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ON TORSION OF A 3-WEB 
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Summary. A 3-web on a smooth 2n-dimensional manifold can be regarded locally as 
a triple of integrable re-distributions which are pairwise complementary, [5]; that is, we 
can work on the tangent bundle only. This approach enables us to describe a 3-web and 
its properties by invariant (1, l)-tensor fields P and B where P is a projector and B = 
id. The canonical Chern connection of a web-manifold can be introduced using this tensor 
fields, [1]. Our aim is to express the torsion tensor T of the Chern connection through the 
Nijenhuis (1,2)-tensor field [P, B], and to verify that [P, B] = 0 is a necessary and sufficient 
conditions for vanishing of the torsion T. 
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All objects under considerations will be supposed to be of the class C°° (smooth). 

1. An (ordered) three-web on a manifold M can be defined as an ordered triple 

W = (Di,D2,D3) of integrable distributions of dimension n such that the tangent 

bundle is a Whitney sum of each couple of them, TM = Di © D2 = D2 © D3 = 

D\ © D3. Obviously, the web manifold has an even dimension 2n. 

It was proved in [1], [5] that an ordered 3-web on a smooth 2n-dimensional manifold 

M2n can be introduced as a couple (P,B) of differentiable (l,l)-tensor fields on M 

satisfying on M the polynomial equations 

(1) P2 - P = 0, B2 -I = 0, 

the identity B = BP + PB, and the integrability conditions 

(2) [P, P] = 0, [B, B](X, Y) = 0 for X, Y € ker (5 - / ) 
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by which the integrability of all the three web distributions is guaranteed. Prom this 

viewpoint, a 3-web is an integrable {P, 5}-structure introduced in [1]. 

Let us denote 

D1=ker(I-P)=imP, D2 = kerP = im (I - P), D3=kei(B-I). 

Then (D\, D2, D3) satisfies the above definition of a 3-web, and three foliations of 

integral submanifolds of our distributions form a 3-web in the classical approach. 

Let use denote by P = I-P the complementary projector. The following equalities 

are obvious: 

(3) PP = PP = 0, PBP = PBP = 0, PB = BP, BP = PB. 

In [5], all linear connections V were found with respect to which the web distributions 

D\, Di, D3 are parallel. This property is expressed by the condition saying that both 

P and B are covariantly constant: 

(4) V F = 0, V B = 0. 

All such connections form a 2n3-parameter family, [5]. Among these distributions 

preserving connections, there exists a unique connection V the torsion tensor of 

which satisfies 

(5) T(PX,PY) = 0, 

that is, homogeneous vectors X S D\x and Y € £>2x are conjugated with respect 

to T; x e M. The covariant derivative of this connection [1] is expressed by tensor 

fields P, B, P defining the web as follows: 

(6) X7XY = PB[PX, BPY] + PB[PX, BPY] + P[PX, PY) + P[PX, PY). 

Its torsion tensor, T(X, Y)=VXY -VyX - [X, Y], is given by the formula 

T(X, Y) = PB([PX, BPY] + [BPX, PY}) + PB([PX, BPY] 

+ [BPX, PY]) + [PX, PY] + [PX, PY] - [X, Y]. 

Using the above notation, let us recall the proof that the formula (6) defines a 

covariant derivation with the properties (4), (5), and that any connection V satisfying 

(4), (5) coincides with V described in (6). 



Let V be defined by (6). The additivity in both arguments follows by the additivity 
of tensor fields and Lie brackets occuring in the formula. We use the identities (1), 
(3) and 

[fX, gY] = fg[X,Y]-Yf-X + Xg-Y 

to obtain 

VxfY 

= PB(f[PX,BPY] + (PXf) • BPY\ + PB(f[PX,BPY] + (PXf) • BPY\ 

+ P(f[PX,PY] + (PXf) • PY\ + P(f[PX,PY] + (PXf) • PY\ 

= fVxY + (PXf) • PY + (PXf) • PY + (PXf) • PY + (PXf) • PY 

= /V XY + Xf-Y, 

VfxY 

= fPB[PX, BPY] - (BPYf) • PBPX + fPB[PX, BPY] - (BPXf) • PBPX 

+ fP[PX, PY] - (PYf) • PPX + fP[PX, PY] - (PYf) • PPX 

= fVxY. 

Further, (5) follows by a direct calculation, and 

VP(X;Y) = Vx(PY) - PVXY 

= PB[PX, BP2Y] + PB[PX, BPPY] + P[PX, PY] + P[PX, PPY] 

- P2B[PX, BPY] - PPB[PX, BPY] - P2[PX, PY] - PP[PX, PY] = 0, 

VB(X; Y) = PB[PX, PY] + PB[PX, PY] + P[PX, PBY] + P[PX, PBY] 

- P[PX, BPY] - P[PX, BPY] - BP[PX, PY] - BP[PX, PY] = 0. 

On the other hand, let V be a connection satisfying (4) and (5). To prove that 
V and V coincide, it suffices to calculuate the formula (6) for couples X, Y of 
homogeneous vector fields belonging to the distribution Dx or D2, and to compare 
it with the identities obtained for V, [1]. 

(a) Let X G Du Y £ D2. Then PY = 0, PX = 0, and T(X,Y) = 0. Using 
0 = (VP)(X;Y) = Vx(PY) - P(V'XY) we obtain 

VxPY = P(VxY)=0, 

that is VxY e D2. In a similar way, VP = 0 yields Vy-X gfl i . By our assumption, 

[X,Y] = VXY - VYX. 
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Since the decomposition of the Lie bracket [X, Y] = P[X, Y] + P[X, Y] corresponding 

to the decomposition of the tangent bundle TM = D\® D2 is uniquely determined 

we can write 

-VYX = P[X,Y]eD\, VXY = P[X,Y]eD2, 

and we obtain 

V x y = P[PX,PY] = P[X,Y] = VXY. 

(b) Suppose X,Y eD\.ln this case PX = PY = 0, BY 6 D2, VXY = BVXBY. 

By (a), VXBY = P[X, BY] e D2. We can calculate 

V x y = BP[X, BY] = PB[X, BY], 

V x y = PB[PX, BPY] = PB[X, BY]. 

(c) Let X, Y e D2. Then 

V x y = BVX(BY) = BP[X,BY] = PB[X,BY], 

VXY = PB[PX,BPY] = PB[X,BY]. 

2. It is well known that vanishing of the torsion tensor of the Chern connection is 

a necessary (but not sufficient) condition for parallelizability of a given 3-web. We 

will show now how this condition can be expressed in terms of the tensor fields P, 

B which determine the web. 

Proposi t ion. Let a 3-web on a manifold M be defined by a couple (P, B) of 

(1, l)-tensor fields satisfying the conditions 

P2 = P, B2 = 1, B = BP + PB, 

[P, P] = 0, [B,B](X, Y) = 0 for X,Y e ker(B - / ) , 

and Jet T denote the torsion of the Chern connection on a given web manifold. Then 

T\D\ xD\ =B[P,B]\D\ xD\, T\D2 X D2 = -B[P,B]\D2 x D2, 

T\D\ xD2 = B[P,B]\D\ xD2 = 0 

and consequently, 

(9) T = 0 *=> [P,B]=0. 
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P r o o f . Since PB + BP = B we have 

[P, B](X, Y) = [PX, BY] + [BX, PY] + B[X, Y] 

- P[X, BY] - B[X, PY] - P[BX, Y] - B[PX, Y], 

and 

B[P, B](X, Y) = B ([PX, BY] + [BX, PK]) 

- BP([X, BY] + [BX, y ] ) - [X, PY] - [PX, Y] + [X, Y]. 

(i) Let both X, Y € D\. A calculation shows that 

B[P,B](X, Y) = PB([X, BY] + [BX, Y]j - [X, Y], 

and 

T(X, Y) = PB([PX, BY] + [BPX, PY]) - [X, Y]. 

We see that on Di, both tensors coincide: 

T\Di xDi =B[P,B]\D1 x D , . 

(ii) Now let X, Y e D2. In this case 

B[P, B](X, Y) = -BP[X, BY] - BP[BX, Y] + [X, Y], 

T(X, Y) = PB[X, BY] + PB[BX, Y] - [X, Y] 

= BP([X,BY] + [BX,Y]j - [X,Y], 

which proves that 

T\D2 x D2 = -B[P,B]\D2 x D2. 

(iii) Finally, let X e Dx and Y e Z?2- Then [P,B](X,Y) = 0, r ( X , K ) = 
T(PX, PY) = 0, and 

T\D1 x D2 = B[P,B]\DX xD2=0. 

Combining the above results we complete the proof of (8); (9) follows since B is an 

isomorphism. • 

Following Russian authors, either the tensor field T, or the tensor field [P, B] can 

be called a torsion of a given 3-web. 
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