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A METRIC ON A SYSTEM OF ORDERED SETS 

ALFONZ HAVIAR and PAVEL KLENOVČAN, Banská Bystrica 

(Received December 23, 1994) 

Summary. In [3] a metric on a system of isomorphism classes of ordered sets was defined. 
In this paper we define another metric on the same system and investigate some of its 
properties. Our approach is motivated by a problem from practice. 
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The following practical problem can be considered as a motivation. The usual su­
periority in an office (organisation) can be represented in a natural way as a partial 
ordering on a finite set of working positions and it yields a "hierarchy of employees" 
working on these positions. Formally, let an ordered set (P, ^ i ) represent a superi­
ority on a set P of working positions (i.e. pi ^ i p2 for pltp2 e P if the position pi 
is directed by the position p2). Further, let E(P) be a set of employees working in 
the given office on the positions from P (thus \E(P)\ = \P\) and let ei(pi) ^ i e 2 (p 2 ) 
(e i (p i) ,e 2 (p 2 ) e E(P)) iff pi < t p2. Now assume that a reorganization yields a new 
ordering represented by ^ 2 . One wishes to move the employees to positions in the 
new hierarchy in such a way that the previous hierarchy of employees (E(P),^il) 
agreed "as much as possible" with the new one (E(P),^2). Hence, we wish the 
cardinality of the set 

{(ei,e 2) e E(P)2; ex ^ e2 and ei $ i e2 O ei < 2 e 2} 

to be maximal. 
Throughout this paper all ordered sets are assumed to be finite. If R is a binary 

relation we will often write aRb instead of [a, b] e R. We will write a || b(R) if neither 
aRb nor bRa holds. As usual, we denote the cardinality of a set A by |^4|. 
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Let R be an ordering (i.e. a reflexive, antisymmetric and transitive binary relation) 

on a set P and let S be an ordering on M, where | P | = |M| . Let F(P,M) denote 

the set of all bijections of P onto M. For any bijection / E F(P,M) we denote by 

df the number defined by 

(1) df = \f(R)\S\ + \S\f(R)\ 

where/ (P. ) = {[/(«),/(&)]; [a,6]e P.}. 

It is obvious that 

(!') d / = | P | + | S | - 2 | / ( P ) n S | . 

L e m m a 1. For any ordered sets (P,R) and (M,S) with \P\ = |M | and any 

bijections f,g€ F(P, M) the following conditions are satisfied: 

(2) df = d9 iff \f(R)nS\ = \g(R)nS\, 

(2') df<dg iff \f(R)nS\>\g(R)nS\, 

(3) | / ( P ) n S | = | P n r l ( S ) | . 

P r o o f . (2) and (2') follows from (1'). Further, [a, 6] 6 f(R) n S if and only if 

[r1(«),/-1(&)]€*n/-1(S)> 

which proves (3). • 

Def ini t ion. Let (P, R) and (M, S) be ordered sets with | P | = |Af|. The number 

d((P, R), (M, S)) given by the equality 

(4) d((P,R), (M, S)) = min{d / ; / e F(P, M)} 

will be called the distance of the ordered sets (P, R) and (M, S). 

R e m a r k l . We will often write d(R,S) instead of d( (P, R), (M, S)). 

R e m a r k 2. The bijection / for which d(R,S) = df can be regarded as "the 

most isotone" mapping of (P, R) onto (M,S). If / is an isotone bijection of an 

ordered set (P,R) onto an ordered set (M,S), then d(R,S) = df. 

T h e o r e m 1. Let S? be an arbitrary system of ordered sets having the same 

cardinality. The function d on the system S? given by (4) is a pseudometric. 



Proof . It follows from Lemma 1 that d(R,S) = d(S,R) for any ordered sets 
(P,R)and(M,S). 

Let (P,R), (M,S) and (Q,T) be ordered sets with \P\ = \M\ = \Q\, and let 

d(R,S) = df, d(S,T) = dg, d(R,T) = dh. 

The inequality 

(a) df + dg > dh 

is equivalent to the inequality 

\R\ + \s\ - 2\f(R) n s\ + \s\ + |r | - 2\g(S) n r | > \R\ + in - 21M-K) n n 

i.e. to 

(b) \S\ + \h(R) n T | > \W) n S| + \g(S) nT\. 

Prom the minimality of dh we have df0g ̂  dh; this implies 

\g(f(R)) n T K |M#) nT\ by Lemma 1, 

therefore to prove (a) it is sufficient to show that 

(c) \S\ + \g(f(R)) n T\ > \f(R) n S\ + \g(S) n T|. 

Without loss of generality we can assume that S n T = 0. Then we can write (c) in 
the form 

(d) |S u (g(f(R)) n T)\ 2 \(f(R) n S) u (g(S) n r ) | . 

Now, we will show that there exists an injective mapping 

<p: (f(R) n S) U (g(S) n T) —> S u (</(/(B)) n T). 

We will distinguish two possibilities: 

1. If [a, b] £ f(R) n S, then we put <p(a, b) = [a, b]. 
2. Let [a, b] e g(S) n T, i.e. there exist elements x, y such that g(x) = a, g(y) = b, 

[x,y] € S. If [x,y] <£ f(R) we put <p(a,b) = [x,y], otherwise <p(a,b) = [a,b]-
It is not hard to verify that <p is injective, which completes the proof. D 
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R e m a r k . In the previous proof we have not used the fact that the relations 

R, S and T were reflexive, antisymmetric and transitive. Consequently, the function 

d is a pseudometric on any system S" that contains relation structures of the same 

finite type which have base sets (universes) of the same cardinality. In this case 

d((P;R1,...,Rn),(M;S1,...,Sn)) = d((P,R1),(M,S1)) + ... + d((P,Rn),(M,Sn)). 

Corollary. Let S" be a system of classes of isomorphic ordered sets. The 

function S defined on S" by 

5(&>,Jt)=d((P,R),(M,S)) 

for any elements &>, Jf 6 S", (P, R) e &>, (M, S) e J(, is a metric on S*. 

R e m a r k . We identify the functions 5 and d throughout this paper. 

L e m m a 2. Let (P,R), (M,S) be ordered sets, \P\ = \M\ and d(R,S) = df. If 

aRb, a^b for some elements a,b e P, then f(b)Sf(a) does not hold. 

P r o o f . Suppose to the contrary that there exist elements a,b e P such that 

aRb, a ^ b and f(b)Sf(a). It is sufficient to show that there exists a bijection g: 

P -> M such that dg < df. 

Let the map j : P - > M b e defined as follows: 

g(x)=f(x) for all xeP\{a,b}, 

g(a) = f(b), g(b) = f(a). 

We will prove that \f(R) n S\ < \g(R) n S\. Let [u,v] g f(R) n S. We distinguish 

the following cases: 

1. u = f{x) = g(x) i {f(a),f(b)}, v = f(y) = 9(y) i U(a),f(b)}. This yields 

[x,y] e R, consequently [u,v] e g(R) n S. 

2. u = f(x) = g(x) i {f(a),f(b)}, v = f(a) = g(b). Then [x, a] e R and [x, b] e R 

(as [a, b]eR), hence [u, v] e g(R) n S. 

3. u = f(b) = g(a), v = f(x) = g(x) i {/(«),/(&)}• This again leads to 

[u,v] eg(R)r\S. 
4. u = f(x) = g(x) i {f(a),f(b)}, v = f(b) = s(«)- Then either 

a) [a:, 6] e R and [a;, a] e R 

or 

b) [x, b] e R and [x, a] i R. 

5. u = f(a) = g(b), v = f(x) = g(x) i {f(a)J(b)}- Then either 
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a) [a, x]G R and [6, x] e R 

or 

b) [a,x] eRand[b,x]<£R. 

The cases 4a and 5a immediately give [u, v] e g(R) n S. 

On the other hand, in the case 4b we have [r,s] = [g(x),g(b)] e g(R) n S and 

[r, s] = [f(x), f(a)] i f(R)nS and in the case 5b we get [r, s] = [g(a), g(x)] e g(R)nS 

and [r,s] = [f(b),f(x)] $ f(R)nS. We proved that \f(R)nS\ ^ \g(R)nS\. Observe 

that [g(a),g(b)] = [f(b),f(a)] £ g(R) n S and [g(a),g(b)] = [f(b),f(a)] i f(R)nS. 

The proof is complete. D 

T h e o r e m 2. Let(P,R), (M,S) be ordered sets such that | P | = |Af|. Ifd(R,S) = 

df and m is the least (greatest) element of the ordered set (P,R), then f(m) is a 

minimal (maximal) element of the ordered set (M, S). 

P r o o f . It follows from Lemma 2. D 

The following example shows that in Theorem 2, the words "least" and "greatest" 

cannot be replaced by the words "minimal" and "maximal", respectively. 

Fig. 2 

E x a m p l e . Let (P, R) and (M, S) be the ordered sets drawn in Figures 1 and 

2. respectively. The mapping / : P -> M is given as follows: / ( a ) = A, f(b) = B, 

/ (c) = C, f(d) = D, / (e) = E, f(g) = G, f(j) = J, f(h) = H, f(k) = K. 

Then d(R, S) = df =8 but neither / ( a ) nor f(b) is a minimal element of (M, S) 

P r o b l e m . Let (P,R) and (M,S) be arbitrary ordered sets with | P | = |Af|. 

Does there exist a mapping g: P -> M and minimal elements x e P, y € M such 

that d(R, S) = dg and g(x) = y? 

L e m m a 3 . Let ( P i , P i ) and (P2 ,P2) be ordered sets and let (Pi x P2,R) be 

their direct product. Then \R\ = | P i | • | P 2 | . 

P r o o f . It follows immediately from the definition of a direct product. D 
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Theorem 3 . Let (P,R) be the direct product of ordered sets ( 4 , 4 ) . ( 4 4 ) 

andie t (Af ,S) be the direct product ofordered sets (M\,S\), (M2,S2). Ifd(R\,S\) = 

df and d(R2,S2) = dg, then 

(5) d ( 4 S ) < \ • ( | 4 | • | 4 | + |Si | • |S 2 | - |SX | • | 4 | - 141 • |S 2 |+ 

+df • ( | 4 | + |S2 |) + dg • ( | 4 | + |Si|) - df • dg). 

P r o o f . We will denote by / x g the mapping Pi x P 2 -> M\ x M2 for which 

( / x g)(x,y) = [f(x),g(y)]. First, we show that 

(e) |(/x5)(4ns| = |/(4)ns1|-|fl(4)ns2|. 

Indeed, [a,b] € f(R\) and [c,d] 6 g(R2) if and only if there exist elements i , y £ 

P i , u,v € P2 such that f(x) = a, f(y) = b, g(u) = c, g(v) = d, [x,y] e P i 

and [u,v] e 4 , which is satisfied if and only if [ ( / x g)(x,u),(f x g)(y,v)] = 

[[a,c],[b,4] £ ( / x g)(R). Evidently, [a,b] e Si and [c,d] e S2 if and only if 

[[a, c], [b, d]] e S. Therefore, [a, b] e / ( P i ) n Si and [c, d] 6 / ( P 2 ) n S2 if and only if 

[[a,c], [b,d]] € ( / x g)(R) n S. Consequently, this implies (e). Now, it follows from 

d/xg = \R\ + |S | - 2 • | ( / x g)(R) n S| (by Lemma 3 and (1')) that 

df*g = \ • ( | 4 | • | 4 | + 141 • |S 2 | - |5 i | • | 4 | - 141 • |S 2 | + 

+df • (141 + | 4 | ) + dg • ( | 4 | + | 4 | ) - df • dg). 

The last equality implies (5), which completes the proof. D 

E x a m p l e . Let (P,R) and (M,S) be ordered sets drawn in Figures 3 and 4, 

respectively. Let the mapping / : P -> M be given as follows: f(a) = A, f(b) = B, 

f(c) = C. It can be verified that d(R,S) = df = 2, dfxJ((P,R) x (P,R),(M,S) x 

(M,S)) = 18 but d((P,R) x (P,R),(M,S) x (M,S)) = 12 (the last equality was 

verified by a computer). 

Fig. 3 Fig. 4 
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Definition. Let (P, R) and (M, S) be ordered sets with | P | = |M| and let / be 

a bijection of P onto M. The number df given by (1) will be called an /-distance 

of ordered sets (P, R) and (M, S). If df = d(R, S) we will say that / is an optimal 

mapping between ordered sets (P, R) and (M,S). 

Lemma 4. Let f be an optimal mapping of an ordered set (P, R) onto (M, S) • If 

an element b covers an element a in the ordering R and if f(a) \\ f(b)(S), then f is an 

optimal mapping of the ordered set (P, R\{[a, b}}) onto (M, S) and d(R\{[a, b]}, S) = 

d(R,S)-l. 

P r o o f . It is obvious that the /-distance of the ordered sets (P,R\ {[a, 6]}) and 

(M,S) isd(R,S)-l. Now, we prove that d(R\{[a,b]},S) > d(R,S)-1. Assume 

to the contrary that there exists a bijection g: P -» M such that the ^-distance of 

(P, R \ {[a,b]} and (M, S) is at most d(R, S) - 2. Then the ^-distance of (P,R) and 

(M, S) is at most d(R, S) — 1, which is a contradiction. D 

Let (P,R) be an ordered set. If ^ is a family of linear orderings (chains) whose 

intersection is the relation R, then 'ff is said to be a realizer of R. The dimension of 

an ordered set (P, R) was defined as the minimal cardinality of a realizer of R (by 

B. Dushnik and E. W. Miller). As usual, we will denote the dimension of an ordered 

set ( P , P ) by d im(P ,P) . 

L e m m a 5 . Let (P,R) and (M,S) be ordered sets of the same cardinality such 

thatd(R,S) = 1. Then 

| d i m ( P , P ) - d i m ( M , 5 ) | $ 1 . 

P r o o f . Without loss of generality we can suppose that P = M and R = 

S \ {[a, 6]}, where a is an element covered by 6 in the ordering S. Therefore, 

d im(M,5) e {dim(P,P) , d im(P,P) - 1, d im(P,P) + 1}. 

D 

Theorem 4 . Let (P, R), (M, S) be any ordered sets with \P\ = \M\. Then 

(6) d(R, S) > | dim(P, R) - dim(M, S) | . 

P r o ° f . Let d(R,S) = df, f(R) \ S = {[01,61],.. . , [a r ,6 r ]} and 

\J(R) = { [ a r + 1 , 6 r + l ] , . . . , [ a r + s , 6 r + s ] } . Because f(R) and S are orderings on 
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M, the relation f(R)nS is an ordering on M, too. Without loss of generality one can 

suppose that 61 covers 01 in the ordering f(R) and that for every i 6 {2,3, . . . , r] the 

element 6 ; covers at in the ordering f(R) \ {[01,61],..., [0,-1,6i_i]}. This guarantees 

that f(R), f(R) \ {[01,61]}, . . . , / ( B ) \ { [ o i , 6 i ] , . . . > [ o r , 6 , ] } = / ( J . ) n S are 

orderings on M. Hence, it is readily seen (Lemmas 4 and 5) that 

d(f(R),f(R) \ {[_!,&!]}) = 1 2 \dMM,f(R))-dim(M,f(R) \ {[oi,6i]})|, 

d(f(R) \ {[01,61]},/(fi) \ {[01,61],[02,62]}) 

= l ^ | d i m ( M , / ( i ? ) \ {[01,61]})-dim(/(i?)\{[a 1,6 1],[o 2,6 2]}) | , 

etc. This implies that 

(j) d((M, f(R)), (M, f(R) n S ) ) = r ^ | dim(M, f(R)) - dim(M, f(R) D S)\. 

Similarly, one can obtain 

(k) d((M, S), (M, }(R) ПS)) = 0 | dim(M, f(R) П 5) - dim(M, 5 ) | . 

Consequently, 

d((M, f(R)), (M, S)) = r + O I dim(M, f(R)) - dim(M, S)\. 

Since the ordered set (M, f(R)) is isomorphic to the ordered set (P, R), the proof 

is complete. • 

R e m a r k . Let m, fc be natural numbers with n ^ 3 , 0 ^ f c ^ n - 2 . We show 

that there exist ordered sets (P, R) and (M, S) satisfying the conditions d(R, S) = fc, 

dim(P,R) = n, dim(M, 5) = n — k. The statement is obvious for fc = 0 and fc = 1. 

Let fc ^ 2. For the ordered set (P, R) we can take the standard ordered set which 

has the cardinality 2n and the dimension n (see Fig. 5). Furthermore, we can put 

M = P and 5 = RU {[0,1], [2,3], . . . , [2fc - 2,2fc - 1]} (see Fig. 6). 

2fc - 1 2n - 1 

2 n - 2 

2fc - 1 2n - 1 

2 n - 2 
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P r o b l e m . Let (P, R) be an ordered set with dim(P, R) = n and let (C, S) 

be a linear ordered set (chain) with \P\ = \C\. What is the minimal and maximal 
distance d(R, 5)? 

We recall that for an ordered set (P, R), the Mobius number of (P, R) is given as 
follows: 

n(P) 
»(P,R) = -l+'£(-l)ici(P), 

i=0 
where n(P) is the length of the longest chain of (P, R) and Ci(P) is the cardinality 
of all chains whose length is i. 

The analogue to (6) for the Mobius numbers does not hold. For instance, if (P, R) 
and (M, S) are the ordered sets drawn on Figs. 7 and 8, then d(R, S) = 1 but the 
Mobius numbers of (P,R) and (M,S) are n(P,R) = 0, »(M,S) = l-n. 

2 3 

Fig. 8 

References 

[1] D. Kelly, W. T Trotter: Dimension Theory for Ordered Sets. Ordered Sets, Proc. NATO 
Adv. Study Inst., Banf, Aug. 28-Sept. 12, 1981. Dordrecht, 1982, pp. 171-211. 

[2] L. Budach, B. Graw, Ch. Meinel, S. Waack: Algebraic and Topological Properties of 
Finite Partially Ordered Sets. Teubner, Leipzig, 1988. 

[3] B. Zelinka: Distances between partially ordered sets. Math. Bohem. 118 (1993), 167-170. 

Authors' addresses: Alfonz Haviar, Pavel Klenovčan, Department of Mathemat-
ics, Matej Bel University, Tajovského 40, 975 49 Banská Bystrica, Slovakia, e-mail: 
klenovcaðbb.sanet.sk, haviarðfhpv.umb.sk. 

131 


		webmaster@dml.cz
	2020-07-01T12:39:56+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




