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Summary. A subtraction semigroup is a semigroup (A,., - ) with a further operation "—" 
added, called subtraction and satisfying certain axioms. The paper concerns a problem by 
B. M. Schein concerning the structure of multiplication in a subtraction semigroup. 
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This paper concerns a problem by B. M. Schein [2] concerning subtraction semi­

groups. 

A subtraction algebra is a grupoid (A,—) where — is a binary operation called 

subtraction; this subtraction satisfies the following axioms (for any elements x, y, z): 

x - (y-x) = x; 

x-(x-y) = y-(y-x); 

(x - y) - z = (x - z) - y. 

If to a subtraction algebra a semigroup multiplication is added satisfying the dis-

tributivity laws 

x(y — z) = xy — xz, 

(y - z)x = yx- zx 

then the resulting algebra (A,., —) is called a subtraction semigroup. 

In [2] B.M. Schein proposed the problem to characterize semigroups which can 

become subtraction semigroups by adding a suitable subtraction. Here we will solve 

this problem for subtraction algebras of a special type, the so-called atomic subtrac­

tion algebras. 

445 



In [2] it is proved that in every subtraction algebra (A, - ) there exists an element 

o such that x — x = o for each x £ A. In a subtraction semigroup this element o 

is the zero element for multiplication. If we denote x A y = x — (x — y), then the 

operation A is idempotent and commutative; therefore (A, A) is a semilattice. The 

ordering ^ in this semilattice is determined so that x ^ y if and only i{ x — y = o. 

This semilattice is a semi-Boolean algebra in the sense of [1], i.e. a semilattice with 

zero o in which every interval [o, a] is a Boolean algebra. 

A subtraction algebra (A, —) or a subtraction semigroup (A, •, —) is called atomic, 

if for any x, y we have x — x = o and x — y = x for x ^ y. The ordering ^ in 

an atomic subtraction algebra is such that o ^ x for each x and any two elements 

x, y such that x^y,x^o, y^o are incomparable. Therefore the corresponding 

semilattice consists of the least element o and of atoms. 

Theorem. Let (S,.) be a semigroup with zero o. The semigroup (S,.) can be­

come an atomic subtraction semigroup by adding a suitable subtraction if and only 

if the following two conditions are satisfied: 

(i) ax = ay implies x = y or ax = ay = o; 

(ii) xa = ya implies x = y or xa = ya = o. 

P r o o f . Let (i) and (ii) be satisfied. We define the operation " - " so that 

x — x = o for each x £ S and x — y = x for any x £ S, y £ S, x ^ y. Now let x, y, z 

be elements of S. If y = z, then y — z = o, x(y — z) = xo = o, xy — xz = xy — xy ~ o, 

(y — z)x = ox = o, yx — zx = yx - yx = o and the distributivity laws hold. If y jt z, 

then y — z = y, x(y — z) = xy, (y - z)x = yx. As (i) holds, we have either xy ^ xz 

and xy — xz = xy, or xy = xz = o and xy — xz = o = xy. As (ii) holds, we have 

either yx ^ zx and yx — zx = yx, or yx = zx = o and yx - zx = o = yx. Therefore 

again the distributive laws hold and (S,., —) is a subtractive semigroup. 

Now suppose that (i) does not hold. Then there exist elements a, x, y of S such 

that x ^ y and ax = ay ^ o. At least one of the elements x, y is different from 

o; without loss of generality suppose that x ^ o. We have x — y = x ^ o and 

ax - ay = ax - ax = o ^ ax. Therefore a(x — y) ^ ax - ay and we have not a 

subtractive semigroup. In the case when (ii) does not hold we proceed analogously. 

D 

Let S be a family of pairwise disjoint semigroups. We shall define the semigroup 

S (5 ) . The set of elements of S(5) is {o} U \J S, where o is an element contained in 
ses 

no semigroup from S. Now let x, y be two elements of S (5) . If a semigroup S 6 S 
contains both x and y, then the product xy in £(S) is equal to the product xy in S; 
otherwise xy = o. 
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Corollary. Let S be a family of pairwise disjoint cancellative semigroups. Then 
S(5) can become a subtraction semigroup by adding a suitabJe subtraction. 

We do not exclude the case when 5 contains only one element; therefore the asser­
tion is true for every cancellative semigroup with outer zero added and in particular 
for every group with outer zero added. (An outer zero is the zero element which is 
a product of no two non-zero elements.) 

References 

[1] Abbott J. C: Sets, lattices and Boolean algebras. AUyn and Bacon, Boston, 1969. 
[2] Schein B. M.: Difference semigroups. Communications in Algebra 20 (1992), 2153-2169. 

Author's address: Bohdan Zelinka, katedra diskretni matematiky a statistiky Technicke 
university, Voronezska 13, 460 01 Liberec. 

447 


		webmaster@dml.cz
	2020-07-01T12:31:37+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




