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Abstract. Let a he an infinite cardinal. Let Ta be the class of all lattices which are 
conditionally a-complete and infinitely distributive. We denote by T'a the class of all lattices 
X such that X is infinitely distributive, cr-complete and has the least element. In this paper 
we deal with direct factors of lattices belonging to Ta- As an application, we prove a result 
of Cantor-Bernstein type for lattices belonging to the class Ta-. 
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1. INTRODUCTION 

Let L be a partially ordered set and s° £ L. The notion of the internal direct 
product decomposition of L with the central element s° was investigated in [10] (the 
definition is recalled in Section 2 below). 

We denote by F(L, s°) the set of all internal direct factors of L with the central 
element s°; this set is partially ordered by the set-theoretical inclusion. In the 
present paper we suppose that L is a lattice. Then F(L, s°) is a Boolean algebra 
(cf, Section 3). 

Let a be an infinite cardinal. We denote by Ta the class of all lattices which are 
conditionally a-complete and infinitely distributive. We prove 

Theorem 1. Let L e Ta and s° 6 L. Then the Boolean algebra F(L,s°) is 
a-complete. 

In the particular case when the lattice L is bounded we denote by Cen L the center 
of L. For each s° £ L, F(L, s°) is a-complete and if CeaL is a closed subiattice of 



L, then Cen L is a-complete and thus F(L, s°) is a-complete as well. Some sufficient 
conditions under which the center of a complete lattice is closed were found in [2], 
[11], [12], [13], [14]; these results were generalized in [4]. For related results cf. also [3]. 

We denote by Tl the class of all lattices L belonging to 7K0 which have the least 
element and are cr-complete. 

As an application of Theorem 1 we prove the following result of Cantor-Bernstein 
type: 

Theorem 2. Let L\ and L% be lattices belonging to T£. Suppose that 
(i) L\ is isomorphic to a direct factor of L^; 

(ii) i 2 is isomorphic to a direct factor of L%. 
Then L\ is isomorphic to L%. 

This generalizes a theorem of Sikorski [15] on cr-complete Boolean algebras (proven 
independently also by Tarski [17]). 

Some results of Cantor-Bernstein type for lattice ordered groups and for MV-
algebras were proved in [5], [6], [7], [8]. 

2. INTERNAL DIRECT FACTORS 

Assume that L and L, (i € /) are lattices and that tp is an isomorphism of L onto 
the direct product of lattices Lf, then we say that 

(1) v-L^JjLi 

is a direct product decomposition of L; the lattices Li are called direct factors of L. 
For x £ L and i € I we denote by x(Li,tp) the component of a: in Li, i.e., 

x(Li,v) = &(x))i. 

Let s ° € l and i 6 I. Put 

Lf = {yeL: y(Ljt>p) = s0(LhV) for each j 6 / \ {i}}. 

Then for each x 6 L and each i £ I there exists a uniquely determined element yt in 
LI such that 

x(Li,ip) =yi(Li,tp). 

The mapping 

(2) PS°--L^HL( 
16/ 
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defined by 
<ps"(x) = (...,yi,...)ieI 

is also a direct product decomposition of L. Moreover, the following conditions are 
valid: 

(i) For each i e I, L\ is a closed convex sublattice of L and s° e L\ . 
(ii) For each i e I, L\ is isomorphic to Li. 

(iii) Hi e I and x 6 L(, then x(Ls",<ps°) — x. 
(iv) If i e I, j e I\{i} and x e Lsf, then x(L{ ,<pa") = s°. 

We say that (2) is an internal direct product decomposition of L with the central 
element s°; the sublattices Lf are called internal direct factors of L with the central 
element s°. 

The condition (ii) yields that if we are interested only in considerations "up to 
isomorphisms", then we need not distinguish between (1) and (2). 

We denote by F(L, s°) the collection of all internal direct factors of L with the 
central element s°. Then in view of (i), F(L,s°) is a set. On the other hand, it is 
obvious that the collection of all direct factors of L is a proper class. 

3. AUXILIARY RESULTS 

Assume that the relation (2) is valid. Let h and h be nonempty subsets of I such 
that h n h = 0 and h U h = h Denote 

L(h) = {% e L: x(L(,ips°) = s° for each i G h}, 

L(h) — {x e L: x(Lf ,(ps ) — s° for each ie h}. 

Consider the mapping 

(3) il>--L-*L(h)xL(I2) 

defined by ip(x) = (a;1,a;2), where 

xl = (...,x(Lsf,V
s"),...)ieh, x2 = (..., x(Lf,V

s"),...)ieh-

Then (3) is also an internal direct product decomposition of L with the central 
element s°. 

Further suppose that we have another internal direct product decomposition of L 
with the central element s°, 

(4) ^°:L^llpf. 
ieJ 



3.1. Proposition. Let (2) and (4) be valid. Suppose that there are i(l) € / and 
j(l) € J suci t&at Lf(l) = Pf(i)- Then for each x G L the components ofx in Lfn) 
and PJM are equal, i.e., 

• x(Lf(i). Vs") = x(pf(i). ^S") • 

Proof, This is a consequence of Theorem (A) in [10]. D 

We denote by ConL the set of all congruence relations on L; this set is partially 
ordered in the usual way. Bm;n and i?max denote the least element of Cont or 
the greatest element of ConL, respectively. For x e L and R £ ConL we put 
XR = {y € L: yRx}. 

From the well-known theorem concerning direct products and congruence rela
tions of universal algebras and from the definition of the internal direct product 
decomposition of a lattice we immediately obtain: 

3.2. Proposition. Let R(l) and R(2) be elements of ConL such that they are 
permutable, R(l) A R(2) = iimin, R(l) V R(2) = iJmax. Tien the mapping 

f- L -*• 4 ( D x4(2) 

defined by 

<p(x) = (x1,x2), where {x1} = xm n s°R(l),{x2} = xR{1) n 4 ( 2 ) 

is an internal direct product decomposition of L with the central element s°. 

3.3. Definition. Congruence relations jR(l) and R(2) on L axe called interval 
permutable if, whenever [a,b] is an interval in L, then there are £1,3:2 6 [a,b] such 
that aR(l)xtR(2)b and aR(2)x2R(l)b. 

The following assertion is easy to verify (cf. also [1], p. 15, Exercise 13). 

3.4. Lemma. Let R(l) and R(2) be interval permutable congruence relations on 
L. Then 

(i) i?(l)VU(2)=iim a x ; 
(ii) R(l) and R(2) are permutable. 

If the relation (2) from Section 2 above is valid, then in view of 2.1, it suffices to 
express this fact by writing 

(5) L=(s0)JlLi, 

where Lt has the same meaning as if in (2) of Section 2. 
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Also, if x € L, then instead of x(Lf, tfis ) we write simply x(L%). 
If A,B are elements of F(L,s°) and a; e L, then the symbol a;(A)(B) means 

(x(A))(B). 
Let the system (F, L, s°) be partially ordered by the set-theoretical inclusion. 

3.5. Lemma. F(L,s°) is a Boolean algebra. 

Proof . This is a consequence of Proposition 3.14 in [9], D 

It is obvious that if L is bounded, then F(L, s°) is isomorphic to the center of L. 
Further, it is easy to verify that if A, B € F(L, s°) and L = (s°)A x B, then B is 

the complement of A in the Boolean algebra F(L, s°); we denote B = A'. 

4. O-COMPLETENESS AND INFINITE DISTRIBUTIVITY 

Let a be an infinite cardinal. In this section we suppose that L is a lattice belonging 
to To, and that s° is an element of L. 

Let I be a set with card J = a and for each i e I let L% be an element of F(L, s°). 
Thus for each i e l w e have 

(1) L = (s°)Li x L'{. 

For each x £ L and each i € L we denote 

Xi = x(Li), x'i = x(L'i). 

Let x,y 6 L and i e J. We put xR%y if a;̂  = y\, similarly we set xR\y if Xi = y;. 
Then ft and #(- belong to Con I , Ri A JR(- = Rmin and ft V i?J = ftnax. Moreover, 
ft and R'i are permutable. 

4.1. Lemma, Let a,b € L, a ^ b. There exist elements x,y,x'i (i € I) in [a,b] 
such that > 

(i) xiRia for each i € I; 
(ii) yR'ta for each i e I; 
(iii) a: = \f xi, a; A j / = o and xVy = b. 

iei 

Proof . Let i £ I. There exist uniquely determined elements xl and yl in L 
such that 

x{ eaRir\bR>., yieaRi.nbR.. 
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(x1)^ = a'{, (x%)i = h, 

(y% = b'i, (yr)i = a.;. 

Then clearly 

(2) xг Ayг = a, 

(3) xl V yť = 6. 

Denote 
x=\jxl, y = f\yl; 

these elements exist in L since L is a-complete. By applying the infinite distributivity 
of L we get 

y Ax = y A (y x{) = y(y Ax*) = y /\(yj Ax'). 
\ei ' iei teijei 

For j = i we have J/J' A x1 = a (cf. (2)). Hence for each i £ I the relation 

/ \ (y A a*) = a 
iei 

is valid. Thus 

(4) y A x = a. 

Further we obtain 

xVy=xV ( A y ) = f\(x V y{) = f\ y V V y*). 
Me/ ' t g / i e / j e / 

For i = i we have â ' V yi = b (cf. (3)). Hence 

y(xjVyi) = b 
jEI 

for each i G J. Therefore 

(5) xVy = b. 

The definition of x and the relations (4), (5) yield that (iii) is valid. Now, in view 
of the definition of x1, the condition (i) is satisfied. Let i e I; then y,R'ia. Since 
y 6 [o, y% we obtain yR^a, Thus (ii) holds. D 
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By an argument dual to that applied in the proof of 4.1 we obtain: 

4 .2 . L e m m a . Let a,b € L, a ^ 6. There exist elements z,t,z% (i € I) in [a,b] 

such that 

(i) ztRib for each i € I; 

(ii) tR'tb for each i £ I; 

(iii) z = /\ z', zVt = b and zAt = a. 
iei 

4 . 3 . L e m m a . Let a, b, x and x' ii 6 / ) be as in 4.1. Suppose that u,v £ [a,x], 

u ^ v and uR'^y for each i £ / . Then u = v. 

P r o o f . By way of contradiction, assume that u < v. From the definition of x 

we conclude that 

« = t ) V ( i ) A i ) = itV ( v A \ / xl j = \/(u V (v A x%)). 
^ iei ' iei 

Hence there exists i € / such that u < u V (v A xl). From aRiX1 we obtain 

a V ( « A a)Ri(u V (u A a;")), 

whence uRt(u V(»A a;*). At the same time, since u V (v A a;*) belongs to the interval 

[u.v] and uR\v, we get ri?J(« V (v A a;1)). Therefore u = « V (v A a;1), which is a 

contradiction. D 

Analogously, by applying 4.2 we obtain 

4 .4 . L e m m a . Let a,b and z be as in 4.2. Suppose that u,v £ [z,b], u < v and 

uR'jV for each i € I. Then u = v. 

4 .5 . L e m m a . Let a, b, x, y, z and t be as in 4.1 and 4.2. Then t = x and z — y. 

P r o o f , a) We have 

t = t/\b = tA(xVy) = (t/\x)v(tAy). 

The interval [t A x,x] is projectable to the interval [t,t V x) and [t,t V x] C [i,b]. 

Hence in view of 4.2, (t A x)R'ix for each i £ I. Thus according to 4.3, t A x = x and 

therefore t ^ x. 

b) Analogously, 

i, = y v o = y V (t A 2) = (y V i) A (y V z). 



The interval [y A z,y] is protectable to the interval [z,z V y] and y A z, y] C [o,j/]-
Hence in view of 4.1, zRl(zVy) for each i 6 J. Then by applying 4.4 we get y = zVy, 
whence z"£ y. 

c) Since L is distributive, if either t > x or z > y then tf\z > a, which is impossible 
in view of 4.2 (iii). Thus t = x and z = y. 0 

5. THE RELATIONS R AND R' 

We apply the same assumptions and the same notation as in the previous section. 
If a, b 6 L, a ^ b and if x, y are as in 4.1, then we write 

x = x(a, b), y = y(a,b). 

Let p,qe L. We put pRq if 

x(p A q,pV q) =pV q. 

Further we put pR'q if 

y(pAq,pV q) -pV q. 

Thus pR'q if and only if pR'iq for each i € J. Hence we have 

5.1. Lemma. R! is a congruence relation on L. 

In view of the definition, the relation R is reflexive and symmetric. 

5.2. Lemma. Let p, q 6 L. Then the following conditions are equivalent: 
(i) pRq. 

(ii) There exists no interval [u,v] C L such that [u,v] C [p, Ag,p V g], « < » and 
«iii« for eaci i € I. 

Proof . Denote p Aq = a, pV q = b. Let (i) be valid. Then in view of 4.2, 
the condition (ii) is satisfied. Conversely, assume that (ii) holds. Put x(a,b) = x, 
y(a, b) = y. If y > a, then by putting [u, v] = [a, y] we arrive at a contradiction with 
the condition (ii). Hence y = a. Then 4.1 yields that x = b, whence (i) is valid. D 

5.2.1. Corollary. Let a\,a2,bi,b2 6 L, oi ^ &i ̂  62 ^ a2, aiRa2. Then biRb2. 

5.3. Lemma. Let 01,02,03 e L, a% ^ o2 < a3, aiRa2, a2Ra3. Then aiRa3. 



Proof . Suppose that [u,v] C [01,03] and uR'v. Denote 

« 1 = M A O 2 , 1 > I = U A 0 2 , «2 = « V 0 2 , «2= 'UV02 , 

S = Vi V W. 

Thus « < s ̂  v. Hence if « < v, then either « < s or s < v. 
It is easy to verify that [«, s] is projectable to a subinterval of [01, a2] (namely, to 

the interval [«i A «, v{\). Hence («i A ujR'v, and thus v% A « = v\. Therefore « = s. 
Analogously we obtain the relation s = v. Thus u = v. According to 5,2, a\Ra2. O 

5.4. Lemma. Let a\,a2 £ L, s 6 L, O1.R02. Then (01 V s)R(a2 V s) and 
(01 As)iJ(o2 As). 

Proof . If [«,«] is a subinterval of [oi V s,a2 V s], then [u,v] is projectable 
to the interval [o2 A u,a2 A «] and this is a subinterval of [01,02]- Hence in view 
of 5.2, if uR'v, then « = v. Therefore (01 V s)R(a2 V s). Similarly we verify that 
(01 As)R(a2 As). O 

5.5. l emma. The relation R is transitive. 

Proof . Let pi,p2,P3 € L, piRp2,p2Rp3- Denote 

PlAp2=Ul, p2Ap3=U2, « l A « 2 = «3, 

p i V p 2 = i>i, p 2 v p 3 = 'y2, i»iVi>2 = v3. 

In view of 5.4 we have piRpi Ap2, thus p\Ru\. Analogously we obtain p2Ru2. The 
interval [«3,«i] is projectable to some subinterval of [«2,P2]> hence U3RU1. Similarly 
we verify that p\Rvi and V3RV1. Thus U3RV3 by 5.2.1. Since [pi Ap3,pi VP3] C 
[«3>«3], 5.2 yields that piRp%. D 

From 5.4 and 5.5 we infer 

5.6. Lemma. R is a congruence relatioa on L. 

5.7. Lemma. RAR! = Rmm, RvR' = RmKX and R,R' arepermutable. 

Proof . In view of 5.2 we have RAR'= Rm\n. Let o, 6 e L, a < b. Let x and y 
be as in 4.1. Then we have 

(1) aRx, aR'y. 

Further, x Ay = a and x\/ y = b. Thus in view of the projectability we obtain 

(2) xR'b, yRb. 

Hence a(RvR')b. From this we easily obtain RvR' = i?max. Further, from (1), (2) 
and 3.4 we conclude that R and R' are permutable. O 



P r o o f of T h e o r e m 1. Let L 6 Ta and s° € L. Let {Li}iej be a subset 

of F(L, s°) such that c a r d ! < a. First we verify that \J Li exists in the Boolean 
iei 

algebra F(L,s°). Let us apply the notation as above. 

Consider the lattices s°R and s°Rl. According to 5.1, 5.6, 5.7 and 3,2 we have 

(3) L = (s°)sRxsR,. 

According to the definition of R' we obviously have 

(4) 4=n^-
i£l 

Then (3) and (4) yield 

(5) s% = /\L'<-
iei 

Further, in view of the definition of R, Li C s°R for each i e I. Let X e F(L,s°) 

and suppose that Li C X for each i e i . Put Y = X n s°R. Then Y 6 F(L, s°) and 

Li C y for each i 6 J. Moreover, Y is a closed sublattice of L. 

Let j £ s ° s . Put o = p A s° and b = p V s°. Thus o, 6 € s | . Hence s°i?6. In view 

of the definition of R there exist x1 £ [s°, 6] (i € I) such that a,-i € L, and \/ xi = b. 
iei 

Then all a;1 belong to Y; since Y is closed, we get b £Y. By a dual argument (using 
Lemma 4.2) we obtain the relation a £ y . Hence, by the convexity of Y, the element 

p belongs to Y. Therefore, s°R C Y. Thus 

(6) s% = \/L., 
iei 

Further, we have to verify that each subset of F(L, s°) having the cardinality ^ a 

possesses the infimum. But this is a consequence of the just proved result concerning 

the existence of suprema and of the fact that each Boolean algebra is self-dual. D 

5.8. Coro l l a ry . Under the assumptions as in Theorem 1 and under the notation 

as above we have 

L = ( - » ) ( V * . ) * ( A - - Í ) -
v»e/ ' \ei ' 

' r o o f . This is a consequence of (3)—(6). 
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are elemer C / fhen i- exisí- C i-
<l i i i </ We deaote 

fací, C is u relative r o u n ! umií of fhe element .4 in t h í » f f l ^ » i | f ^ } s 

ibra F(L,iř). 
ň"e wi.i! use Theorem 1 and apply the metlioci whicli is analo^ous to tlie WÍ 
. of lbe proof of Cant.or-Bemst.ein Theon; i of si t r]n m 

i m a . Ler ,4. ii ř« « ř, m- ,K , ní Pí L. - Ji MA tínt ,á 3 #. dm 
•phic to L. Theu A i • isomori>!u( *o L as tssS£" 

- f o o f . TSiere exists ti. ii.omorplii.sin / of / onlo D. Put lt == i, 

;ly we deffee 

á.H-2 = / ( - V ) 

each n e f*sJ. Heno? 

,A„ . , H ~1„ for t a d i t> € N, 

e :.?; ÍS t.be relation of isomorphism bet.ween iat.tic< 

inductioai we can verífy that .4,, e F(l,tP) and 

/i„ 3 -4„ + l for each » 6 f 

Then (2) yields 

(S) .£,„._2~Z.„ for eack « 6 K 

1 i i, m )!.(2) are dist.inct positive mtegers. Uren 

{6} LnmnLn!-2) = {s!j}. 
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If L is a Boolean algebra, then each interval of L is isomorphic to a direct factor 

of L. Further, each Boolean algebra is infinitely distributive and contains the least 

element. Hence Theorem 2 yields as a corollary the following result: 

6 .5, T h e o r e m . (Sikorski [13]; cf.also Sikorski [14] and Tarski [15].) Let L\ and 

L% be a-compiete Boolean algebras. Suppose that 

(i) there exists a2 € L2 such that L\ is isomorphic to the interval [0,a2] of' Lr, 

(ii) there exists a% 6 L\ such that L2 is isomorphic to the interval [0,ai] of L\. 

Then L\ and L2 are isomorphic. 
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