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APPLICATIONS OF THE HADAMARD PRODUCT 
IN GEOMETRIC FUNCTION THEORY 

ZBIONIEW JERZY JAKUBOWSKI, PIOTR LICZBERSKI, LUCJA ŽYWIEN, Lodž 

(Received October 31, 1988) 

Summary. Let sf denote the set of functions F holomorphic in the unit disc, normalized 
clasically: F(0) = 0, F'(0) -= 1, whereas A c s? is an arbitrarily fixed subset. In this paper 
various properties of the classes Aa, cte C\ {— 1, —J, . . . } , of functions of the formf= F* ka 

are studied, where 

FG.A , ka(z) = fc(z, a) = z + — — z2 + . . . + — — —- z" + . . . , 
1 + a, 1 + (n — 1) a 

and F * ka denotes the Hadamard product of the functions F and ka. Some special cases of the 
set A were considered by other authors (see, for example, [15], [6], [3];. 

Keywords: Hadamard product, class of type Aa, typically real functions. 

1. Let s& denote the set of functions F of the form 

(1) F(z) = z + fd an ( Fz\ 
n = 2 

holomorphic in the unit disc A = { z e C : | z | < l } , whereas T is a subset of J / 
consisting of typically-real functions in A (see [12]). 

In paper [6], for an arbitrarily fixed a e R \ { — 1, — | , . . . } , the class 

ra = {fe^:f=F*fca,FeT} 

was considered, where 

; °° 1 
ka(z) = fc(z, a) = £ '—— z«, zeA, 

n=i 1 + (n — 1J a 
and F * fca denotes the Hadamard product of the functions F and ka (see, for example, 
[14], p. 27; [13]). 

For nonnegative values of a, the family Ta was introduced earlier by K. Skalska 
([15]) in another way. 

The aim of this paper is to study various properties of the class 
(2) ALa = { f€^: f = F*fca, FeA} 

where A 4= 0 is an arbitrarily fixed subset of the set s4, and a e C \ { — 1, — -J,...}. 
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In the subsequent considerations we shall always assume, if not stated otherwise, 
that a is an arbitrarily fixed complex number different from the numbers — 1, — \,... . 

2. It follows directly from the definitions of the family Aa and the Hadamard 
product that the function / of the form 

0 0 ! 

f(z) = z + £ anJz
n, zeA , 

n = 2 

belongs to the family Aa if and only if there exists F e A of the form (l) such that 

(3) <V/ = " * ' , n - 2 , 3 , . . . . 
1 + (n - 1) a 

So, if the exact estimate \anF\ g dn takes place in the class A (F e A), then (3) yields 
theexact estimate \anJ\ ^ d„/|l + (n — l ) a | , / e A a . 

Moreover, from formula (3) we obtain that A0 = A. 
Also, in a simple way, from (2) we obtain the following properties of the classes Aa. 

Theorem 1. Let r e (0, 1). If, for each function F e A, the function 

Fr(z) =-F(rz), zeA, 
r 

belongs to the family A, then, for each function f e Aa, the function 

/ , (-) = -f{rz), zed, 
r 

belongs to the family Aa. 

Theorem 2. Let 6 e <0, 2n). If, for each function F e A, the function 

F0(z) = Q~i0F(zQi9), zeA, 

belongs to the family A, then, for each function f e Aa, the function 

fe{z) = e-ief{zei9), zeA, 

belongs to the family Aa. 

Theorem 3. Let a e i ? \ { —1, — \,...}. / / , for each function F e A, the function 
00 

G(z) = F(z) = £ an >Fzn, zeA, 
H - - 1 

belongs to the family A, then, for each function f e Aa, the function 

g(z)=f(z) = YS»>fzn> zeA> 
n= - l 

belongs to the family Aa. 
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Similarly as in the case A = r(see [15], [6]), the following properties of the 
families Aa may be proved. 

Theorem 4. A function f belongs to Aa if and only if f is a solution of the dif­

ferential equation 

(4) « / ' ( z ) + (1 - a)/(z) = F(z) 

where F e A. 

Theorem 5. If f e Aa, then 

f(z)=^L J fc(i,aW)f, | Z | < * < 1 , 

where F e A, and vice versa. 

Theorem 6.* If f e Aa, Re a > 0, then 

f(z)^^)t1/^2F(zt)dt, zeA, 
ao 

where F e A, and vice versa. 

Theorem 7. Let A and B be two fixed subsets of stf. If, for any functions F e A, 
GeB, the function F * G e A, then, for each f e Aa, the function f *GeAa. 

The above theorems can be used in various problems concerning classes of type Aa. 
In particular, the properties of solutions of equations of the form (4) were considered 
in several cases of the classes A c s& (for example, in [15], [6], [8], [2]). From 
Theorems 5 and 6 one often gets structure formulae for the classes .Aa (for example, 
in [15], [6]; see also [10], [2]). On the other hand the properties of the Hadamard 
product of functions of the form (1) of the classes frequently considered are well-
known: CV(the class of convex functions), ST(lj2) (the class of starlike functions 
of order 1/2), CC (the class of close-to-convex functions) (see [4], vol. 1, p. 115; 
vol. 2, p. 2). So, from Theorem 7 and the results of the paper [13] we obtain: 

1) for any functions fe(CV)a, GeCV, the Hadamard product f*G belongs 
to (CV)a; 

2) for any functions fe(ST(lJ2))a, GeST(lj2), the Hadamard product f*G 
belongs to (ST(lJ2))a; 

3) for any functions fe(CC)a, GeCV, the Hadamard product f*G belongs 
to (CC)a. 

3. Let H denote the family of all functions holomorphic in the unit disc A. The 
set H with the topology of almost uniform convergence is, of course, a linear topo­
logical space. 
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As is known, certain problems of the geometric theory of analytic functions 
consist in determining the set Q of values of a complex continuous functional defined 
on a given family A cz H. If the set Q is bounded, closed and connected, then we 
determine it effectively by characterizing its boundary. To ensure that the set Q has 
the above properties, the family A considered should be compact and connected. 
In other extremal problems, support points and extreme points of the families play 
an essential part (see, for example, [14], pp. 3, 99; [1]). 

Let us recall: a function F e A is called a support point of a compact subsets of H 
f and only if there exists a continuous linear functional x* on H such that, Re x* is 
non-constant on A and for each function G e A, 

Re x*(G) g Re x*(F) . 

So, the problem of characterizing the set of the support points of the class Aa c 
<c jtf c H seems to be interesting when the characterization of the support points of 
the family A c $$ c H is known. 

In the proof of the theorem solving this problem we shall use the following well-
known result of Toeplitz ([16]). 

Lemma. A functional x* defined on H is linear and continuous if and only if 
there exists a sequence of complex numbers {bn} such that, for each function 
geH, 

oo 

**(#) = E'*»A > 
n = 0 

limsup|bM|1/w < 1 . 
/ I -+oo 

Theorem 8. A function j 0 is a support point of the set Aa if and only if f0 = F0 * fca 

where F0 is a support point of the set A. 

Proof. Let F0 be a support point of the set A. Then there exists a linear and 
continuous functional x* on H such that, for each function F e A, 

Re x*(F) ^ Re x*(F0) . 

The above lemma and formula (l) imply that this inequality can be written in the 
following equivalent form: 

00 00 

(5) Ite(£a.A).£-MX«-.*,*•). FeA> 
«=2 n = 2 

where {bn} is a sequence determining the functional x*. 
As limsup \bn[l + (n — l ) a ] | 1 / n < 1, the sequence {b„[l + (n - 1) a]} also 

n-»oo 

determines a linear and continuous functional on H. Let us denote it by x*. Letf 
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be an arbitrarily fixed function of the family Aa, whereas f0 == F0 * ka. Then there 
exists exactly one function F e A such that f = F * ka. Hence, taking formula (3) 
and inequality (5) into consideration, we obtain 

Re x*a(f) - Re x*(f0) = Re x*(F * fc.) - Re x*(F0 * ka) = 

= R e ( £ ^ ftjl + ( » - ! ) « ] ) 
\n=2 1 + (n — l )a / 

- R e ( £ i ^ " ' ^ > • [ - + ( " - - ) « ] ) \n-=2 1 + (n — 1) a / 

= Re ( £ a,, A ) - Re ( £ am,Pobm) = 0 , 
n-=2 n-=2 

which proves that the function f0 = F0 * ka is a support point of the set Aa. We also 
note that if Re x* is non-constant on A then Re x* is non-constant on Aa. 

The proof of the converse theorem proceeds analogously. 
From the linearity and the injectivity of the Hadamard product F * ka in the 

space H the following properties of the classes Aa follow. 

Theorem 9. A set Aa is convex in the space H if and only if A is convex in this 
space. 

Theorem 10. If a set A is a convex set in space H, then fe Aa is an extreme point 
of the set Aa if and only iff = F * ka where F is extreme point of the set A. 

Next, let us recall that a topological space X is called arcwise connected if, for 
any two points x1 ,x26K , there exists a continuous mapping y(t) of an interval 
<a, by into the space X such that y(a) = xu y(b) = x2. Such a mapping will be called 
a path joining the points x t and x2. 

We shall prove the following property of the class Aa. 

Theorem 11. If a set A is arcwise connected, then the set Aa is arcwise connected. 

Proof. Letfl5f2 e Aa. Then there exist functions Fl9 F2 e Asuchthatf! = Ft * ka, 
f2 = F2 * ka, and a path r(t) = F(Z, t), t e <a, b>, joining Fx and F2. Using the 
formula given in Theorem 5, we prove in the elementary way that y(t) = f(Z, t) = 
= F(Z, t) * ka(z) is a path joining fx andf2, which completes the proof. 

Since the arcwise connectedness implies the topological connectedness, Theorem 11 
yields that, for the arcwise connected family A, the families Aa are connected. 

Similarly, the following property of the families Aa may easily be proved. 

Theorem 12. If A is a compact family, then the families Aa are also compact. 

4. K. Skalska in her paper [15] proved that if A = T, then the following in­
clusions hold: 

T^cz Tacz T0 = T, 0 < a < / J . 
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In the general case, neither of the inclusions Afi c Aa cz A, 0 < a < ft, need be 
true. Indeed, let A = {z; z + z2}; then Aa = {z; z + 1/(1 + a).z2}, so ^ 4- 4 a £ 
4- -4 for 0 < a < £. Moreover, if A = {z + z2}, then Aa = {z + 1/(1 + a).z2}, 
thus the above inclusions are not true, either, and furthermore, for a + 0, even 
Aa n A = 0. 

Next, let A = S where 5 is the well-known class of univalent functions F of the 
form (1) in A. D. M. Campbell & V. Singh ([2]) proved that then the classes Sa = Aa, 
even for a = \, include infinite-valent functions. So, Sa 4: S for a = ^. Of course, 
it is also known that Sx 4- S (see [7]). On the other hand Z. Lewandowski, S. Miller, 
E. Ziotkiewicz in their paper [8] proved that if A = ST, then (ST)a c 5T for all 
a e Cfrom the disc |a — i | <£ \. Another non-trivial example of a family A for which 
the inclusion Aa c A is true for a complex a is the family Bt(M), M > 1, (see [4], 
vol. 2, p. 36) of functions of the form (1) satisfying the inequality 

|F(z)| < M , zeA . 

Namely, we have the following theorem. 

Theorem 13. If M > 1 and Re a > 0, then 

(^ (M)) , c ^ ( M ) . 

Proof. Letfe(B!(M))a and suppose that, at the same time, f^Bt(M). It is easy 
to verify then that there exists a point z0e A such that 

max|f(z)| = |f(z0)| = M , r = |z0 | . 
1*1 Sr 

Hence, in view of Jack's lemma ([5]), we obtain that there exists a number m ^ 1 
such that 

Zof'(zo) ^ "*/(*<>)• 

Consequently, in view of Theorem 4 we obtain 

| « o / ' ( z o ) + (1 - «)/(*o)| = |/(*o)| K m - 1) + 1| = | / (z0) | = M 

in spite of the assumption that fe (B1(M))a, which completes the proof. 
Now, we shall give a construction of the families A for which both the inclusion 

relations above will be true. For this purpose, let us consider the operator D: H —> H 
defined by the formula 

D F(z) = z F'(z) , z e A , 

and the set s/' = {F e H, F(0) = l} . Let f denote the class of operators J: si -• ,«/' 
satisfying for all F e ^ the condition 

(i) J(aDF + (1 - a) F) = J(F) + ocD J(F) , aeC. 
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Let us observe that, for example, the operators /»: si -» si', k = 1,2, 3,4, 
defined by the formulas 

Ji(F)(z) = F'(0) = l, zeA, 

J2(F)(z) = F(z) , z e . 4 , 

J3(F)(z) = F(z)j(z), z e . 4 , 

zjo 9 

belong to the class / . 
Let 

(6) A = {Fesi, Re J(F) (z) > 0, z e A} 

where J denotes an arbitrarily fixed operator of the class #. 
In the sequel, family (6) will be called a family of type J. 
Let us observe that the identity function belongs / to each family A of type J, 

(J (7) (z) = 1, z e A > J e , / ) ; moreover, the class A of type Jt coincides with the whole 
family si. The well-known families (see [4], vol. 1, p. 101; vol. 2, p. 97) 

(7) {F e si: Re F'(z) > 0, z e A} , 

(8) í ғ є ^ : R e ^ > 0 , zeA 

are classes of type J 2 , J3, respectively. The family A of type J 4 , as far as we know, 
has not been investigated yet. 

The families Aa associated with the classes A of type J have the following properties. 

Theorem 14.IfA[ is a family of type J, then for each a e C, Re a ^ 0, the inclusion 
Aa c A is true. 

Proof. Letfe Aa. Then from (6) and (4) we have 

Re J(aDf 4- (l - a)f) (z) > 0 , zeA. 

This inequality, in view of property (i) of the operator J, is equivalent to 

(9) Re (p + cxDp) (z) > 0 , zeA , 

where p = J(f). Using S. Miller's result ([9], Corollary) we get Re p(z) > 0, z e A. 
Therefore, Re J(f)(z) > 0, z e A , and, consequently, fGAl, which completes the 
proof. 

Theorem 15. If A is a family of type J and 0 ^ a g /?, then Ap c Aa c AQ = A 
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Proof. Of course, it is sufficient to consider the case 0 < a < j8. So, let 0 < a < /?, 
feAfi and / £ Aa. Then, in view of (4), (6) and property (i), there exists z0e A such 
that 

Re J(f) (z0) + p Re D J(f) (z0) > 0 , 

Re J(f) (z0) + a Re D J(f) (z0) = 0 . 

Multiplying the first inequality by a > 0 and the second inequality by (—/?) < 0 
and adding them, we get 

( a - # , R e J ( / ) ( z o ) > 0 . 

Since a — /? < 0, therefore Re J(f) (z0) < 0 and, consequently, / £ A., which con­
tradicts the relation Ap c A proved in Theorem 14. 

In particular cases, if the family A is of the form (7) or (8), Theorems 14 and 15 
give some results from paper [3], (see Sections 4 and 5). 

5. Let A be a family of type J -= Jk, k -= 2, 3, 4. Then there exists a function 
F = Fk, k = 2, 3, 4, of this class, such that 

(10) J(F)(z) = ^ ^ , zeA. 

From property (i) of the operator J we get 

Re J(aDF + (1 - a) F) (z) = 

= Re (1 + 2az - z2)/(l - z)2 -> - i Re a ^ 0, 

as z -> — 1, z e A, for each Re a ^ 0. So, Fk does not belong to the respective class 
Aa if Re a > 0. Consequently, the classes Aa associated with the families A of type 
J = Jfc, k = 2, 3, 4, are essential subclasses of the families A. 

From the course of the argument carried out we infer that Aa will be an essential 
subclass of the family A of type J if, for example, we assume in addition that the 
solution F of equation (10) belongs to A. Then the family A will be called a family 
of type J. So: if A is a family of type J, then A £ Aa for Re a > 0. 

A family A of type J1 is not a family of type J l5 whereas families A of type Jk, 
k = 2, 3, 4, are families of type Jk. 

The following property for the families of type J turns out to be true. 

Theorem 16. If A is a family of type J, then 

^^-l/Wl- for K«) = V(i + |«l2) - N = * 
where 

A [A,] = {/erf: Re J(/)(z) > 0,z e 4 } ; Jr(tl) = {Z 6C: |z| < r(a)} . 
Moreover, f/re disc Ar^)for xeR cannot be enlarged. 
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Proof. Let fe A. In view of the definitions of the families Aa and the sets ^4[-4r], 
the assertion will be proved if we determine the largest number r(a) e (0,1) such that 

ReJ (aD/ + (l - a ) / ) ( z ) > 0 , z e Ar(a). 

By virtue of property (i) of the operator J, it is sufficient to prove that 

(11) Re (p + aDp) (z) > 0, z e Ar(a), 

where p = J(f). Since / e A, therefore p is a Caratheodory function with a positive 

real part, so ([11], (6.2)) \z P'(z)l/Re P(Z) = 2IZI/(1 - lz|2)- H e n c e 

(12) Re (p + aDp) (z) ^ (l - ^ j Re p(z) , |z| = r < 1 . 

But 1 - 2|a| r - r2 > 0 if and only if 0 < r < r(a) = V(l + |a|2) - |a|, therefore 
relation (11) follows from (12), which accounts for the inclusion announced in the 
theorem. 

As A is a family of type J, the solution F of equation (10) belongs to A. This 
function turns out to belong to the family Aa [Ar(a)~]a and not belong to .Aa[Ar]a for 
r > r(a), a e R. Thus the proof is complete. 

6. Let .A be a family of type J and a ^ 0. In view of Theorems 14 and 15 and the 
fact that A cj: Aa for a > 0, the following considerations seem to be interesting. 

Let / e A, a = 0. Let us put 

af = { s u p a : / e A a } , 

A(OL) = {feA: ccf = a} . 

Theorem 17. If A is a family of type J, then each class A(cc) is nonempty and the 
following relations hold: 

(13) fe A(0) if and only if f$Aa for each a > 0 ; 

(14) fe A(co) if and only if feAa for each a ^ 0 ; 

(15) feA(ix), a e ( 0 , oo), if and only if feAp for any /?e<0, a> 

and f$Afi for each /? > a . 

Proof. As A is of type J, then, as we observed earlier, .A(O) 4= 0. Let a > 0 and 
let F e A be a solution of equation (10). Let us put / == F * ka. Then, by virtue of (2), 
JeAa, so from (4) 

j(*DJ+(l-*)J)(z) = j(F)(z) = \±±, zeA. 
1 — Z 

Hence, in view of (i), 

aDJ(J)(z) + J(J)(z)=l
7±^, zeA. 

1 — 2 
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Let us consider ft > a. From (i) we get 

J(PDJ + (1 - fi)f) (z) = fiD J(J) (z) + J{f) (z) = 

______+ ___lJ{I){z)___±l + 
a l - z a a 1 — z 

a — 
+ 

^. i r ř i /- iL±« d í ^iz i a < o 1 
a ajo 1 — íz a 

as z -> — 1, z e A. Consequently, / e .Aa, whence A(a) 4= 0. Since the identity function 
belongs to the family A of type J, it belongs to each class Aa9 thus to -4(oo), too. 
Hence it follows that .A(oo) 4= 0. 
Now, let us observe that for a e (0, oo), conditions (13), (14) and the sufficient 

condition in (15) follow directly from the definition of the family A(cc) and the pro­
perties of the family Aa. It only remains to prove the necessary condition in (15). 

So, letfe A((x), a e (0, oo). Then the definition of the family A(a) and Theorem 15 
imply that f $ Afi for each j5 > a, andfe Afi for each 0 __ ft < a. In view of (4), the 
last fact is equivalent to 

ReJ(j3Df+(l - j 8 ) f ) ( z ) > 0 , zeA, 

for p e <0, a). Passing to the limit p -> oT in the above inequality, we get 

Re J(aDf + (1 - a)/) (z) _% 0 , z e A , 

which, in view of the extremum principle for harmonic functions, gives 

Re J(aDf + (1 - a)f) (z) > 0 , z e A , 

and, consequently, f e Aa. Thus the proof is complete. 
Theorem 17 evidently yields that 

A = \JA(«). 

Finally, let us observe that the operator Jg: s/ -+ stf' defined by the formula 

W F))(z) = ( ^ H l ) , zeA, 
z 

where g is an arbitrarily fixed function of the family $4> belongs to the class #, too. 
Moreover, putting g = gk, k = 1, 2, 3, 4, where 

g_(z) = z, zєA ; 

z 

(i - -> 
ÿ2(z) = 7; ^ Ï ' z є Á ' 
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g3(z) = -—— , zeA; 
\ — z 

Q*{z) = -Log (1 - z) , z e A , 

we get Jk = J,k. 
There arises a natural question if Jg is the most general form of the operator 

Jef. 
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APLIKACE HADAMARDOVA SOUČINU V GEOMETRICKÉ TEORII FUNKCÍ 

ZBIGNIEW JERZY JAKUBOWSKI, PІOTR LICZBERSKI, ŁUCJA ŹYWIEŃ 

Nechť sđ je množina funkcí F holomorfních vjednotkovém kruhu a normalizovaných klasic-
kým zpûsobem: F(0) = 0, F'(0) = 1, a nechť Aє л/ je její libovolná pevnë zvolená podmnožina. 
V čìánku se studují různé vlastnosti tříd Aa, ocє C\ {— 1, — _-, . . . } , funkcí t v a r u / = F* kaУ 

kde 

FЄA, W-to.«-'+ -в* + ..-+'í + ^ _ l ) i * + - . . . 

aF* ka(z) znamená Hadamardůvsouбinfunкcí F, ka. N кteré speciální případy množiny A byly 
vyšetřeny dříve jinými autory (viz např. [15], [6], [3]). 
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