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Abstract.: Let o be an infinite cardinal. Let 7o be the class of all lattices which are
conditionally a-complete and infinitely distributive. We denote by 7, the class of all lattices
X such that X is infinitely distributive, o-complete and has the least element. In this paper
we deal with direct factors of lattices belonging to 7a. As an application, we. prove a result.
of Cantor-Bernstein type for lattices belonging to the class T7.
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1. INTRODUCTION

Let L be a partially ordered set and 5% € L. The notion of the internal direct
product decomposition of L with the central element s” was investigated in {10] (the
definition is vecalled in Section 2 below):

We denote by (L, s%) the set of all internal direct factors of L with the central
element s°; this set is partially ordered by the set-theoretical inclusion. In the
present paper we suppose that L is a lattice. Then F(L,s%) is a Boolean algebra
(cf. Section 3).

Let o be an infinite cardinal; We denote by 7 the class of all lattices which are
conditionally a-complete and infinitely distributive. We prove

Theorem 1. Let [ € T, and s° € L. Then the Boolean algebra F(L,s%) is
a-complete,

In the particular case when the lattice L is bounded we denote by Cen I the center
of L. Foreach s € L, F(L, s is a-complete and if L s a closed sublattice of
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L, then Cen L is a-complete and thus F(L, s°) is a-complete as well. Some sufficient
conditions under which the center of a complete lattice is closed were found in [2],
[11], [12], [13], [14]; these results were generalized in [4]. For related results cf. also [3].
We denote by 7, the class of all lattices L belonging to Ty, which have the least
element and are o-complete.
As an application of Theorem 1 we prove the following result of Cantor-Bernstein
type:

Theorem 2. Let Ly and Ly be lattices belonging to 7. Suppose that
(1) Ly is isomorphic to a direct factor of Ly;
(ii) Ly is isomorphic to a direct factor of Ly.
Then: L is-isomorphic to Ls.

This generalizes a theorem of Sikorski [15] on g-complete Boolean algebras (proven
independently also by Tarski [17]).

Some results of Cantor-Bernstein type for lattice ordered groups and for MV-
algebras were proved in [5], [6], {7], [8].

2. INTERNAL DIRECT FACTORS

Assume that L and L; (1 € T) are lattices and that o is'an isomorphism of L onto
the direct product of lattices L;; then we say that

1) oL 1L
iel
is a direct product decomposition of L; the lattices L; are called direct factors of L.
For z € I and i € I we denote by z(L;; ) the component of z in L;, i.e.,
2(Lip) = (@)
Let s c Land i€l Put
L = {y e L:y(L;, ) =%L;,p) for each j € T\ {i}}.

Then for each z € L and each 4 € I there exists a uniquely determined element y;-in
Lfo such that
#(Li, o) = y:(Li, ).
The mapping
@ gl L= o
i€l
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defined by
@ =g i

is-also-a-direct product: decomposition of L.“Moreover, the following conditions-are
valid:

(1) Foreachie I, Lfo is a closed convex sublattice of L and s° € qu_

(i) For each i € I, Lfﬂ i isomorphic to L;.
(i) HieTand ze L3, then o(L:,0%) = o
(v) Hiel, jelI\{i}andae Ly thenz(Lf, o) =5,

We say that (2) is an internal direct product decomposition of L with the central
element s%; the sublattices Lfo are called internal direct factors of L with the central
element 52,

‘The condition (it) yields that if we are interested only in considerations “up.to
isomorphisms?, then we need not distinguish between (1) and (2).

We denote by F(L,s% the collection of all internal direct factors of L with the
central element 's°. Then in view of (i), F(L,s%) is a set. On the other hand, it is
obvious that the collection of all direct factors of L is a proper class.

3. AUXILIARY RESULTS

‘Assume that the relation (2) is valid, Let I; and I, be nonempty subsets.of I such
that Iy M Io'= 0 and I; U Iy = I..Denote

Lh) ={zel: z(Lf”,wsO) =% foreachi € L},
Lib)={zeL: x(qu,gasu) =% foreachie i}
Consider the mapping
(3 P L= L(I) x L(L)
defined by 9(x) = (21,2%), where
ot = (a0 ey B = (a0t e

Then (3) is also an internal direct product decomposition of L with the central
element 5%

Further suppose that we have another internal direct product decomposition of L
with the central element 5%,

() L H'Pjﬂ.'

Jed
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3.1. Proposition. Let (2) and (4) be valid. Suppose that there are’i(1) € I and
j(1) € J such that sz’w = PJ?(GI). Then for each = € L the components of z:in Lfa)
and Pj(al) areequal, 1.6,

i)
2Ll ) = a Py 0.

Proof, Thisisa consequence of Theorem (A) in [10]. 0

We denote by Con L the set of all congruence relations on L; this set is partially
ordered in the usual way. Ry and Rug.x denote the least element of ConL or
the greatest element of Con [, respectively, ‘For 'z € L and R € Conl we put
zr={y € L:yRx}.

From the well-known theorem concerning direct products and congruence rela-
tions of universal algebras and from the definition of the internal direct product
decomposition of a lattice we immediately obtain:

3.2. Proposition. Let R(1) and R(2) be elements of Con L such that they are
permutable, R(1) A B(2) = Buin, R(1)V R(2) = Ruax. Then the mapping

; 1 L o sha) X shey
defined by
¢(z) = (a*,2%), where {z'}= TRz N s(}{(l), {#*} = 2Ry 0 5%(2)

is an internal direct product decomposition of I with the central element %

3.3. Definition.  Congruence relations R(1) and R(2) on.L are called interval
permutable if, whenever [a,b] is an interval in L, then there are zy,z; € [a,b] such
that aR(1)z 1 R(2)b and aR(2)z,R(1)b.

The following assertion is easy to verify (cf. also [1], p. 15, Exercise 13).

3.4. Lemma. Let R(1) and R(2) be interval permutable congruence relations.on
L. Then

(i) R(1)V R(2) = Riax;
(it) R(1) and R(2) are permutable.

If the relation (2) from Section 2 above ig valid, then in view of 2.1, it suffices to
express this fact by writing

() L= L

el
where L; has the same meaning as L?o in (2) of Section 2.
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Also, if x € L, then instead of z(l)fo,wa) we write ‘simply z(L;).
If A, B are elements of F(L,s%) and z € L, then the symbol (A)(B) means
(z(A))(B).

Let the system (F, L, s°) be partially ordered by the set-theoretical inclusion.

3.5. Lemma. F(L,s%) is a Boolean algebra.
Proof. This is a consequence of Proposition 3.14 in [9]. &)

It is obvious that if L is bounded, then F(L, s%) is isomorphic to the center of L.
Further, it is easy to verify that if A, B'e F(L,s%) and L = (s°)A x B, then B is
the complement of 4 in the Boolean algebra F(L, s°); we denote B = A'.

4. 0-COMPLETENESS AND INFINITE DISTRIBUTIVITY

Let @ be an infinite cardinal. In this section we suppose that L is a lattice belonging
to T and that 5% is an element of L.

Let I be a set with card ] = o and for each i € I let L; be an element of F(L, s°).
Thus for each 7 € I we have

1) L= (s%L; x L.
For each z € L and each i € L we denote
z; = a(Ly), ah = (L)

Let z,y € Land i € 1. We put 2Ry if z =y, similarly we set 2Ry if 2 = y;.
Then R; and R} belong to ConL, RiA R, = Ry, and R; V. R; = Rpay. Moreover,
R; and R] are permutable,

4.1. Lemma. Let a;b € L;a < b. There exist elements z,y,2° (i € I) in [a, b}
such that :
(i) 2*Riq foreachi€ I;
(i) yRla for eachi € I;
(i) 2=\ r', zAy=aandzVy =0
i€l

Proof. Letie I. There exist uniquely determined elements =¥ and y' in L
such that

e ap; ﬁbgi, 'yi € ap: Mbr:
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Hence
@)i=d;, (@)i=b,

Wi =8 ) =a

Then clearly

2 Ay =q
(3) E siyyi=0.
Denote

e=\a' y= Ak
i€l i€l
these elements exist in L since L is o-complete. By applying the infinite distributivity

of L we get

yAzZ=yA (\/1‘) = \/(y/\x’): V/\(yj/\a;i),

i€l i€l i€ljer
For j = i we have y/ Az’ = a (cf.(2)). Hence for each i € I the relation

AN@re)=a

jel
is valid. Thus
4 yAT =a.
Further we obtain

x\/y:zv(

Av) = Aevi = AV@ V.
iel

i€l ieljel
Forj =i we have 27 V.y* = b (cf. (3)). Hence

V@ivy)=b

Jel
for each ¢ € I. Therefore
5) zVy=Db.

The definition of z and the relations (4), (5) yield that (iii) is valid. Now, in view
of the definition of z’, the condition (i) is satisfied. Let i € I; then y*Rla. Since

y € [a,y"], we obtain yRia. Thus (i) holds. 0
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By an argument dual'to'that applied in the proof of 4.1 we obtain:

4:2. Lemma, Let a,b € L, a <b. There exist elements z,t,2 (i € I) in [a, 1]
such that

(i) 2R;b for eachi € I;
(i) tRib for each i € I;
(i) z= Az zVt=bandzAt=a.

i€l

4.3. Lemma. Let a, b, 2 and x’ /i € I) be as in 4.1. Suppose that u,v € [a, z],

w < v and uRjv for eachi € I. Thenu = v.

Proof. By way of contradiction, assume that % < v. From the definition of
we conclude that

v=uV (AT =uY (v/\\/z‘) :\/(uv(v/\:ci)).

i€l i€l
Hence there exists i €] such that u < uV (v Az?). From aR;z' we obtain
wV (WA Q)R (VY (0 A ),

whence uR:(uV (v Az'). At the same time, since uV (v A z%) belongs to the interval
fu,v) and uRw; we get vRL(uV (v A 2%). Therefore u = u V (v A ), which is a
contradiction: )

‘Analogously, by applying 4.2 we obtain

4.4. Lemma. Let a,b and z be asin 4.2. Suppose that 1, v € [z,b], w < v and
wRw foreachi€ . Thenu =70, :

4.5, Lemma. Leta, b, 2, y, zand1 beasin4.1and 42, Thent=zandz=7v.
Proof. a) We have
t=thAb=tA(zVy) =({EAD)V (EAY).

The interval [t A z,2] is projectable to the interval [t,¢V 2] and [t, ¢V 2] C [t,0].
Hence in view of 4.2, (¢ A z)Rlz for.each 1 € J. Thus according to 4.3, t Az =z and
therefore t2 z.

b) Analogously,

y=yVa=yV[{tAz)=wV)A(yVz).

347



The interval [y A z,9] is projectable to the interval [z,2V y] and y A 2,9} C [a;4):
Hence in view of 4.1, zR; (2 Vy) for each i € I. Then by applying 4:4 we get y = 2 V¥,
whence z 2 y.

¢) Since L is distributive, if either't > z or z >y then tAz > a, which is impossible
inview of 4.2 (iii). Thust =z and z = y. ]

5. THE RELATIONS R AND R’

We apply the same assumptions and the same notation as in the previous section.
Ifa,be L;a<bandif z,y are asin 4.1, then we write

z=u(a,b),  y=ylab).
Let p,q € L. We put pRq if
z(pAgpV e =pVe
Further we put pR'q if
y(pAgGPV @ =pVa
Thus pR'q if and only if pRlg for each i € I. Hence we have
5.1. Lemma. R' is a congruence relation on L.
In view of the definition, the relation R is reflexive and symmetric.
5.2, Lemma, Let p,q € L. Then the following conditions are equivalent:
() pRq.

(i1) There exists no interval [u,v] C L such that [u,v] C [p,Ag,p Vgl u < v and
uRjv for eachi € I.

Proof. Denote pAg=a, pVg=n>b Let (i) be valid. Then in view of 4.2,
the condition (ii) is satisfied. Conversely, assume that (i) holds. Put z(a,b) = 2,
y(a,b) =y. Ify.> a, then by putting [u,v] = [a,y] we arrive at a contradiction with
the condition (ii). Hence y = a. Then 4.1 yields that z = b, whence (i) is valid. [J

5.2.1. Corollary. Let a1, a2,b1,by € L, a1'< by < by < a9, e Ras. Then by Rbs.

5.3. Lemma. Let ar;a0,03 € L, a1 <as < as, a1 Ras, asRaa. Then ayRag.
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Proof. Suppose that [u,v] C [a1,03] and uR'v. Denote
Upr=uAay, V=V A G Uy = UV Ay Ve = VG,
s =1 V.
Thus v <:s < v, Hence if w < v, then either u < s-or 5 <v.
It is easy to verify that [u, s].is projectable to a subinterval of [ay, az] (namely, to

the interval [vy A u,v1]). Hence (vy A u)R'v; and thus vy Au = vy. Therefore u = s.
Analogously we obtain the relation's = v. Thus u = v. According t0 5.2, ajRay. O

5.4. Lemma. Let ai1,00 € L, s € L, ayRay. Then (a; V 8)R(az V s) and
(a1 A s)R(ag A's).

Proof. - If [u,v] is a subinterval of {a; V 5, ay V-8, then [u,v] is projectable
to the interval [ag A u, a3 A v] and this is a subinterval of [a;,a2]. Hence in view
of 5.2, if uR'v, then u = v. Therefore (ay V s)R(a3 V s); Similarly we verify that
(a1 A 8)R{az A s). )

5.5. Lemma. The relation R is transitive.

Proof. -Let p1,ps;p3-€ L, pyRpa, p2Rps. Denote

PUAP2 UL, Pr Aps = Uy, U AUy =g,

PLV P2 =V, paNp3 =, U VU= s
In view of 5:4 we have p; Rp1 A po, thus pi Rui: Analogously we obtain pyRus. The
interval [us, ui] is projectable to some subinterval of [us, pa), henee us Ru;. Similarly

we verify that pyRvy and wsRvy. Thus ugRus by 5.2.1. Since [p1 A ps,pi Vps] C
[us,v3], 5.2 yields that py Rps. jm

From 5.4 and 5.5 we infer
5.6, Lemua. R Is a congruence relation on L.

5.7. Lemma. RAR = Ruin; RV R = Rmax and R, R" are permutable.

Proof. Inviewof 5.2 wehave RAR = Ruyin. Let ;b€ Loa< b Let zandy
be asiin 4.1. Then we have

(€5} aRx, aR'y.
Further, z Ay = a and 2 V.y = b. Thus in view of the projectability we obtain :
2 zR'b, yRb.

Hence a(RV R")b. From this we easily obtain RV R = Ryax. Further, from (1), (2)
and 3.4 we conclude that R and R’ are permutable. o
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Proof:of Theorem 1. LetL € 7o ands® € L. Let {L:}ier be a subset

of F(L,s%) such that card I < . First we verify that \/ L; exists in the Boolean
i€l
algebra F/(L,s%). Let us apply the notation as above.

Consider the lattices 5% and 5%, According to 5.1, 5.6, 5.7 and 3.2 we have
(3) L= (s%)s% x %
According to the definition of R’ we obviously have
) 5= L
i€l
Then (3) and (4) yield
®) 8 = /\ L
' iel

Further, in view of the definition of R, L; C s foreachi € I. Let X € F(L,s%)
and suppose that L; C X for each i € I. Put ¥ = X N s%. Then'V € P(L,s%) and
L; CY for each 7 € I. Moreover, ¥ is a closed sublattice of L.

Let pe s%. Puta=pAs and b=pV s’ Thus a,b € s%. Hence s°Rb. In view
of the definition of R there exist z* € [s%,b] (s € T) such thdt zie L; and \/ zt

I3 ¢
Then all 2% belong to ¥; since Y. is closed, we get-b € ¥ By a dual drgument (using
Lemma 4.2) we obtain the relation ¢ € Y., Hence, by the convexity of ¥, the element
p belongs to Y. Therefore, s% C'Y. Thus

(6) sp=\ L
iel

Further, we have to verify that each subset of F(L, s°) having the cardinality <
possesses the infimum. But this is a consequence of the just proved result concerning
the existence of suprema and of the fact that each Boolean algebra is self-~dual. - 'O

5.8. Corollary. Under the assumptions as in Theorem 1 and under the notation
as above we have
OV 1) = (A )
i€l el

Proof. This is a consequence of (3)—(6): 0
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If I is a Boolean algebra, then each interval of L is‘isomorphic to-a direct factor
of L. Further, each Boolean algebra is infinitely distributive and contains the least
element. Hence Theorem: 2 yields as a corollary the following result:

6.5. Theorem. (Sikorski [13]; cf also Sikorski [14] and Tarski [15].) Let Ly and
L3 be g-complete Boolean algebras. Suppose that
(i) there exists as € Ly such that Lj is isomorphic to the interval [0, az] of Ls;
(i) there exists a; € Ly such that Ls is isomorphic to the interval [0, a:] of L1
Then Ly and Ly are isomorphic.
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