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1. A-POSETS AND A-LATTICES 

For terminology and notation throughout the paper see [MMT] and [GRJ. 

Let P = (P, ^ ) be an ordered set. If A C P , denote by L(A) and 17(A) 

L(A) = {xeP;x^a for all a £ A} 

U(A) = {x e P; x Js a for all a 6 A}. 

Call L(A) or U(A) the lower or upper cone of A, respectively. If B is a finite 

family of elements of P, say A = {a\,a2,... ,an], we write briefly L(ai,a2,.. • ,an) 

or U(ai,a2,. . .,an) for L(A) or U(A), respectively. 

A A-poset is a poset (P, ^ ) , where L(a,b) ^ 0 ^ U(a,b) for every two elements 

a,b £ P, with a choice function A where A is choosing a single element from L(a,b) 

as well from U(a,b) and A satisfies the following condition: 

(*) if a ^ b then X(L(a, b)) = a and X(U(a, b)) = b. 

The chosen element X(L(a,b)) is denoted by a • b and X(U(a,b)) by a + b. After 

the choice of A, the elements a • b and a + b are fixed. Because L(a,b) = L(b,a) 

and U(a,b) = U(b,a), the choice of A is independent on the order of the elements 

a and b. On the other hand, the choice is not assumed to be consequential, i.e. if 
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L(a,b) = L(c,d) for some elements a,b,c,d e P, (a,b) ^ (c,d), a • b and c • b need 

not be equal; and analogously for a + b and c + d. Thus the choice of A depends on 

the elements a and 6 only. 

Def in i t ion 1.1. A A-lattice is an algebra P = (P, •,+) where + and • are two 

binary operations on P, satisfying the following laws for all a,b,c e P: 

i.) a • a = a i+) a + a = a 

c.) a • b = b • a c+) a + b = b + a 

t.) a-((a-b)-c) = (a-b)c t+) a + ((a + b) + c) = (a + b) + c 

a.) a • (a + b) = a a+) a + (a • b) = a 

T h e o r e m 1.1. Let (P,^,\) be a A-poset. Then the algebra P = (P,-,+) with 

binary operations • and +, where a • b = \(L(a,b)) and a + b = \(U(a,b)), is a 

A-iattice. 

P r o o f , i.): a-a = \(L(a,a)) = a. c.) is true because the choice A is independent 

of the order of the elements a and b. t . ) : Because a • b is from L(a, 6), o • 6 < a in 

(P, < ) ; analogously (a-b) • c t< a-b, and from transitivity (a-b) -c ^ a. According to 

(*) we have a -((a- b) • c) = \(L((a-b)-c,a)) = (a-b)-c. a.): Because a + b e U(a,b), 

a + b ^ a. According to (*) we have A(L(a + b,a)) = a. The identities i+), c+), t+) 

and a+) can be proved analogously. • 

T h e o r e m 1.2. Let (P, •, +) be a A-iattice. A \-poset (P, <) is obtained by putting 

a • b = a <=> a s^. b. Moreover, if (P, ^ ) is a A-poset (P, •, +) the A-iattice induced 

by (P, si), and (P, X) the \-poset induced by (P, •, +) then (P, 4) = (P, <). 

P r o o f . The validity of the latter assertion is clear after proving the first one 

because a <^ b <=> a • b = a <==> a X b. So it remains to show that the order 

a ^ b induced by a • b = a is a partial order. In fact, we begin with proving that 

a- b = a <=> a + b = 6. 

=>: a + b = (a • b) + b = b according to the absorption law in a+) 

<=: a • b = (a + b) • a = a according to the absorption law in a.) 

Because of i.) o s% a for all a S P. Let a ^ b and b ^ a. Then a-b = a. and ba = a: 

a = b follows from c ) . Moreover a s^ b and b <̂  c, give a + b = b and b + c = c. Now 

c = b + c = (a + b) +c = a+ ((a + b) + c) = a + (b + c) = a + c 

according to t+) , whence a s^ c. Thus ^ is a partial order in P . It remains to show 

that L(a, b) # 0 ^ U(a, b) for every two elements a, b G P. In fact, we will show that 

a + b € U(a, b); the proof is analogous to that of a • b e L(a, b). From (a + b) • a = a 

it follows that a s^a + b and, analogously, bit a + b. Thus a + b e U(a, b). O 
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2. IDEALS AND STRONG IDEALS 

A subset / C P of a A-lattice (P , - ,+) is called an ideal of P , if . € I and 

a e P => i • a £ I, and if i, j £ 7 => i + j £ 7. 

The set theoretical intersection of an arbitrary system of ideals is clearly an ideal 

again, thus the set Id(P) of all ideals of P forms a complete lattice with respect to 

set inclusion. Evidently IA J = In J and IV J = f){K; I,J C K and K is an ideal 

of P}. 

If B is any subset of P then the ideal generated by B, denoted by 1(B), is the 

intersection of all ideals of P containing B. If B is a finite set {oi . . . a„} we will 

write I(at ... an) for I({at ... an}). An ideal J is said to be strong if it satisfies the 

following condition: 

a-b£ J => 1(a) n 1(b) C J. 

In a lattice every ideal is strong. 

Note tha t (a] = {x; x ^ a, a € P} need not be an ideal of P . 

T h e o r e m 2 . 1 . Let (P , - ,+ ) be a A-Jatcice induced by a A-poset (P, ^ ,A) . If (a] 

is an ideaJ for every a £ P , tJien (P, <) is a join-semiJattice. 
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P r o o f . If a s% x and b sg _ then since a, b 6 (x] and since (_•] is an ideal, we 

have a + b _ (_] whence a + & s* x. D 

T h e o r e m 2.2. Let (P, •, +) be a A-iattice induced by a A-poset (P, s<, A). If (a] 

is a strong ideal for every a e P , then (P, sj) is a lattice. 

P r o o f . According to Theorem 2.1, P is a join-semilattice and, we need only 

to show that P is also a meet-semilattice. If x ^ a and x s$ b then (x] C (a] and 

(x] C (6]. Since a • 6 s-t (a • b] and (o • b] is a strong ideal, then (x] C (a] n (6] C (a • 6]. 

Hence we have x s< a • ft. D 

3. O N CONGRUENCES ON A A-LATTICE 

Denote by Con P the lattice of all congruences on a A-lattice P . Let 0 e Con P . As 

usually, _> is the least element (x = y(u>) -*=> x = y) and z is the greatest element of 

C o n P (x = y(i) for every elements x,y £ P). Further x = y(Q A . ) 4=> x = y (0 ) 

and _ = «/(<-). Moreover a: = y ( 0 V _ ) <t=> there is a sequence ;r = _b,Zi, ••• ,zn = y 

of elements such that 2j_i = 2 , (0 ) or _j_i = Zj(9) for every <j,i = l , . . . , n . A subset 

K C P of a A-lattice P is called convex, if a,b £ K, t e P and a sC t ^ b => t e A". 

L e m m a 3 . 1 . Let P be a X-lattice. Then [a]0 is a convex sub-A-Iattice for every 

aeP. 

P r o o f . First we prove that [a]0 is a sub-A-lattice. From x = a(Q) and y = a(Q) 

it follows that x + y = a(Q) and x-y = a(Q) and we have that [a]0 is a sub-A-lattice. 

Further we prove that [a]Q is convex. If x s% t ŝ  y, x, j / 6 [a]0 and t € P then 

t = t - ? / s t - a ( 0 ) , t = t + _ = ( < - a ) + x = ( t - a ) + a = a ( 0 ) , so we have t e [a]0. D 

T h e o r e m 3.2. Let P be a X-lattice. A reflexive binary relation on P is a con

gruence on P iff the following three properties are satisfied for any x, y,z,t 6 P . 

( i ) x = {/(€>) - ^ x + j / = x - y ( 6 ) ; 

(ii) x *< y sS z, x = y(Q), y = z(Q) => x = z(Q); 

(iii) x s< y and x = y (0 ) => x • t = y • t ( 0 ) , _ + t = y + t(Q). 

P r o o f . If 0 is a congruence on P , then it obviously satisfies the conditions (i), 

(ii) and (iii). Hence we will prove the converse condition only. At first we prove 

that if b,c e [a,d] = {x; o s$ x s$ d} and if a = d(Q) then b = c(Q). According to 

(iii), we obtain b = d(Q),a = 6(0) . By using of (iii) again we obtain b- c = c (0 ) , 

c = c + 6 (0) . Because 6 • c s< c s$ 6 + c, (ii) implies b • c = b + c(Q), and by (i) also 

270 



b = c (0) . According to (i) 0 is symmetric. To prove transitivity of 0 , we assume 

that x = y(Q),y s z ( 0 ) . Then by (i) x • y = x + y(G), y z = y + z(Q), and by (iii) 

y + z = (y + z) + (yx) = (y + z) + (y + r.)(&), 

y • z = (y z) • (y + x) = (y • z) • (y x)(@). 

Because y + z = (y + z) + (y + x)(Q), y • z = (y • z) • (y • x)(Q) and 

(y • -) • (y • X) ^yz^y + z^(y + z) + (y + x), 

we apply (ii) twice to obtain 

(yz)-(yx) = (y + z) + (y + x)(Q). 

Because 

i>2 6 [{y z)(y x), (y + z) + (y + x)], 

the proof of the preceding paragraph imply that x = z(Q). Next we prove the 

assertion: if x = y(Q), then x + t = y + t(Q). Since x,y e [x-y,x + y], (i) and the proof 

of the first paragraph imply that x = x + y(Q),y = x + y(Q). Now, according to (iii), 

x+t = (x + y) + t(Q),y + t = (x+y) + t(Q), and by applying transitivity proved above, 

we obtain x + t = y + t(Q). Now we are able to prove the substitution property of 0 

fo r+ : Letx0 = y0(e),X! s y i ( 0 ) . Then x0 +Xi = x0 + i / i ( 0 ) , x0 +yi = y0 + yi(Q), 

and according to the transitivity, also x 0 + ^ i = 2/o+?yi (0)- The substitution property 

for • can be proved similarly. D 

T h e o r e m 3.3 . The lattice C o n P of all congruences on a X-lattice P is distribu

tive. 

P r o o f . Consider a A-lattice term 

M(x,y,z) = ((x • y) + (y z)) + (z • x). 

It is a routine to show that for all a,b £ P 

M(a,a,b) = a 

M(a, b,a) = a 

M(b,a,a) = a, 

i.e. M(x,y,z) is a majority term and, therefore, C o n P is distributive. D 
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