, ft2 = (a + 1/t'p') v = (1 + a - r/n) v e (0,1), 
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Z = { C . X r 1 ( ^ 2 - " T ' V ) * ( ' ' ) 1 + " ~ r / ' I«l|r.,...fl.}'."v 

Then using Lemma 1 we obtain 

jQR<l>(\U(x)\X-1)a(x)dxS 

g: (t')1"' R" l-^Z'^ j - ZJ(fll + ^2JYl+>l2j ^ 
j = 0j\ 

g (f)1"' KtR" 2-"V«/v exp {(2e)"j/(1""2) (/"£)1/(1-"*>} . 

Using methods similar to those in Lemma 6 we have 

J S R <H|t lMU - 1 M*)d* ^ C14H-2-"wexp(C13<;1/(1-">), 

from which it follows easily that 

i « - I J ^ I * , . , Q « ^ c i 5 ( ^ 2 - " w ) 1 / " ' ' x 

x(log2"" - logR" - logC14)1+a-/n-1/v||«||P,p>e,QR . 

Since CQ(QR) is dense in Wofe(QR), the proof is complete. 
We now come to the main result of this section. 

Theorem 2. Let Q be an unbounded open set in R", let (l) and (2) hold, let the 
weight functions Q and a satisfy condition (A) with ge L\0C(Q), and let <j> be defined 
by (10) and (11). Let 

Io : WZ:l(Q) - L+(Q) 

be the natural embedding and assume that nR = 0(R~n) as R -» oo, where qR = 
= sup {\Q n B(x, l)|/|#(x, 1)| : max |x,| > R}. Then as s -+ oo, 

as(l0) = 0(s-"n-1/p)/2 (log sy+'-'W) . 

Proof. Let il/eC%(Rn) be such that 0 = i/r(x) ^ 1 for all xeRn, <//(x) = 1 if 
max \xt\ = 4/3, ij/(x) = 0 if max \xt\ = 5/3. For each fee IV put ^(x) = ^(2x/fc), 

Qk = {xeQ : max \x\ < fc/2}, Sk = {xe(2: max |xf| > fc/2}. 

For each u e CQ(Q), let w(x) = w(x) if w e Q, u(x) = 0 otherwise, (Eku)(x) = 
= \l/k(x) u(x). Then £kwe C%(Q2k), w - £k«eC0

w(fik). Noticing that there is a con­
stant C16 such that for all x e Rn, all fc e IV and all a e IV0 with |a| g r, 

|Dai/tfc(x)| = C16 , 

and using the Leibniz formula, we have 

||£*w||r,/>,<>,fl = ClTllwlkp.e.Q-fc 
and 

\\S - Eku\\rtPtQ>n ^ C17||fl||r,M,flli. 
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For given even Ne N, let k0 = 2N/2 and define a map PN by 

- ' .V-W-JO otherwise. 

By Lemmas 6 and 7 we have 

||« - IVIU.,,0 = flA - PA*.*,n = 
= \\*~ -Mk*A. + IK* - IVZ*„flfl,,,,C.fc. = 
= C12(fc0/2)-"/"'(log(fc0/2)" - logC,, ,)^- ' /"-1 /* \\u - £tofl|r,,,e,fik,+ 

+ C15((2fc0)"2-"w)1/"'(Iog2"w - log(2fc0)" - log e , , ) 1 ^ - " " - ' " x 
X IK«|r,P,,,QJk. ^ 
^ C122-"W2-1>/"'(log(2-"+"iV/2) -

-logC10)1+-"-1!,'C17||<.ll..M,f4i + 

+ C l 5 2-"W2-1)/"'(k>g2"y - log 2" - log2BiV/2 -

Thus we see that 

1« - IV|k,,fl ^ C18 2-»"W'-'/^(log2»7-""-" ||M||r,M,0 

when JV is large enough. The result follows. 

Remarks. 1. When Q(S) = a(x) = 1 for all x e Q, the approximation numbers of 
the embedding map I0 : Wr

0**Q(Q) -> L*(Q) satisfy 

as(I0) = 0 ( s -^« -^^ ( log sy-"n-1/v) . 

In particular, when 1/p = rjn, 

a,(l0) = O((logsy-«"-^). 

2. Under the same hypotheses as Theorem 2, we can also show that es(l0) satisfies 
the same estimates as as(I0). 
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Souhrn 

APROXIMAČNÍ ČÍSLA A ČÍSLA ENTROPIE VNOŘENÍ 
DO VÁHOVÝCH ORLICZOVÝCH PROSTORŮ 

D. E. EDMUNDS, JIONO SUN 

V práci jsou odvozeny horní odhady pro aproximační čísla a čísla entropie vnoření Sobolevo-
vých prostorů s vahou do vhodných váhových Orliczových prostorů. Výsledky se týkají případu, 
kdy definiční oblast je omezená, a některých neomezených oblastí. 
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