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ON T H E EXTENSЮN OP EXPONENTIAL POLYNOMIALS 

LÁSZLÓ SzÉKELYЩDI, DeЬrecen 

(Received August 31, 1998) 

Abstract. Exponential polynomials are the building bricks of spectral synthesis. In some 
cases it happens that exponential polynomials should be extended from subgroups to whole 
groups. To achieve this aim we prove an extension theorem for exponential polynomials 
which is based on a classical theorem on the extension of homomorphisms. 
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Exponential polynomials are the building bricks of spectral synthesis [2]. In some 

cases it happens that exponential polynomials should be extended from subgroups 

to whole groups. The aim of this paper is to prove an extension theorem for expo

nential polynomials. The treatment is based on a well-known theorem from algebra: 

subgroup homomorphisms of an abelian group into a divisible abelian group can be 

extended to homomorphisms of the whole group. 

In this paper C denotes the set of complex numbers. 

Let G be an abelian group. Homomorphisms of G into the additive group of 

complex numbers are called additive functions and homomorphisms of G into the 

multiplicative group of nonzero complex numbers are called exponential functions 

or simply exponentials. Products of additive functions and exponentials are called 

exponential monomials. As the product of exponentials is an exponential, too, hence 

the general form of exponential monomials is 

x i-+ a™1 (x)a^2 (x)... a""- (x)m(x), 

where a\, a%,..., o„ : G ~» C are additive functions, m: G -> C is an exponential and 

n, ct\, ct2,. •., cxn are positive integers. If m is identically 1, then we call the function 
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a monomial. Linear combinations of monomials are called polynomials and linear 
combination of exponential monomials are called exponential polynomials. Hence 
exponential polynomials are the elements of the algebra generated by the additive 
and the exponential functions. 

In some cases we need a more general concept of exponential polynomials: the so-
called generalized exponential polynomials. Here the point is that we use generalized 
polynomials instead of polynomials. A generalized polynomial originates from multi-
additive functions. If A: Gn -> C is a function, which is a homomorphism in each 
variable and is symmetric, then it is called a multi-additive (symmetric) function. 
More precisely, it is called an n-additive function. The diagonalization of A is the 
function A* : G —> C deined by 

A*(x) — A(x,x,... ,x) 

for all x in G. A linear combination of diagonalizations of multi-additive functions is 
called a generalized polynomial. Finally, we define generalized exponential monomials 
as functions / : G -» C of the form 

jw = X^M™^). 
fal 

where n is a positive integer, pt: G —> C is a generalized polynomial and mi: G —>• C 
is an exponential (i = 1,2,..., n). It is easy to see that polynomials are generalized 
polynomials and exponential polynomials are generalized exponential polynomials, 
but in general, the converse is not true. For more about exponential polynomials 
and generalized exponential polynomials we refer to [2]. 

Our main result is based on a classical theorem given below. We exhibit a simple 
proof, too, for the sake of completeness (see [1], Volume I., Theorem A.7). 

Theorem 1. Let G be an ahelian group and let D be a divisible abelian group. 
Furthermore, let H be a subgroup of G, and tjj: H —> D a homomorphism. Then ij> 
can be extended to a iiomomorpijism of G into D, that is, there exists a homomor
phism m:G -4 D such that <S(h) = 4>(h) for all h in H. 

Proof. Let x0 be any element of G not contained in H. We have two possibili
ties. If nxo does not belong to H for any n ^ 2, then we define -ipo(nxo + h) = ip(h) 
for any integer n and for any h in H • It is easy to see that this definition extends ip 
to a homomorphism of the subgroup 

Ho = {nxo + h: h is in H and n is an integer}. 
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In other words, ?/>o : H0 —> D is well-defined, it is a homomorphism of H0 into D and 

# o O ) = ip(h) holds for all h in if. 

In the opposite case there exists n > 2 for which nxjo belongs to if. In this case 

let k denote the smallest n with this property and let z denote a solution of the 

equation kz = tp(kx0). The existence of a z with this property is guaranteed by the 

divisibility of D. Then we define ^0(nx0 + h) = nz + ip(h) for any integer n and for 

any h in II. Here again we see that \p0: H0 -» D is a well-defined homomorphism 

with the extension property: ip0(h) — ip(h) holds for any h in if. 

Hence we have seen that if II is different from G then f can be extended to 

a homomorphism of a subgroup, which properly contains II. By applying Zorn's 

lemma the proof is complete. D 

From this result we can derive the following one: 

. T h e o r e m 2. Let G be an abeiian group, n a positive integer and let D be a 

divisible abeiian group. Furthermore, let H be a subgroup of G, and A: Hn -> 

D an n-additive symmetric function. Then A can be extended to an n-additive, 

symmetric mapping of Gn into D, that is, there exists an n-additive symmetric 

function £/: Gn -» D such thai e?(hx,h2,... ,hn) = A(hi,h2,... ,hn) holds for all 

hi,h2,... ,hn in H. 

P r o o f . We fix the elements h2,h3,... ,hn and consider the homomorphism 

I m A(h,h2,h3,...,hn) 

of H into D. By virtue of the previous theorem, there is an extension of this 

function to a homomorphism of G into D. In other words, there exists a func

tion Ai: G x H x H x ... x H -¥ D which is additive in each variable and satisfies 

Ai(h,h2,h-i,... ,hn) = A(h,h2,h3,,.. ,hn) for all h, h2, h3,... ,hn inH. Now we con

tinue this process. We fix the elements g\ in G and h3, ft4,..., hn in II and consider 

the homomorphism h i=> Ai(gi,h, h3, hi,..., hn) of H into D. Applying Theorem 1 

again we get an extension of this homomorphism to a homomorphism of G into D. 

It is obvious that continuing this process we arrive at a function An: Gn -» D which 

is additive in each variable and satisfies An(hi,h2,,.. ,hn) = A(h%,h2,... ,hn) for 

all hi, h2,..., hn in H. To achieve symmetry, we define 

s/(Xl,x2, ...,xn) = — VJ An(ha{1),ha{2),.. .,ha(n)), 

where a runs through all permutations of the set { 1 , 2 , . . . ,n). Then £/ possesses all 

the desired properties. D 
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As the additive group of complex numbers is divisible, by the definition of gener
alized polynomials we immediately have a corollary. 

Corollary 3, Let G be an abelian group, let H be a subgroup of G and let 
P: G -> C be a generalized polynomial. Then P can be extended to a generalized 
polynomial on Gn, that is, there exists a generalized polynomial 3?: G —>• C suci 
that &(h) = P(h) holds for all h in H. 

To treat exponential polynomials we need a similar extension theorem for expo
nential functions. This is a simple corollary of Theorem 1, because the multiplicative 
group of nonzero complex numbers is divisible. 

Corollary 4. Let G be an abelian group and let H be a subgroup. Ifm-.H-tC 
is an exponential function, then it has an extension to G, that is, there exists an 
exponential function JZ: G -^ C such that Jtifi) = m(h) holds for all h in H. 

Now we can summarize our results in the following theorem. 

Theorem 5, Let G be an abelian group and let H be a subgroup of G. Let 
f: H -» C be a generalized exponential polynomial. Then there exists a general
ized exponential polynomial extension of f to G, that is, a generalized exponential 
polynomial^: G -¥ C sucii that &(h) = f(h) for all h in H. 

We can apply our extension results to functional equations. Here we present a 
result on the extension of the solution of a linear functional equation. 

Theorem 6. Let G be an abelian group and let H be a subgroup of G, Let 
further n be a positive integer, a,, 6. integers with the property that aibj ^ ajbi for 
anyi # j , and let c,- be nonzero real numbers (i = 1,2,... ,n). If f: H ->• C satisfies 
the functional equation 

Tl+2 

(1) Y,cif(aix + biy)=Q 
»=i 

for all x, y in H, then there exists a function F: G —> C satisfying-

n+2 

(2) YlciF(aix + biy) = 0 

t= l 

for all x,y in G and F(h) = f(h) for all h in H. 
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Proof . From Theorem 9.5 and Theorem 9.1 in [2] it follows that for k = 

0,1,.. . ,n there exist ^-additive symmetric functions Ak: Hk -^ C such that 

f(x)=J2At(x) 
k=0 

and 

n+2 

(3) Ak(x,x,... ,x;y,y,... ,y)Y^cia\h>ri = 0 

for all x,y in H and for j = 0,1,... ,n, & = j , j + 1,,., ,n. (We remark that for k = 0 
Hk — H and Ak is a constant. In the argument of Ak in the latter equation there 
are j x's and k — j y's.) It follows that for any k we have either 

Ak(x,x,...,x;y,y,...,y) =i 

for all x,y in Д", or 

i = l 

In the first case we have that 

Ak(xi,X2,...,Xk) = 0 

for all x'i, X2, • • •, xk in H, because the diagonalization determines the multiadditive 
function uniquely ([2], Lemma 1.6). In the first case we let s^k(xi,X2, • • • ,xk) = 0 
for any x\,X2,. • • ,Xk in G. In the latter case we apply Theorem 2, and we denote 
by s#k an arbitrary fc-additive symmetric extension of Ak to Gk. Then obviously the 
functions J?4, k — 0,1,.. . ,n satisfy the system of equations (3) for all x,y in G. 
Then by Theorem 2.5 in [2], the function defined by 

k=0 

for all x in G satisfies the functional equation (2) for all x, y in G, and it is clear that 
F(h) = f(h) for all h in H. The theorem is proved. D 

Of course, the coefficients en, h can also be rational numbers provided the group 

G is uniquely divisible, that is, if it is a linear space over the rationals. 
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