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ON SEQUENCES IN VECTOR LATTICES 

JAN JAKUBI'K, Kosice 

(Received January 12, 1994) 

Summary. In this paper we investigate conditions for a system of sequences of elements 
of a vector lattice; analogous conditions for systems of sequences of reals were studied by 
D. E. Peek. 
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D. E. Peek [7] investigated a collection a = {Al — A6} of six conditions for systems 

of sequences of reals. 

In the present paper we deal with a slightly modified collection a' of conditions 

that can be applied for systems of sequences in a vector lattice X. If X = R (the set 

of reals), then a and a' are equivalent. 

A question proposed in [7] concerning the squeezing condition was solved indepen­

dently in [2], [4] and [5]. 

1. PRELIMINARIES 

For vector lattices we use the same notation as in [1]; vector lattices are called 

Riesz spaces in [6] and if-lineals in [8]. 

Let V be a vector lattice and let S(V) be the system of all sequences with elements 

from V. These sequences will be denoted by (xn), (yn), ( z „ ) , . . . , or by X, Y, Z, — 

Let R be the vector lattice of all reals (with the usual operations and with the 

natural linear order). 

If X, Y 6 S(V) and k € R, then the symbols X + Y and kX have the obvious 

meanings. 
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Let A be a subset of S(V) and let = be a binary relation defined on the set S(V). 

The system of all such pairs (A, =) will be denoted by P(V). 

Consider the following conditions for the pair (A, = ) : 

A l . If X e A and k 6 R, then kX 6 A. 

A2. HX,Y,Z,W, X + Z,Y + W e A, X = Y and Z = W, then Y + W = X + Z. 

A3. UX,Y e A, X = Y, Z e S(V) and xn s$ zn sC y„ for each n, then Z e A 

and Z = X. 

A4. If X e A and Y, Z are subsequences of X, then Y, Z e A and Y = Z. 

A5'. lix eV, x ^ 0 and y n = ( - l ) n x for each n, then (J/„) £ A. 

A6. If Jf f! A and X is bounded, then X has two subsequences Y and Z such 

that Y, Z £ A and Y £ Z. 

A pair (A , = ) 6 P(V) will be called regular with respect to V if it satisfies the 

collection of conditions a' = {A1,A2,A3, A4, A5', A6}. 

In [7], the following condition was considered instead of A5' for the case V = R: 

A5. If xn = ( - 1 ) " for each n, then (xn) £ A. 

Put a = {Al — A6}. It is easy to verify that in the case V = R the collections a 

and a' are equivalent (it suffices to apply Al ) . 

If V = R and (A, =) is regular with respect to V, then in [7] the pair (A, =) is 

called a convergence system. 

We denote by A0 the set of all (xn) € S(V) such that (xn) is o-convergent. For 

(xn),(yn) e S(V) we put (xn) = 0 (yn) if (xn),(yn) are o-convergent and have the 

same o-limit. 

It is well-known that for V = R the notions of metric convergence and o-

convergence coincide. Hence the main result of [7] (expressed originally for the 

metric convergence) can be formulated as follows: 

Theorem 1.1. (Cf. [7].) Let V = R and let (A,=) e P(V). Then 

(*) the pair (A, =) is regular with respect to V if and only if (A, =) coincides 

with (A0,=0). 

It seems to be a natural question to ask, for which vector lattices V the condition 

(*) is valid. 

We shall deal with this problem in the following section. 
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2. T H E CONDITION (*) 

The sequence (xn) in R such that xn = n for each n € N will be denoted by N. If 

(xn) e S(V), x e V and xn = x for each n, then we write (x„) = const z. 

L e m m a 2 . 1 . Let 0 < z e 5 (V ) , j / n = m for each n. Then no subsequence of 

(yn) is o-convergent. 

P r o o f . By way of contradiction suppose that there exists a subsequence (zn) 

°f (yn) such that (zn) is o-convergent. There is a subsequence (m n) of N such that 

zn = mnx for each n e N. In view of the fact that zn < zn+i for each n we infer 

that 

o- lim zn = \J zn . 

Put un = zn + x for each n. Thus 

o- lim vn= x + \J zn>\l zn . 

Also, since (un) is increasing, 

o- lim vn = \j vn . 

Next, z n < t)n ^ zn+i for each n, whence y vn = \] zn, a contradiction. • 

Lemma 2.2. Let V be a vector lattice satisfying the condition (*). Then V is 

archimedean. 

P r o o f . By way of contradiction, assume that V fails to be archimedean. Then 

there are x,y e V such that 0 < nx < y for each n. Hence the sequence (nx) is 

bounded in V. According to (*), the pair (A0,=0) is regular with respect to V. 

Lemma 2.1 implies that (nx) £ A0. Hence in view of A6 there exists a subsequence 

of (nx) which is o-convergent. This contradicts Lemma 2.1. • 

Let 1 < a e R. In [3] and [4] the sequence (an) was used for constructing examples 

in connection with the properties of systems of sequences in R. 

L e m m a 2 .3 . Let (m( l ,n ) ) and (m(2,n)) be subsequences of N, X = (a"1 '1 ' " ' ) , 

Y = (am<2 '")), h e R, k2 e R, Z = hX + k2Y. Then either 

(i) Z is not bounded, 

or 

(ii) Z o-converges to 0. 
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P r o o f . If fci = fc2 = 0, then (ii) is valid. If Ai 7= 0 and fc2 = 0, then (i) is valid; 

the same holds if fci = 0 and fc2 ^ 0. Suppose that fci and fc2 have the same sign; 

then clearly (i) holds. 

Now without loss of generality we can suppose that fci > 0 and k2 < 0. This 

case was dealt with in the proof of [4], Lemma 1 and it was proved that under the 

assumption mentioned either (i) or (ii) is valid. D 

The elements x and y in V will be called disjoint if 0 < x, 0 < y and x A y = 0. 

Prom the well-known properties of disjoint elements we obtain: 

Let x and y be disjoint and let 0 < fc. € R, 0 < fej € R, r4, a< € R (»' = 1,2), Then 

(1) kix and k2y are disjoint; 

(2) {x - y) V 0 = x and {x - y) A 0 = -y; 

(3) r\x + r2y ^ si:r + s2y if and only if r\ < r2 and s\ ^ s2. 

L e m m a 2.4. Assume that V is archimedean. Let x and y be disjoint elements 

in V. Let k\,k2 € R. Let m ( l , n ) and m(2,n) be subsequences of N and 

Xx = fci(am(1'n)a: - am^y), Yx = fc2(a
m<2'n»a; - am<2'n>j/) , 

Z=X+Y. 

Then either Z is not bounded, or Z o-converges to 0. 

P r o o f . Denote 

2 , = ((fc1a
m(1'"» + fc2am(2'"))^) , 

Z" = (-(fcia^1 ' " ) + fc2a
m<2'n>)j/) . 

We have 
Z = Z' + Z" . 

Thus we infer from (1) and (2) that Z is bounded if and only if both Z' and Z" are 

bounded. 

Next, since V is archimedean, the sequence Z' is bounded if and only if the se­

quence of reals 

(4) (fcia"1*1-") + fc2a
m<2'n>) 

is bounded; similarly, Z" is bounded if and only if the sequence (4) is bounded. 

Thus if (4) fails to be bounded, then Z fails to be bounded as well. 

If (4) is bounded, then according to Lemma 2.3 the sequence (4) o-converges to 0 

and hence both Z' and Z" o-converge to 0. Therefore Z o-converges to 0, too. D 
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For (xn),(yn) in S(V) we put (xn) < (yn) if xn < yn for each n. Then ^ is a 

partial order on S(V). 

L e m m a 2.5. Let x and y be disjoint elements ofV. Let Q be the set of all 

Xi G S(V) that can be expressed as 

X1 = k1(a
mil'n)x-am<>1^y) , 

where 0 ^ fci G K and (m(l,n)) is a subsequence of N. Then any two distinct 

elements of Q are incomparable. 

P r o o f . Let X\ be as above and let X2 be any element of Q, 

X2 = fc2(a
m(2'n>z - am< 2 ' "M . 

Assume that Xi ^ X2. Then in view of (3), for each n we have fciam(1,n> ^ fc2a
m<2'n) 

and, at the same time, -fcia"1 '1 '") ^ — fc2a
m'2'n). Hence fciam'1,n) = fc2a

m<2'n' for 

each n and thus Xi = X2. 

Let A0 be as above. Put A = A0 U Q. We define a binary relation = on S(V) as 

follows: for X,Y e S(V) we put X = Y if some of the following conditions is valid: 

(i) both X and Y belong to A0; 

(ii) both X and Y belong to Q\ 

(iii) one element of the set {X,Y} belongs to Q and the other oconverges to 0. 

D 

L e m m a 2.6. Assume that V is archimedean and suppose that x and y are 

disjoint elements in V. Let (A,=) be as above. The pair (A,=) is regular with 

respect to V. 

P r o o f . We have to verify that the conditions from a' are satisfied. The validity 

of A l , A4 and A6 is obvious. To prove that A2 is valid we apply 2.4 and then proceed 

analogously as in the proof of Lemma 2, [4]. Next, A3 is a consequence of 2.5, and 

A5' is implied by the definition of the set A above. D 

L e m m a 2 .7. Let V be a vector lattice satisfying the condition (*). Then V is 

linearly ordered. 

P r o o f . According to 2.2, V is archimedean. By way of contradiction, assume 

that V is not linearly ordered. Then there exist disjoint elements x and y in V. 

Let us construct A and = as above. In view of 2.6, the pair (A, =) is regular with 

respect to V. Hence according to (*), (A,=) coincides with (A0,=0). Since Q ^ 0, 

we obtain A ^ A0, which is a contradiction. D 
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T h e o r e m 2.8. Let V be a nonzero vector lattice. Then the following conditions 

are equivalent: 

(i) V is isomorphic to R; 

(ii) V satisfies the condition (*). 

P r o o f . In view of 1.1, (i) => (ii). Let (ii) be valid. Then according to 2.2 and 

2.7, V is archimedean and linearly ordered. Hence V is isomorphic to R. D 

3. CONCLUDING REMARKS 

In the proof of 2.2 we have shown that if V is non-archimedean, then the pair 

(A0, =0) fails to be regular with respect to V. 

This can be slightly sharpened as follows. 

3 .1 . Propos i t ion . Let V be a non-archimedean vector lattice. Then no element 

(A, =) of P(V) is regular with respect to V. 

P r o o f . By way of contradiction, assume that (A, =) € P(V) and that (A, =) 

is regular with respect to V. There exist x,y e V such that 0 < nx < y for each 

n. Consider {^y}- By reasoning analogous to that in the proof of Theorem 6 of [7] 

we obtain that (±y) e A, (-^y) e A and (-^y) = (^y) (cf. also Theorem 5, [7]). 

For each n e N, the relation -±y < (-l)nx < ±y is valid. Thus according to A3, 

((-l)nx) € A. This contradicts A5'. D 

3.2. Corollary. Let V be a linearly ordered vector lattice. If (A,=) G P(V) 

and (A, =) is regular, then (A, =) coincides with (A0, = 0 ) . 

P r o o f . If V is non-archimedean, then the assertion is (trivially) true in view of 

3.1. If V is archimedean, then V is isomorphic to R and so it suffices to apply 1.1. 

D 

3.3 . Corollary. Let V be an archimedean vector lattice. Then the following 

conditions are equivalent: 

(i) V is linearly ordered. 

(ii) If(A,=) e P(V) and (A,=) is regular, then (A,=) coincides with (A0,=0). 

P r o o f . In view of 3.2, (i) => (ii). Let (ii) be valid. By way of contradiction, 

suppose that (i) does not hold. Then according to 2.6 and under the notation applied 

there (A, =) is regular and clearly (A, =) ^ ( A 0 , = 0 ) . Hence (ii) does not hold, a 

contradiction. D 
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Taking into account what was said at the beginning of this section we can ask 

whether for each archimedean vector lattice V the pair (A0,=0) is regular with 

respect to V. The following example shows that the answer is negative. 

3.4. E x a m p l e . Let V be the vector lattice of all continuous real functions 

defined on R (the operations and the partial order are defined componentwise). For 

each n € N we define / „ € V as follows: 

/„( t ) = 0 for each t <. 0; 

fn(t) = 1 for each t Js - ; 
n 

/ „ is linear on the closed interval 0, - . 

Then / „ < /„+i for each n e N, hence each subsequence of (/„) is increasing. (/„) 

is a bounded sequence in V. If (/m(„j) is a subsequence of (/„), then V/m(n) does 

not exist in V, hence (/m(„)) fails to be o-convergent. Thus the condition A6 is not 

satisfied for (A0, = 0 ) . Therefore (A0, = 0 ) fails to be regular with respect to V. 

The following question remains open: 

Which vector lattices V have the property that (A0,=0) is regular with respect 

to V? 
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