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Absiract. Exponential polynomials are the building bricks of spectral synthesis. In some
cases it happens that exponential polynomials should be extended from subgroups to whole
groups. To achieve this aim we prove an extension theorem for exponential polynomials
which'is based on'a classical theorem on the extension of homomorphisms.

Keywords: exponential polynomial; extension

MSC:1991: 39B05; 39899

Exponential polynomials are the building bricks of spectral synthesis [2]. In some
cases it happens that exponential polynomials should he extended from subgroups
to whole groups. The aim of this paper is to prove an extension theorem for expo-
nential polynomials: The treatment is based on-a well-known theorem from algebra:
subgroup homomorphisms of an abelian group into a divisible abelian group can be
extended to homomorphisms of the whole group:

In this paper C denotes the set of complex numbers.

Let G be an abelian group. Homomorphisms of G into the additive group of
complex numbers are ‘called ‘additive functions and homomorphisms of & into the
multiplicative group of nonzero complex numbers: are called exponential functions
or simply ‘exponentials. Products of additive functions and exponentials are called
ezponential monomials. As the product of exponentials is an exponential, too, hence
the general form of exponential'monomials is

@0 it (@eg?(z) . agn (B)m(z),

where a1, a2, ..., a1 G — Care additive functions; m: G — C is an exponential and
T, Q0 (a; o Gy ATe positive integers, If myis identically 1, then we call the function
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a:monomial.. Linear combinations of monomials are.called: polynomials:and linear
combination: of exponential monomials are called exponential polynomials. Hence
exponential polynomials are the elements-of the algebra generated by the additive
and the exponential functions.

In some cases we need a more general concept of exponential polynomials: the so-
called generalized exporential polynomials: Here the point is that we use generalized
polynomials instead of polynomials: A generalized polynomial originates from multi-
additive functions: If A:-G™ — C-is a function, which is a homomorphism in-each
variable and is symmetric; then it -is called-a multi-additive (symmetric) function.
More precisely, it is called an n-additive function. The diagonalization of A is'the
function A*: G — C defined by

Alz) = Alz,z, )

for all z in G A linear combination of diagonalizations of multi-additive functions is
called a generalized polynomial. Finally, we define generalized exponential monomials
as functions f: G. — C of the form

fz) =3 pilz)ma(a),
=1

where 7 is a positive integer, p;: G — C is a generalized polynomial and m;+ G = C
is‘an exponential (i = 1,2,. -, n). It is eagy to see that polynomials are generalized
polynomials and exponential polynomials are generalized exponential polynomials,
but in general, the converse is not true:: For-more about exponential polynomials
and generalized exponential polynomials we refer to 2],

Qur main result is based on-a classical theorem given below. We exhibit a simple
proof, too; for the sake of completeness (see [1], Volume I., Theorem A.7).

Theorem 1. Let G be an abelian group and let D be a divisible abelian group.
Furthermore, let'H be a subgroup-of G, and+): H — D) a homomorphism. Then ¢
can be extended to a homomorphism of G into D; that is, there exists a-homomor-
phism ¥: G — D such that ©(h) =(h) for all h in H,

Proof.  Let zo be any element of G not contained in H. We have two possibili-
ties. If nzo does not belong to H for any n > 2, then we define 1o (nzo + h) = (h)
for any integer n and for any b in H. It is easy to see that this'definition extends
to a homomorphism of the subgroup

Ho={nzo+h:hisin H and 'n isan integer}.
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In other words, ¥o: Ho — D is well-defined, it is a homomorphism of Hp into D and
Wo(h) = 1p(h) bolds for all A in H.

In-the ‘opposite case:there exists n:> 2 for ‘which nzg belongs to H. In this case
let & denote the smallest. - withthis property-and let z denote a solution of the
equation kz = 4(kzo). The existence of a z with this property is guaranteed by the
divisibility of D. Then we define o(nzo +h) = nz+(h) for any integern and for
any h in H: Here again we see that 2bg: Hy — D is a well-defined homomorphism
with the extension property: to(h) ==4(h) holds for any hin H.

Hence we have seen that if F is different from G then 1) can be extended to
a-homomorphism of a subgroup; which properly contains H: By applying Zorn’s
lemma the proof is complete. ]

From this result we can derive the following one:

- Theorem 2. Let G be an abelian group; n.a positive integer and let-D be a
divisible abelian group. Furthermore; let H be a subgroup of G, and A: H" —
D an n-additive symmetric function.  Then A can be extended to an n-additive,
symmetric mapping of G" into D, that is, there exists an n-additive symmetric
function o1 G% — D such that &(hyhy, .o hs) = Alhi hey oo s hy) holds for all
hiyhoy i hyin H.

Proof. We fix the elements ha, hs,: .., hy, and consider the homomorphism
he Alh hayhs, oo ha)

of H into- D. By virtue of the previbus theorem;, ‘there is an extension of this
function to a homomorphism of G into D. In other words, there exists a func-
tion Ay: G x H x H x ... x H — D which is additive in each variable and satisfies
Ar(hihashsy.coihy) = Alhs hoyha, oo hy) forallh, by his, oo by in H. Now we con-
tinue this process.” We fix the elements gi-in G and hs, hy, ... h,, in H and consider
the homomorphism b+ A1(g1,h, hs, by b)) of H into D Applying Theorem 1
again we get an extension of this homomorphism to a homomorphism of & into D.
It is obvious that continuing this process we arrive at a function 4, ;-G” — D which
is additive in each variable and satisfies A, (h1,h2. 0\ he) = A(hiiho, ..o hy) for
all-hay hoy ooy e incHo To achieve symmetry; we define

1
S (T1, 22,000, %0) = = Zﬁn(hau)?hv(m» o he(my)s
P

where ¢ runs through all permutations of the set {1,2, .., n}. Then & possesses all
the desired properties 0
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As the additive group of complex numbers is divisible, by the definition of gener-
alized polynomials we immediately have a corollary.

Corollary 3.  Let G be an abelian group, let H be a subgroup of G- and let
P: G — C be a generalized polynomial. Then P can be extended to a generalized
polynomial on G"; that Is, there exists a generalized polynomial #: G. — C such
that #(h) = P(h) holds for all h in H.

To. treat exponential polynomials we need a similar extension theorem:for expo-
nential functions. This is a simple corollary of Theorem 1, because the multiplicative
group of nonzero: complex numbers is divisible,

Corollary 4. Let G be an abelian group and let H be a subgroup. Ifm: H — C
is an exponential function, then it has an extension to G, that is, there exists an
exponential function A : G — C such that .#(h) = m(h) holds for all h in H.

Now we can summarize our results in the following theorem.

Theorem 5. Let G be an abelian group and let H: be a subgroup of G.: Let
f+ H — C be a generalized exponential polynomial.. Then there exists a general-
ized exponential polynomial extension of f to G, that is; a generalized exponential
polynomial & : G — C such that Z(h) = f(h)-for all h.in H.

‘We can apply our extension results to functional equations, Here we present a
result on the extension of the solution of a linear functional equation:

Theorem 6. Let G be an abelian group and let H be a subgroup of G ‘Let
further n be a positive integer, a;, bi integers with the property that a;b; # a;b; for
any i # j, and let ¢c; be nonzero real numbers (i = 1,2,...;n). If f: H — C satisfies
the functional equation

2

1) Z ciflaz+biy) =0
i=1

for all z,y in H, then there exists-a function F: G — C satisfying
N2

@) > aF(az +by) =0
1=l

for all z,y in G and F(h) = f(h) forall h in H.
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Proof.  From Theorem 9.5 and Theorem 9.1 in [2] it follows that for k =
0,1,...,n there exist k-additive symmetric functions A;: H* — C such that

n
fa)=3" Al
k=0
and
b2
®) Ale, 2 Ty )Y el =0
=1
forallz,yin Handfor j =0,1,...;n:k=4,9+1,...,n. (Weremark that for k =0
" H* = H and Ay is a constant. In the argument of A in the latter equation there
are j o’s and k'— j y's.) It follows that for any & we have either

Ar(m2, i H B YY) =0

for all iz, y-in H, or

b2

et o,

i=1
In the first case we have that

Aplzr, 2o, ,2) =0

for'all 1,29, ..., 2 in H, because the diagonalization determines the multiadditive
function uniquely ({2], Lemma 1.6). In the first case we let & (21,22, .., %) = 0
for any 1,%2,..., 2% in G- In the latter case we apply Theorem 2, and we denote

by &, an arbitrary. k-additive symmetric extension of 4, to G*. Then obviously the
functions &%, k = 0,1,...,n ‘satisfy the system of equations (3) for all z,y in G.
Then by Theorem 2.5 in [2], the function defined by

n
Flo) =3 #(z)
k=0
for all ¢ in G satisfies the functional equation (2) for all 7,y in G, and it 13 clear that
F(h) = f(h)for all hin H. The theorem is proved. 0
Of course;-the coefficients a;,b; can also be rational numbers provided the group

@G is uniquely divisible, that is, if it is a linear space over the rationals:
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