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Summary. We show that a central linear mapping of a projectively embedded Euclidean 
n-space onto a projectively embedded Euclidean m-space is decomposable into a central 
projection followed by a similarity if, and only if, the least singular value of a certain 
matrix has multiplicity ^ 2m — n 4- 1. This matrix is arising, by a simple manipulation, 
from a matrix describing the given mapping in terms of homogeneous Cartesian coordinates. 
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1. INTRODUCTION 

A linear mapping between projectively embedded Euclidean spaces is called cen­

tral, if its exceptional subspace is not at infinity. Such a linear mapping is in general 

not decomposable into a central projection followed by a similarity. Necessary and 

sufficient conditions for the existence of such a decomposition have been given in [4] 

for arbitrary finite dimensions; cf. also [1], [2], [3]. However, those results do not seem 

to be immediately applicable on a central axonometry, i.e., a central linear mapping 

given via an axonometric figure. On the other hand, in a series of recent papers [5], 

[6], [7] this problem of decomposition has been discussed for central axonometries of 

the Euclidean 3-space onto the Euclidean plane from an elementary point of view1. 

Loosely speaking, the concept of central axonometry is a geometric equivalent to 

the algebraic concept of a coordinate matrix for a linear mapping of the underly­

ing vector spaces. However, from the results in [2] and [4] it is also not immediate 

whether or not a given matrix describes (in terms of homogeneous Cartesian coordi­

nates) a mapping that permits the above-mentioned factorization. The aim of this 

communication is to give a criterion for this. 

1 A lot of further references can be found in the quoted papers. 
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Let I, J be finite-dimensional Euclidean vector spaces. Given a linear mapping / : 

I -+ J denote by / a d : J -» I its adjoint mapping. Then / a d o / is self-adjoint with 

eigenvalues 

Vi ^ •.• • >. Vr > Vr+i = • • • = Vn = 0. 

Here r equals the rank of / and n = dim I. Moreover, each eigenvalue is written down 

repeatedly according to its multiplicity2. The positive real numbers ^/vi,..., , / S ; 

are frequently called the singular values of / . The multiplicity of a singular value 

of / is defined via the multiplicity of the corresponding eigenvalue of / a d of. It 

is immediate from the singular value decomposition that / and / a d share the same 

singular values (counted with their multiplicities). See, e.g., [8]. 

These results hold true, mutatis mutandis, when replacing / by any real matrix, 

say A, and / a d by the transpose matrix AT. 

2. DECOMPOSITIONS 

When discussing central linear mappings it will be convenient to consider Eu­

clidean spaces embedded in projective spaces. Thus let V be an ( n + l)-dimensional 

real vector space (3 <. n < oo) and I one of its hyperplanes. Assume, furthermore, 

that I is equipped with a positive definite inner product (•) so that I is a Euclidean 

vector space. In the projective space on V, denoted by V(V), we consider the pro­

jective hyperplane V(l) as the hyperplane at infinity. The absolute polarity in V(T) 

is determined by the inner product on I. Hence V(V) \V(I) is a projectively embed­

ded Euclidean space3. Similarly, let V(W) \V(J) be an m-dimensional projectively 

embedded Euclidean space (2 <_ m < n < oo). Given a linear mapping 

(1) / : V - » - W 

of vector spaces then the associate (projective) linear mapping 

(2) <p: V(V)\V(kerf) ->• V(W), Rx K» R ( / ( X ) ) 

has •p(kerZ) as its exceptional subspace. In the sequel we shall assume that 

(3) k e r / £ I and f(V) = W , 

* For a self-adjoint mapping the algebraic and geometric multiplicities of an eigenvalue are 
identical. Hence we may unambiguously use the term 'multiplicity'. 

1 We do not endow this space with a unit segment. 



or, in other words, that ip is central and surjective4. Obviously, (3) is equivalent to 

(4) / ( I ) = W . 

We recall some results [2], [4]: If T is any complementary subspace of k e r / in V, 

then denote by 

(5) ipT:V(V)\V(keif)-+V(T) 

the projection with the exceptional subspace V(kei f) onto V(T). The restricted 

mapping 

(6) <pT: = <fi\V(T):V(T)->V(W) 

is a collineation and 

(7) <P = <PT°1pT\ 

every decomposition of ip into a projection and a collineation is of this form. In the 

Euclidean vector space I we have the distinguished subspace 

(8) E : = / - ! ( J ) n I . 

Write 

(9) / E : E ^ J , x ^ / ( x ) ; 

this / E is well-defined and surjective, since E C / _ 1 ( J ) and k e r / (2 E. The subspace 

T can be chosen with y?T being a similarity if, and only if, the least singular value 

of / E has multiplicity5 > 2m - n + 1. 

Next, we assume that V(T) <£. V(l) is orthogonal to V(ker f). This means that 

( T n I ) 1 C k e r / f l l o r ( T f l l ) 1 3 k e r / n I . Hence ipT is an orthogonal central pro­

jection6. It is easily seen from [2] that ip permits a decomposition into an orthogonal 

central projection followed by a similarity if, and only if, all singular values of / E are 

equal. 

4 This assumption of surjectivity is made 'without loss of generality' in most papers on 
this subject. It will, however, be essential several times in this paper. 

5 In [2, Satz 10] this multiplicity is printed incorrectly as 2m — n — 1. 
0 The central projections used in elementary descriptive geometry are trivial examples of 

orthogonal central projections. 
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Finally, we are going to show that the crucial properties of / E can be read off from 

another mapping: Denote by 

(10) p : I - > E 

the orthogonal projection with the kernel E x C I. Then 

( i i ) ( / E o p) o ( / E o P r d = / E o p o p»d o ( / E ) - = / E o ( / E r d , 

since p a d is the natural embedding E -> I. Thus, by (11) and the results stated 

in Section 1, / E and ( / E o p ) d have the same singular values (counted with their 

multiplicities). Hence, by the surjectivity of / E and (11), all singular values of / E 

are equal if, and only if, there exists a real number v > 0 such that 

(12) ( / E o p ) o ( / E o p ) - d = U i d J . 

We shall use this in the next section. 

3 . A MATRIX CHARACTERIZATION 

Introducing homogeneous Cartesian coordinates in V(V) is equivalent to choosing 

a basis { b 0 , . . . , b n } of V such that {hi,..., b n } C I is an orthonormal system. The 

origin is given by Rb0 and the unit points are R(bo + b i ) , . . . , R(b0 + b n ) . In the 

same manner we are introducing homogeneous Cartesian coordinates in V(W) via a 

basis { c 0 , . . . , c m } . 

Theorem 1. Suppose that / : V -> W is inducing a surjective central linear 

mapping tp according to formula (2). Let 

(13) A = 

be the coordinate matrix of f with respect to bases ofV and W that are yielding 

homogeneous Cartesian coordinates. Write 

(14) ai := ( a , i , . . . , a i n ) £ Rn for alii = 0 , . . . , m 

and 

, a i - i ^ a o 
(15) A:= 



Then the following assertions hold true: 

1. if is decomposable into a central projection followed by a similarity if, and only 

if, the least singular value of the matrix A has multiplicity >• 2m — n + 1. 

2. ip is decomposable into an orthogonal central projection followed by a similarity 

if, and only if, there exists a real number v > 0 sucii that 

(16) AAT = d i a g ( « , . . . , « ) . 

P r o o f . We read off from the top row of A that 

a 0 0 z 0 H H a0„xn = 0 

is an equation of /~ X ( J ) ^ I so that ao • a0 ^ 0. Write / : I -> J for the linear 

mapping whose coordinate matrix with respect to { b i , . . . , b „ } and { c i , . . . , c m } 

equals A. A straightforward calculation shows that 

/ ( x ) = / ( x ) for all x e E 

and 

/ ( a 0 i b 1 + --- + a 0 n b n ) = 0, 

i.e., E1- C k e r / . Thus / equals the mapping / E ° P discussed above. Now the proof 

is completed by translating formulae (11) and (12) into the language of matrices. 

a 

We remark that (3) and the linear independence of a i , . . . , a m are equivalent 

conditions. 

In contrast to the results in [5], [6], [7], the </>-image of the origin Rb0 does not 

appear in our characterization. On the other hand, we have 

f(Ex) = R((a0 • a 0 )c 0 + • • • + (a0 • a m ) c m ) . 

In projective terms this 1-dimensional subspace of W gives the principal point of the 

mapping <p. Exactly if the principal point of <p equals the origin Rc0 , then A arises 

from A merely by deleting the top row and the leading column. 
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