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Summary. The domination number 7(G) of a graph G and two its variants are considered, 
namely the signed domination number 7s (G) and the minus domination number 7 " (G). 
These numerical invariants are compared for graphs in which the degrees of vertices do not 
exceed 3. 
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1. INTRODUCTION 

In this paper we will consider finite undirected graphs without loops and multi­

ple edges. We will study three numerical invariants of graphs which concern the 

domination. 

If a; is a vertex of a graph G, then N[x] denotes the closed neighbourhood of x, 

i.e. the set consisting of x and of all vertices which are adjacent to x in G. If / is a 

function which maps the vertex set V(G) of G into a set of numbers and S C V(G), 

then f(S) = £ / ( * ) . 
xes 

The concept of the domination number of a graph is well-known. A subset D of 
V(G) is called dominating in G, if for each vertex x G V(G) — D there exists a vertex 

y £ D adjacent to x. The minimum number of vertices of a dominating set in G is 

called the domination number of G and denoted by 7(G). 

There is still another definition of 7(G). A function / : V(G) -> {0,1} is called a 

domination function, if f(N[x]) ^ 1 for each x € V(G). The minimum of f(V(G)) 

taken over all domination functions / of G is called the domination number 7(G) 

o fG. 

Both definitions are equivalent. If a dominating set D is given, we may take the 

function / such that f(x) = 1 for x e D and f(x) = 0 for x e V(G) - D; then / 
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is a dominating function and f(V(G)) = \D\- On the other hand, if a dominating 

function / is given, we may put D = {x e V(G) \ f(x) = 1}; then D is a dominating 

set and \D\ = f(V(G)). 

In [1] the signed domination number and in [2] the minus domination number were 

introduced. A function / : V(G) -» {-1,1} (or / : V(G) -> {-1,0,1}) is called a 

signed (or minus, respectively) dominating function of G, if f(N[x\) ^ 1 for each 

x ' V(G). The minimum of f(V(G)) taken over all signed (or minus) dominating 

functions / of G is called the signed (or minus, respectively) domination number of 

G. The signed domination number of G is denoted by 7S(G), the minus domination 

number of G by 7~(G). 

The dominating function and the signed dominating function are particular cases 

of the minus dominating function. Hence 7~(G) ^ 7(G), 7~(G) ^ 7s(G) for every 

graph G. 

By G2 we denote the graph whose vertex set is V(G) and in which two vertices 

are adjacent if and only if their distance in G is 1 or 2. The independence number 

a(G) is the maximum cardinality of an independent set in G, i.e. of a set of vertices 

which are pairwise non-adjacent. The symbol 6(G) (or A(G)) denotes the minimum 

(or maximum, respectively) degree of a vertex in G. In what follows we will study 

graphs G with A(G) ^ 3. 

2. MINUS DOMINATION NUMBER 

We prove two theorems comparing 7~(G) with 7(G). 

T h e o r e m 1. Let G be a graph, let A(G) = 2. Then 

7 ~ ( G ) = 7 ( G ) . 

P r o o f . Let / be a minus dominating function of G such that f(V(G)) = 7~(G). 

If f(x) 5̂  —1 for all x " V(G), then / is a dominating function of G. Therefore 

7 - ( G ) = f(V(G)) > 7(G). Since 7"(G) ^ 7(G) as well, we have 7~(G) = 7(G). 

Thus we suppose that there exists a vertex u3 ' V(G) with / ( u 3 ) = - 1 . Then u3 is 

adjacent to two vertices u2, u4 such that /(U2) = f(u4) = 1; otherwise f(N[u3}) ^ 0 

would hold. The vertex u2 (or u4) must be adjacent to a vertex ux (or u5) such that 

/ ( u i ) = 1 (or / ( u 5 ) = 1, respectively). We will change the values of / in u3 and u4 

to 0. If u 5 is not adjacent to a vertex with the value — 1 or if us = ui or u5 = u2 , 

then the function obtained from / in this way is also a minus dominating function of 

G. Thus suppose that u5 is adjacent to a vertex u6 with the value - 1 (even after the 

change). Then u6 is adjacent to u7 and u7 is adjacent to u8; both u7 and u8 have the 
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value 1. We consider us instead of u5 and proceed in the same way. After a finite 

number of steps we obtain a vertex «3fc+2 for a positive integer k such that either 

u3k+2 = ui or u3k+2 = u2 or u3k+2 has degree 1 or u3k+2 is adjacent to a vertex 

«3fe+3 with the value 0 or 1. Then we may change the values of / for all ui with 

i = 0 (mod 3) from - 1 to 0 and for all ui with i = 1 (mod 3), i ^ 4 from 1 to 0. We 

obtain a new minus dominating function / i of G such that fi(V(G)) = f(V(G)) and 

/ i assigns the value —1 to less vertices than / does. If / i assigns - 1 to at least one 

vertex, we repeat this procedure and proceed in this way until we obtain a function 

g such that g(x) # - 1 for all x G V(G) and g(V(G)) = f(V(G)) = y~(G). The 

function g is a dominating function of G and 7(G) ^ 7~(G), hence 7~(G) = 7(G). 

D 

T h e o r e m 2. For each positive integer k there exists a connected graph Gk with 

Sk vertices such that A(Gk) = 3, 7"(G) = 2k, 7(G) = [|jfc]. 

P r o o f . First we construct a graph H. We put V(H) = {u0,ui,u2,u3,vi,v2, 

v3,wi,w2}. The edges of H are u0ui, uiu2, u2u3, u3vi, viv2, v2v3, U1W1, ViWi, 

u2w2, v2w2. If we identify the vertices u0, V3, we obtain a graph G\. Now for k ^ 2 

let Hi, • • •,Hk be disjoint copies of H. For i = 1,... ,k — l w e identify v3 in Hi with 

«o in Hi+i and, moreover, v3 in Hk with u0 in Hi. The graph thus obtained will be 

Gk. Now we construct a function f0: V(H) -4 { — 1,0,1} in the following way. We 

put /o(u0) = /o(«s) = fo(v3) = 0, F0(m) = / 0 (u 2 ) = /o(i>i) = fo(v2) = 1, fo(wi) = 

fo(w2) = - 1 . Further we define / : V(Gk) -¥ { -1 ,0 ,1} . In Gx we may simply say 

that / = /o. For k ^ 2 each vertex x ~ V(Gk) is contained in Hf for some i and 

corresponds uniquely to a vertex x0 £ V(H); we may put f(x) = f0(x0). We have 

f(V(G)) = 2k and thus 7~(Gfe) ^ 2k. Now for i = 1 , . . . ,k denote by H[ the graph 

obtained from Ht by deleting the vertex corresponding to u0. The graphs H[,...,H'k 

are pairwise vertex-disjoint. Suppose that y~(Gk) ^ 2k - 1 and let g be the minus 
k 

dominating function such that g(V(Gk)) = f~(Gk). Then f~(Gk) = E 9(V(H[)) 
i=i 

and there exists i such that g(V(H[)) ^ 1. If no vertex in H[ is labelled by - 1 in 

g, then at most one is labelled by 1 and all others by 0 and evidently g(N[x]) ^ 0 

for some x 6 V(H[), which is a contradiction. If exactly one vertex in H[ is labelled 

by —1, then two vertices adjacent to it are labelled by 1 in order that its closed 

neighbourhood might have the sum of values of g at least 1. As g(V(H[)) < 1, all 

other vertices must be labelled by 0 and again g(N[x]) ^ 0 for some x ~ V(H[), 

which is a contradiction. If there are at least two vertices labelled by - 1 in V(H[), 

then their closed neighbourhoods must be pairwise disjoint (as A(G) = 3 no vertex 

may be adjacent to two vertices labelled by - 1 ) and each of those neighbourhoods 
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must contain at least two vertices labelled by 1. This implies that g(V(H'{)) ^ 2, 

which is again a contradiction. We have proved that j~(Gk) = 2k. 

Evidently 7 ( d ) = 3 = |"§ • l ] . Suppose that i(Gk) < fffc] for some k > 2. 

If k is even, then y(Gk) <. |fc — 1. Let D be a dominating set in Gk with 7(Gk) 

vertices. Consider the (pairwise disjoint) subgraphs H[ VH2,H'z\JHi,..., H'k_1 L)Hk 

of Gk. Then at least one of these graphs contains less than 5 vertices of D; without 

loss of generality let it be H[ U H2 and let D0 = D n V(H[ U H2). Only the 

vertex corresponding to ux in Hi and the vertex corresponding to v3 in H2 may be 

dominated by a vertex of D - D0. Thus D0 is a subset of V(H[ U H2) such that 

I Do I <. 4 and each vertex of V(H[ U H2) different from m in H[ and u3 in # 2 is 

dominated by a vertex of D0. By exhausting all cases we can show that such a set 

D0 does not exist, which is a contradiction. Hence 7(G*,) > | £ for k even. Now we 

can construct a dominating set D with |L>| = \k in such a way that in each Hi for 

i odd we take the vertices corresponding to u\,u3,v2 and in each Hi for i even we 

take the vertices corresponding to u2,v\. We have proved that 7(G) = [§&] for k 

even. For k odd the proof is analogous. • 

C o n j e c t u r e . Let G be a regular graph of degree 3. Then 

7 - ( G ) = 7 ( G ) . 

3. SIGNED DOMINATION NUMBER 

Here we will compare 7S(G) with a(G2) and 7(G). 

Theorem 3. Let G be a graph with n vertices, let A(G) ^ 3. Let V0 be the set of 

all vertices ofG of degrees 0 and 1 and of all vertices which are adjacent to vertices 

of degree 1 in G. Let a be the maximum number of vertices of a subset ofV(G) — V0 

which is independent in G2 • Then 

7.(G) = n - 2a. 

P r o o f . Let / be a signed dominating function of G such that f(V(G)) = 

7 s (G) . Let V+ = {x € V(G) | f(x) = 1}, V~ = {x e V(G) | f(x) = - 1 } . 

Each vertex of V~ must be adjacent to at least two vertices of V+; therefore it can 

have degree neither 0 nor 1. A vertex x which is adjacent to a vertex y of degree 

1 cannot be in V~; otherwise f(N[y}) = f(x) + f(y) = f(y) - 1 <. 0. Therefore 

V~ C V(G) - V0. Suppose that two vertices x, y of V~ are adjacent in G2 . Then 
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either they are adjacent in G, or there exists a vertex z adjacent in G with both x 

and y. As A(G) ^ 3, we have f(N[x]) ^ f(x) + f(y) + 2 = 0 in the former case, 

f(N[z]) ^ f(x) + f(y) + 2 = 0 in the latter, which is a contradiction with the fact 

that / is a signed dominating function. Therefore V~ is an independent set in G2. 

We have f(V(G)) = \V+\ - \V~\ = n - 2\V~\. On the other hand, let A be an 

independent set in G2 such that A C V(G) - V0. Let g: V(G) -» {-1 ,1} be such 

that g(x) = - 1 for all x e A and g(x) = 1 for all x e V(G) -A. If x £ A, then 

x £ Vo and x is adjacent to at least two vertices; let y, z be such two vertices. As A 

is independent in G2, the vertices y, z are not in A and g(y) = g(z) = 1. Therefore 

g(N[x]) ^ g(x) + g(y) + g(z) = - 1 + 1 + 1 = 1. If x £ A and x is adjacent to a vertex 

y ' A, then the degree of x is at least 2 and x is adjacent to a vertex z ' A and to no 

vertex of A different from y. Then g(N[x]) ^ g(x) + g(y) + g(z) = l + ( - l ) + l = l . 

The function g is a signed dominating function of G. We have proved that a subset 

M of V(G) is the set of vertices in which some signed dominating function has the 

value —1 if and only if M is a subset of V(G) - Vo which is independent in G2. This 

implies the assertion. • 

C o r o l l a r y 1. Let G be a graph with n vertices, let 6(G) ^ 2, A(G) < 3. Then 

7 s ( G ) = n - 2 a ( G 2 ) . 

T h e o r e m 4. Let G be a graph, let c be the number of its connected components. 

Then 

7 s (G) - 7 (GK2c. 

P r o o f . Each connected component of G is a path or a circuit. Consider a path 

Pm with m vertices; let its vertices be u\,..., um and let its edges be UjU,+i for i = 

1 , . . . , m - 1. Evidently j(Pm) > [§m] . If m = 0 (mod 3) or m = 2 (mod 3), then 

the set D of all ut for i = 2 (mod 3) is a dominating set in Pm with [§m] vertices. If 

m = 1 (mod 3), then D U {um} is such a set. We have i(Pm) = [ | m ] . Now if / is a 

signed dominating function of Pm, we have f(ux) = f(u2) = / ( « m - i ) = / ( " m ) = 1 

and if f(u{) = f(u}) = - l , i ^ j , then \i - j \ ^ 3 (see the proof of Theorem 3). We 

can choose the function / such that / ( « , ) = - 1 if and only if i = 0 (mod 3) and 

i ^ m—2; otherwise / ( « ; ) = 1- The function / is a signed dominating function of Pm. 

Denote V+ = {x ' V(Pm) \ f(x) = 1}, V~ = {x e V(Pm) | f(x) = - 1 } . Evidently 

V~ has the maximum number of vertices among the subsets of V(Pm) which are 

independent in Pm and contain no vertex of degree 1 and no vertex adjacent to a 

vertex of degree 1; we have f(V(Pm)) = m - 2|V~| = f.(Pm). If m = 2 (mod 3), 
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then \V-\ = | ( m - 2) and 7 s ( P m ) = | ( m + 1) + 1, 7 s ( P m ) - l(Pm) = 1. If m = 0 

(mod 3), then \V~\ = \m - 1 and 7 s (P m ) = | m + 2, 7 s(^m) - 7 ( ^ m ) = 2. If 

m = l ( m o d 3 ) , m ^ 4, then \V~\ = | ( m - 1) - 1 and 7 , ( F m ) = | ( m + 2) + 2, 

7 s ( P m ) - 7 ( P m ) = 2. Trivially, for m = 1 we have 7 s ( P i ) = 1, 7 s ( P i ) - 7 ( P i ) = 0. 

Now consider the circuit C m with m vertices. We have 7 ( C m ) = [ | m ] . We choose 

the function / such that f(ut) = - 1 if and only if i = 0 (mod 3); this is evidently 

again a signed dominating function such that f(V(Cm)) = 7 s ( C m ) . If we again 

denote V~ = {x e V(Cm) \ f(x) = - 1 } , then \V~\ = [ | m j . Therefore for m = 0 

(mod 3) we have 7 s ( C m ) = §m, 7 s ( C m ) - 7 ( C m ) = 0. For m = 1 (mod 3) we 

have 7 s ( C m ) = | ( m + 2), 7 s (C m ) - 7 ( C m ) = 0. For m s 2 (mod 3) we have 

7s(Cm) = | ( m + 1) + 1, 7 s ( C m ) = 7(Cm ) = 1. The domination number of a graph 

is the sum of domination numbers of its connected components and the same holds 

also for the signed domination number. This implies the assertion. • 

Corollary 2. Let G be a regular graph of degree 2, let c be the number of its 

connected components. Then 

7 s ( G ) - 7 ( G ) < c . 

T h e o r e m 5. Let G be a regular graph of degree 3, let its number n of vertices 

be divisible by 4, let a(G2) = \n. Then 7 (G) = \n, 7 s (G) = \n, i.e. 

7 s (G) = 2 7 (G) . 

P r o o f . Let A be an independent set in G2 such that | A | = \n. If x G A, y £ A, 

x ^ y, then the distance between x and y in G is at least 3 and thus iV[i]niV[j] = 0. 

As G is 3-regular, \N[x]\ = 4 for each x G V(G). We have I (J N[x]\ = \n • 4 = n 
1 xeA ' 

and thus |J N[x] = V(G). The sets N[x] for x € A form a partition of V(G). This 
x£A 

implies tha t A is a dominating set in G and 7 ( G ) ^ | A | = \n. The domination 

number of a 3-regular graph cannot be less than \n, therefore 7 (G) = \n. By 

Theorem 3 we have 7 s (G) = n - 2a(G2) = \n. • 
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