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Summary. In this paper we prove that the system of all closed convex ^-subgroups of a 
convergence f-group is a Brouwer lattice and that a similar result is valid for radical classes 
of convergence <?-groups. 
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All ^-groups considered in the present paper are assumed to be abelian. For 

convergence ^-groups (shorter: cl-groups) we apply the same notation and definitions 

as in [6]. 

Let (G,a) be a cl-group (where G is an £-group and a is a convergence in G). For 

the definition of a closed ^-subgroup (shorter: cl-subgroup) of (G,a) cf. Section 1 

below. The system of all convex cl-subgroups of (G,a) will be denoted by c(G,a); 

this system is partially ordered by the set-theoretical inclusion. 

In the present paper we prove that c(G,a) is a Brouwer lattice. The lattice 

operations in c(G, a) are constructively described. 

For X C G the meaning of lim X is defined in a natural way. We show that if X 

is an ^-subgroup of G such that X can be represented as a direct product of a finite 

number of linearly ordered groups, then 

lim lim X = lim X. 

A nonempty class A of cl-groups is called a radical class of cl-groups if it is closed 

with respect to isomorphisms, convex cl-subgroups and joins of convex cl-subgroups. 

For radical classes A\ and A2 we put Ai ^ A2 if A\ is a subclass of A2. 
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We prove that a certain form of distributive law (analogous to the condition applied 

when defining a Brouwer lattice) is valid for radical classes of cl-groups. 

The analogous notion of a radical class of ^-groups was introduced in [5] and 

studied in several papers (cf., e.g., [1], [2], [7], [8]). 

1. PRELIMINARIES 

For an ^-group G we denote by c(G) the system of all convex ^-subgroups of G; this 

system is partially ordered by the set theoretical inclusion. Then c(G) is a complete 

lattice. The lattice operations in c(G) will be denoted by V and A. 

Let G be the class of all ^-groups. A nonempty subclass X of G is said to be a 

radical class of £-groups if it satisfies the following conditions: 

(i) X is closed with respect to isomorphisms. 

(ii) Whenever G 6 X and Gi e c(G), then Gx £ X. 

(iii) Whenever G e e ; and {G;} ; S / is a nonempty subset of X (~)c(G), then V G; 
iei 

belongs to X. 

We suppose tha t the reader is acquainted with the definitions from Section 1 of 

[6], 

Let (G,a) and ( G i , a i ) be cl-groups. 

1.1. Def in i t ion . (Gi,oti) is said to be a cl-subgroup of (G,a) if 

(i) Gi is an ^-subgroup of G; 

(ii) whenever (xn) is a sequence in G\, x 6 G and xn - » a x, then x £ Gs and 

xn - » a i x; 

(iii) whenever (xn) is a sequence in Gi, x £ Gi and xn —>01 x, then xn —>a x. 

If (Gi ,Qi) is a cl-subgroup of (G,a), then we often write (Gi,a) instead of 

( G i , Q i ) . 

The meaning of a convex cl-subgroup of (G, a) is obvious. The system of all convex 

cl-subgroups of (G,a) will be denoted by c(G,a). If (Gi,Oti) and (G2,a2) belong 

to c(G,a) and Gi C G2 , then we put (Gi ,Qi) ^ (G 2 ,Q 2 ) . It is easy to verify that 

under the relation ^ , the system c(G, a) is a complete lattice. The lattice operations 

in c(G, a) will be denoted by Vc and Ac. 

1.2. Def in i t ion . A mapping tp of G into Gi is called a cl-homomorphism if 

(i) tp is a homomorphism of the ^-group G into the £-group Gi ; 

(ii) whenever (xn) is a sequence in G, x e G and xn —>Q x, then <p(xn) -fai <p(x). 

If there exists a cl-homomorphism of (G,a) onto (Gi,a{), then ( G i , « i ) is said to 

be a homomorphic image of (G,a). 



1.3. Definition. Let if be a cl-homomorphism of (G,a) onto (Gi,Qi) such 

that 

(i) if is a monomorphism; 

(ii) the inverse mapping <p~l is a cl-homomorphism of ( G i , a i ) onto (G,a) . 

Then <p is an isomorphism of ( G , Q ) onto (Gi,c*i); if such ip does exist, then 

(Gi.Qi) is said to be cl-isomorphic to ( G , Q ) . 

Let Gc be the class of all cl-groups. 

1.4. Definition. A nonempty subclass Y of Gc is said to be a radical class of 

a cl-group if the following conditions are satisfied: 

(i) Y is closed with respect to cl-isomorphisms; 

(ii) whenever (G,a) e Y and (Gi,c*i) S C ( G , Q ) , then (Gi.Qi) e Y; 

(iii) whenever (G, a) e Gc and {(G ;, ai)}ig/ is a nonempty subset of Y n c(G, a), 

then V (Gi,Qi) -Y. 
i-l 

We shall often apply without quotation the following facts: 

(ai) If a„ —>a a and an ^ a for each n E N , then V a„ = a (and dually). 
„6N 

(a2) If G is linearly ordered, a„ -> 0 a, ci < a < c2, then there i s m e N such that 

for each n > m the relation Ci < an < c2 is valid. 

(The assertion (ai) is easy to verify; (a2) is a consequence of (ai).) 

2. T H E SYSTEM C ( G , Q ) 

Again, let ( G , Q ) € Gc-

A subset S of G is said to be closed with respect to (G,a) if, whenever (xn) is a 

sequence in S, x € G and x„ -> a or, then x e S. 

2 . 1 . L e m m a . Let H be an C-subgroup of G such that it is closed with respect 

to (G,a). For a sequence (x„) in H and x ~ H we put xn -la(H) x 'f xn ->a x. 

TJien 

(i) (H,a(H)) is a ci-group. 

(ii) (H, a(H)) is a cl-subgroup of (G, a). 

P r o o f . The first assertion is an immediate consequence of the definition of the 

cl-group. Since H is closed with respect to ( G , Q ) and in view of (i), the assertion 

(ii) holds as well. D 
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In view of the above remark concerning the notation (cf. Section 1) we will write 

( t f , a ) instead of ( t f , a ( t f ) ) . 

Let X be a nonempty subset of G. We denote by l imX the set of all y e G such 

that there exists a sequence (xn) in X with xn -+a y. 

2.2. L e m m a . Let H be an (-subgroup ofG. Then l imtf is an (-subgroup ofG. 

ff, moreover, H is convex in G, then l imtf is convex in G as well. 

P r o o f . Let 2/1,2/2 € limtf. Hence there are sequences (xn) in tf such that 

xn -+ a yt (i = 1, 2). Thus xn + xn -¥a y\ + 2/2, and analogously for the operations 

A and V. Also, — xn -> —2/1. Hence l imtf is an ^-subgroup of G.' 

Now suppose that tf is convex in G and that z 6 G, y\ <_ z <̂  y2. Then 

xn A xn -> a 2/1, xj, V X^ -+„ J/2 • 

Put 

2:n = ((xj, A a£) V z) A (xj, V x^). 

Hence zn G tf and z„ -*« (j/! Vz)Ai/2 = z. Thus z 6 lim tf. D 

Let tf be as in 2.2. We put tf0 = tf and for each ordinal O O w e construct Ht by 

transfinite induction as follows. Suppose that for t\ < t all tftl are already defined 

and that they are ^-subgroups of G such that, whenever ti < t% < t, then tf4l C tf,2. 

If t is a limit ordinal, then we put 

Ht=[)Htl. 

If t is non-limit, then there exists t\ with t = t\ + 1. In this case we set 

tft = l i m t f f l . 

There exists an ordinal t such that Ht = tft2 whenever t2 > t. We denote 

limtf = Ht. 

From 2.1, 2.2 and from the construction of l imtf we immediately obtain 

2.3. Lemma. Let tf be an (-subgroup ofG. Put l imtf = tf*. Then 

(i) (tf *, a ) is a cl-subgroup of (G, a ) ; 

(ii) if(K,a) is a cl-subgroup of(G,a) and tf C K, then tf* C tf; 

(iii) if, moreover, tf is convex in G, then tf * is convex in G as well. 
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2-4- L e m m a . Let { ( # ; , " ) };e/ be a nonempty subset of c(G,a). Put H0 = 
D H, tfo = V Hi. Then 
tei i&i 

(i) K(Hi,a) = (H0,a); 

(ii) V ( t f ; , a ) = ( l i m t f ° , a ) . 

P r o o f . The first assertion is obvious; the second is a consequence of 2.3. D 

2.5 . L e m m a . Let H be an i-subgroup of G. Then the following conditions are 

equivalent: 

(i) tf is closed with respect to (G,a); 

(ii) tf+ is closed with respect to (G,a). 

P r o o f . Let (i) be valid and let (xn) be a sequence in tf+, x ' G, xn —>a x. 

Then xn = xn V 0 —•„ i V O , whence x V 0 = x and thus (ii) holds. Conversely, 

suppose tha t (ii) is satisfied. Let (xn) be a sequence in tf, x ~ G, xn ~&a x. Then 

x+ — Q̂ x+ and x~ -±a x~. We have x+,x~ ' tf+ for each t i E M and thus, in view 

of (ii), both x+ and x~ belong to tf+. Hence x = x+ - x~ is an element of tf. D 

For subsets X and Y of G we denote 

X - Y = [x - y: x 6 X .and y € Y}. 

2.6. L e m m a . Let X be a subset of G+ such that 

(i) X is a sublattice and a subsemigroup of G+; 

(ii) Q-X. 

Then X - X is an i-subgroup ofG and (X - X)+ = X. If, moreover, X is a convex 

subset of G+, then X - X is a convex i-subgroup of G. 

The proof is routine, it will be omitted. 

For each nonempty subset X of G we can perform an analogous construction as 

we did above for tf; in this way we obtain a subset of G whicli will be denoted by 

l imX or by X*. 

From the construction of X* we immediately obtain 

2 .7 . L e m m a . Let X be as in 2.6. Then 

(i) X* is a subset ofG+ and it satisBes the conditions (i), (ii) from 2.6; 

(ii) X* is closed with respect to (G,a); 

(iii) if, moreover, X is convex in G, then X* is convex in G as well. 
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2 .8. L e m m a . Let H be an (-subgroup ofG; put X = H+. Then H* = X* - X*. 

P r o o f . In view of the constructions of H* and X* we have X* C H*. Then 

according to 2.3 (i), X* -X* C H*. Further, 2.7 and 2.5 yield that X* -X* is closed 

with respect to (G,a). Moreover, H = H+ - H+ C X* - X*. Hence according to 

2.3 (ii) we obtain the relation H* C A'* — X*, which completes the proof. • 

2.9. L e m m a . Let {(Hi,a)}ie, and H° be as in 2.4. Put (H°)+ = X. Then 

\J(Hua) = X*-X*. 
iei 

P r o o f . This is a consequence of 2.4 and 2.8. 

Now, let (A, a) and (Bi,a) (i £ I) be elements of c (G,a ) . Put 

X = X0=(\J Bt) , 
v i e / ' 

and let X"* be as above. For each ordinal t we define Xt analogously as when defining 

Ht. 

Further, we put 

^=^o= (\J(AABi) 

the symbols Y* and Yt are defined analogously as X* and Xt. 

It is well-known that the relation 

A A ( V B I ) =\J(AABi) 
v ; e / ' iei 

is valid (cf., e.g., [5]). From this relation we immediately obtain that 

A A XQ = Y0 

holds. Let t be an ordinal with ( > 0 and assume that for each ordinal ti < t the 

relation 

A A Xtl = Ytl 

is valid. 

306 



a) Suppose that t is a limit ordinal. Then we have 

«= I K = U(AAX'.)= U(^nX") 
tl<t ( l < ( tl<t 

= An C |J X(l) =ymx,=ylA4 

b) Further, suppose that t is a non-limit ordinal. Hence there is an ordinal <i with 

{ = ti + 1. Then 

X ( = lim A'(], Y, = l imy ( l = \im(A nXtl). 

Let z e AA Xt. Hence z e A and « e X ( . Also, z > 0. There exists a sequence 

(zn) in X ( l such that zn - » a z. Clearly z„ > 0. Then 0 ( z „ A z ^ z , whence 

z „ A z e A n X i , = y ( l and zn A z 4 a z . Thus z e Yt and therefore A A Xt CYt. 

Assume that v e Yt. There exists a sequence (vn) in Ytl with vn ->Q u. We have 

vn e A for each n eN. Since 4̂ is closed with respect to (G, a) we obtain that v e A. 

Further, vn e Xtl for each n eN and thus v e Xt. Therefore v e A A Xt. 

By summarizing, we obtain the relation 

AAXt = Yt 

for each ordinal t. Thus 

(*) AAA*=y*. 

2.10. T h e o r e m . Let (A,a) and (B{,a), i e I, be elements of(G,a). Then 

(A,a) Acf\J(Bi,a)) = \/((A,a) Ac (Bua)). 

P r o o f . This is a consequence of 2.8, 2.9 and of the relation (*). D 

2 . 1 1 . Coro l l a ry . The system c(G,a) is a Brouwer lattice. 

Let the symbol LO\ have the usual meaning. It is easy to verify that if A is a 

nonempty subset of G and if t is an ordinal with X* = Xt, then t ^ Wi. 

If t is the first ordinal with X* = Xt, then t will be said to be the degree of X in 

(G,a). 

Further, let t' be the first ordinal such that, whenever A is a nonempty subset of 

G, then the degree of X in (G, a) is less or equal to t'. We denote d(G, a) = t'. 
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The following questions remain open: 

» a) For which ordinals t there exist (G, a) £ Qc and X C G such that t is the degree 

of X in (G,a)7 

b) For which ordinals t there exists (G, a) £ Gc such that d(G, a) = tl 

For a related open question concerning convergence groups cf. [3], 

2 
3. T H E CONDITION XvmX = XvmX 

2 

Let (G,a) be as above. For I C G w e denote lim lim A = lim A. In this section 

we prove that if X is an ^-subgroup of G such that X is a direct product of a finite 

number of linearly ordered groups, then the relation 

(1) lim A = lim A 

is valid. In other words, the degree of X is either 0 or 1. 

3 .1 . L e m m a . Let X be a linearly ordered (-subgroup ofG and g £ lim X. Then 

the set X U {g} is linearly ordered and there are x1 ,x2 £ X such that x1 ^ g ^ x2. 

P r o o f . In the case X = {0} we have g = 0. Assume that X ^ {0}. Then there 

exists x\ £ X with x\ > 0. First we prove that the element g cannot be an upper 

bound of the set X. By way of contradiction, suppose that g > x for each x £ X. 

Since g £ lim X, there is a sequence (xn) in X such that xn -¥a g. Because x„ <. g 

for each n £ N, we obtain that 

sup{a;n}„eN =g 

and this yields that sup A' = g. For each x £ X we have X + XQ £ X, thus x + xl ^ g, 

hence x <. g — xj < g- This is a contradiction with the relation sup X = g. Hence 

there is x2 £ X such that x2 ^ g. 

If x2 is any element of X with this property, then there is a positive integer m(x2) 

such that for each n £ N with n >- m(x2) we have xn <. x2 (otherwise the relation 

g ^ x2 would be valid). Then g ^ x2. By a dual argument we prove that there 

is x1 £ X with x1 <. g. Moreover, if x3 is any element of X with x3 ^ g, then 

S^z 3 . • 

3.2 . L e m m a . Let X be a linearly ordered (.-subgroup ofG. Then lim A is also 

a linearly ordered (-subgroup ofG. 
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P r o o f . In view of 2.2, lim X is an (^-subgroup of G. Hence it suffices to verify 

that whenever g\ and g2 are distinct elements of l imX, ihen <?i and g2 are compa­

rable. In view of 3.1 there are ideals Xi and X2 of the linearly ordered set X such 

that 

(i) X\+X^ X2; 

(ii) x <_ g\ if x _ X\, and x > g_ if x £ X \X\; 

(iii) x ^ g2 if x £ X2, and x > g2 if x _ X \ X2. 

The ideals Xi and X2 are comparable. Since g\ ^ g2, we obtain that Xx ^ X2. Thus 

without loss of generality we can suppose that Xi C X2 . Hence there is z _ X2 \ X\. 

Then in view of (ii), z > g\. Further, according to (iii), z ^ g2. Therefore g_ ^ g2. 
D 

3.3 . L e m m a . Let X be a linearly ordered (-subgroup of G. Then (1) holds. 

P r o o f . Let (yn) be a sequence in l imX, g € G and yn -> a g. Then in view 

of 3.1 and 3.2, g is comparable with all elements of l imX. Hence there exists a 

subsequence (yn) of (yn) such that either (i) yn^g for each n _ N, or (ii) yn <. g 

for each n _N. Suppose that (i) holds (in the case of (ii) the method is similar). If 

yn = g for some n _ N, then g _ l imX. Thus it suffices to suppose that yn<g for 

each R S N , and in this case we can assume without loss of generality that yn < yn+1 

for each n _H. 

Let n e N . There exists a sequence (x^)k_N in X such that _™ -> a y\ (as k -> co). 
Hence there is m(n) (£ f*J such that 

y\.\ <xl< yn+1 

whenever k >• m(n). Since yn_l ->Q g and yn+1 -> a g we obtain that 

*m(») -*« 3 

and thus g £ l imX. Hence (1) is valid. D 

3.4. L e m m a . Let L be a distributive lattice with the least element 0. Let A 

and B be sublattices of L such that 

(i) 0 G A n B; 

(ii) a A b = 0 for each a e A and each b £ B; 

(iii) for each j £ l there are a _ A and b e B with j = aV(i. 
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Then the elements a, b from (iii) are uniquely determined and the mappingg -* (a.b) 

gives an isomorphism of L onto the direct product Ax B. 

The proof is routine, it will be omitted. 

3.5 . Lemma . Let X be an (.-subgroup of G such that X is a direct product of 

linearly ordered groups X\,X2,...,Xk. Then the (-group l imX is a direct product 

of linearly ordered groups lim X\, lim X2,..., lim Xk. 

P r o o f . We proceed by induction with respect to k. The case k = 1 is trivial. 

Suppose that k > 1 and that the assertion is valid for k - 1 . 

Without loss of generality we can assume that X; ^ {0} for i = 1 ,2 , . . . , k. Put 

Y{ = lim Xi (i = 1 ,2, . . . , k). According to 3.2, all Y; are linearly ordered ^-subgroups 

of G. Also, lim X = Y is an ^-subgroup of G. In view of Theorem 2.3, [4] it suffices 

to verify that the lattice Y+ is a direct product of lattices Yx
+,..., Yk

+. 

Let g e Y+. In the same way as in the proof of 3.1 we can verify that g fails to 

be an upper bound of the set X+. For each x e X+ we have 

x = x(X1)V...Vx(Xk), x(Xi)^0 (i = l,2,...,k), 

where x(Xi) is the component of x in Xi. Hence g fails to be an upper bound of the 

set X + U X + U . . . U X + . Thus we can suppose that g is not an upper bound of the 

set X + . Therefore there is x0 E X + such that x0 ^ g. 

There is a sequence (zn) in X such that zn -> a g. Put z'n = z „ V 0 . Then we have 

z'n ->•„ g as well. Further, 

z'n A x0 = (z'n(Xi) V z'n(X2) V . . . V z'n(Xk)) A xo = 

= z'n(Xk)Ax0€Xk 

and z'n(Xk) Ax0 ->„ g Ax0, whence g Ax0 e limX*, C l imX. 

Put Ni = {n e N: z'n(Xk) >- XQ}. If the set Nr is infinite, then there exists 

a subsequence (z'n) of (z'n) such that z'n ^ x0 for each n £ N and then we would 

have g ^ x0, which is a contradiction. Hence the set Ni is finite; thus there is a 

subsequence (z'n) of (z'n) such that zn(Xk) < x0 for each n e N, whence 

z'n(Xk)Ax0=z'n(Xk) 

and then z'n(Xk) ->a 9 A x0. Therefore 

z" - zn(Xk) = zn(Xt) + z'n(X2) + ... + zn(Xk-i) -+ng- (g Ax0). 



Therefore by the induction hypothesis (since z'^(Xi) + . . . + z£(Xk-\) belongs to 

X\ x . . . x Xk-\) the element g — (g A x0) belongs to the direct product Y\ x Y2 x 

. . . x Yk-\ • Since g - (g A x0) ^ 0 we obtain, moreover, that this element belongs to 

the direct product of lattices Y+, • • •, Yk
+_,. 

Let i e y + x V2+ x . . . x l^t-j.. Then by the induction hypothesis, there is a 

sequence (tn) in X + x . . . x X^_j such that i„ -»„ i. We have 

i„ A -"(X fc) = 0 for each n e 

thus 

i A ( s A i o ) = 0 , 

i + (ffAx0) = tV (gAx0). 

In particular, 

9 = (9 - (a A x0)) + (ff A x0) = (g - (g A ,T0)) V (g A X0) 

with g — (g /\ x0) 6 Y+ x . . . x yfc+_, and g Ax0 e Yk . 

Hence in view of 3.4 we obtain that for the lattice Y+ there exists a direct product 

decomposition 

Y+ =Y+ xY+ x . . . xY+. ' 

Now we apply again Theorem 2.3 of [4] concluding that the l"-group Y has a direct 

product decomposition 

(2) Y = Y1xY2x...xYk. 

a 

3.6. T h e o r e m . Let X be an f-subgroup of G such that X is a direct product 

of a finite number of linearly ordered groups. Then (1) holds. 

P r o o f . We apply the notation as in the proof of 3.5 and similarly as in 3.5 we 

proceed by induction with respect to k. The case k = 1 was dealt with in 3.3; let 

k> 1. 

Since all y are linearly ordered we can apply 3.5 to the relation (2) obtaining 

lim y = lim Yi x lim Y2 x ... x lim Yk. 

2 2 

Since l i m y = l imX and l i m y = l imX; (i = 1, 2, . . ., k), by applying 3.3 we infer 

2 

l imX = Y\ x ... xYk = limX. 



4. T H E RELATION OF PARTIAL ORDER BETWEEN RADICAL CLASSES 

For a class X of cl-groups we denote by 

SuboA—the class of all cl-groups (G,a) having the property that there exist 

(H,f3) in A and (Hu/3) e c(H,0) such that (G,a) and (Hi,0) are cl-isomorphic; 

Join A—the class of all cl-groups (G, a) having the property that there exist 

(H,Pi) in A and (G{,a) e c(G,a) (i e / ) such that 

a) for each i e / , (Hi,Pi) and (Gi,a) are cl-isomorphic, and 

b ) ( G , a ) = \J(Gi,a). 

4 . 1 . P r o p o s i t i o n . Let X be a nonempty class of cl-groups. Then 

a) Join Subc A is a radical class of cl-groups. 

b) IfY is a radical class of cl-groups and X C Y, then JoinSub c A C Y. 

P r o o f . Put JoinSub cA' = Z. We have to verify that Z satisfies the con­

ditions (i), (ii) and (iii) from 1.4. It is obvious that Z is closed with respect to 

cl-isomorphisms. For each nonempty class Z\ of cl-groups we have Join Join Z\ = 

JoinZi , whence Z satisfies the condition (iii) from 1.4. 

Let (G,a) e Z and (Gi , a ) e c(G,a). Hence there exist (Hi,a{) (i e / ) belonging 

to Subc A n c(G, a) such that 

(G,a) = \J(Hi,a). 
iei 

Then by applying 2.10 

(G i , a ) = ( G I , Q ) Ac (G,a) = (Gua) Ac (\f (Hua) 

^tei 

= V a d , ^ (#;,«)). 
iei 

For each i e / , the cl-group (Gi , a ) Ac (Hi, a) belongs to Sub cSub c A = Sub c A 

and therefore ( G i , a ) belongs to Z. Hence the condition (ii) from 1.3 is valid, which 

completes the proof of a). 

Let y be a radical class of cl-groups and A C Y. Then Subc A C S u b c Y = y 

and JoinSub c A C J o i n y = Y. Thus b) is valid. • 

Let y and Y2 be radical classes of cl-groups. We put Y\ ^ Y2 if Yi is a subclass 

of y2 . 
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We denote by Y0 the class of all cl-groups (G, a) such that G is a one-element set. 

Then Y0 is a radical class of cl-groups and for each radical class Y of cl-groups we 

have Y0 ^ Y sC Qc. 

Let G be an ^-group. For a sequence (xn) in G and for x e G we put a;n -*a(G) x 

if there exists m £ î l such that xn = x for each positive integer n with n ^ m. Then 

(G, a(G)) is a cl-group; a(G) is the discrete convergence on G. 

If X is a class of £-groups, then we put 

<p(X) = {(G;a(G)):GeX}. 

Then we obviously have 

4 .2 . L e m m a . If X is a radical class of (.-groups, then <p(X) is a radical class 

of cl-groups. Moreover, if X\ and X2 are distinct radical classes of (.-groups, then 

tf-Xi)-.?(*-). 

Let lZa and Ttc be the collection of all radical classes of ^-groups or the collection 

of all radical classes of cl-groups, respectively. (Let us remark that in [5] the symbol 

72. was used, but in [5] it was not assumed that the (?-groups under consideration 

were abelian.) 

There exists an injective mapping of the class of all infinite cardinals into Ha (this 

follows from the construction in [51. Section 3). Hence in view of 4.2, there exists an 

injective mapping of the class of a J infinite cardinals into 72c. 

Suppose that J is a nonempty class and that for each i £ I, Yt is a radical class of 

cl-groups. Pu t 

i s ; 

Then in view of 1.4, Zx is a radical class of cl-groups. We obviously have 

Zi = ia£{Yi}iei. 

We express this fact by writing 

zi = A*-
i6/ 

Further, we put 

Z2 = J o i n S u b c l J Y . . 
i€l 

Then 4.1 yields that the relation 

Z2 =sup{K.};s / 
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is valid in 1ZC. We express this fact by writing 

Z2 = \JY. 
iei 

We clearly have 
Subc|JY, = ySubcy. 

iei iei 
Since each Y, is a radical class of cl-groups we obtain Subc y = Yt- Hence 

\JY = Join(Jy;. 
iei iei 

4.3. Theorem. Let {Yi}i£i be as above and let Y be a radical class of cl-groups 
Then 

YA(\JY)=\J(YAY). 
v i e / ' iei 

Proof . We have 
\J(YAY)^YA(\JY\ 
iei Vie/ ' 

Let (G,a) € y A ( V Y.)- T h u s (G- a) e Y a n d 

iei 

(G,a) e J o i n j j y . 
iei 

Then there exist cl-groups (Gk,a) (k 6 K") such that, for each fc € K, 

(Gk,a)ec(G,a)n(\jY) 

and 

(G,a)= \J(Gk,a). 
kei< 

Hence for each k e K there exists i(k) 6 / with (G*,o) £ K4(fc). Denote 

/i = {i(fc): i £ / C ) . 

Thus (Gfc.a) 6 y Avj(i) and 

(C7,a) 6 Join (J (Y A Yi(t)) <; Join {J(Y A y ) = \J(Y A y ) . 
i6/l .€/ iei 
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