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Summary. The aim of this paper is to generalize several basic results from transversal 
theory, primarily the theorem of Edmonds and Fulkerson. 
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1. INTRODUCTION 

There are two fundamental results concerning both transversals and matroids. The 
first was proved by Rado [14], who established a necessary and sufficient condition 
for a finite family of sets to possess a transversal which is independent in a given 
matroid. Perfect [13] extended this theorem to partial transversals. The second 
result, proved by Edmonds and Fulkerson [2] (and independently also by Mirsky 
and Perfect [12]), says that the partial transversals of a finite family of sets form a 
matroid. 

There are plenty of generalizations of these two results. A comprehensive survey of 
this field is in [11], [12] and [16], for later results see e. g. [6], [7], [17]. In this paper we 
introduce ^-polytransversals, which are in fact characteristic vectors of some special 
(matroid relative) systems of representatives. We show that ^-polytransversals of a 
finite family of sets form an integral polymatroid. Using this fact we can extend the 
Rado-Perfect theorem and also the result of Ford and Fulkerson [3] about common 
transversals of two families of sets. Our results generalize the classical theorems 
known for transversals and also some recent results of [7] and [6]. 

1 This research was partially supported by Grant of Slovak Academy of Sciences No. 88 
and by EC Cooperation action IC 1000 "Algorithms for Future Technologies" 
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2. PRELIMINARIES 

We expect the reader to be familiar with the theory of matroids. All terminology 
related to matroids and polymatroids is essentially the same as that of Welsh [16]. 

By Z+ (R+) we denote the set of nonnegative integral (real) numbers and the 
symbol Z+ (R+) denotes the space of integer (real) valued nonnegative vectors with 
coordinates indexed by a finite set S. For each u G R+ and s € S denote the sth 
coordinate of u by u(s). For u, v G R+ we write u < v iff u(s) ^ v(s) for any 
s € S. For u G R+ and X C S define u(X) = £) u(s), and call the quantity 

\u\ = u(S) = J2 u(s) the modulus |u| of u. 

A polymatroid P on S is a pair (S, Q) where S, are the ground set, is a nonempty 
finite set an g, the ground set rank function, is a function #: 2 5 ->- R+, such that 
Q is nondecreasing (i.e., ,0(K) ^ Q(Y) for any -K C y C S), submodular (i.e., 
2(X) + fl(y) ^ £(X U y ) + £(X n Y) for any X, y C S) and $(0) = 0. The 
vectors u G R+ such that u(X) < Q(X) for all X C S are the independent vectors of 
P. For each vector a G R+, the vector rank r(a) of a is given by 

(1) r(a) = mm(a(X) + 0 ( S U ) ) 

or equivaJently, r(a) = max(|u|; u ^ a, u is independent in P). 
A polymatroid P = (S, Q) is integral if Q is integral. Moreover, if £({8}) = 0, 1 

for any s G S then P is a polymatroid of a matroid on S with rank function Q. The 
following theorem is one of the basic results of matroid theory (see [1], [10]). 

Theorem 1. Let Pi = (S, Qi) and P2 = (S, £2) be two polymatroids on S and 
let k G R+. Then there exists a vector u of R+ independent in both Pi and P2 and 
with modulus at least k iff for any X C S, 

Qi(X) + Q2(S\X)>k. 

Furthermore, if Pi and P2 are both integral we may insist that the independent 
vector u be integer valued. 

Throughout this paper S and T denote finite sets, stf denotes the family (At: 
t G T) of subsets of S and Jt denotes the family (M8: s G S) of matroids on T. For 
any J C T and 5 G S, denote 

i4(*,J) = { t € J j s G A J (CT). 

A family (xt: t £ J) (J C T) of elements of S is called a partial system of 
representatives (in abbreviation partial SR) of ^ if xt G -4t for any t G J. |J| 
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(\T \ J\) is called the length (defect) of the partial SR (xt: t € J) of s/. A partial SR 
(xt: t G J) of s/ will be called a partial Jt -system of representatives (partial Ji-SR) 
of si if the set {t e J: xt = s} is independent in M8 for any s E S. 

If (xt: t G J) is a partial ^#-SR of ^ , then the vector u G Z+ satisfying u(s) = 
\{t G J : Xt = s}\ for any 5 G 5 is called the partial JH-polytransversal of ^ . We 
will call |J | (|T \ J\) the length (defect) of the partial ^-polytransversaJ u. Clearly 

£ "00 = l-II-
s€5 

As usual, the partial SR, partial ^ - S R and partial ^-polytransversal of si with 
defect 0 are called the system of representatives, ^-system of representatives and 
M'-polytransversal of si, respectively. 

If Jt is a family of uniform matroids of rank 1 then the partial */#-polytransversaIs 
of si are the characteristic vectors of the classical partial transversals of si. We dealt 
with _^-SR also in [7] and proved the following variant of Hairs theorem [4] for JK-
SR. 

Lemma 1. Let si = (At: t G T) be a finite family of subsets of a finite set S and 
let JK bea family (Ms: s G S) of matroids on T with rank functions gS) respectively. 
Then the maximal length of a partial ^-system of representatives of si (thus also 
the maximal length of a partial JK-polytransversal of si) is equal to 

™(T,e,(A{s,J)) + \T\j\). mш 
JCT . 

~ ч s Є S 

It is straightforward to check the following lemma (see [9]). 

Lemma 2. Let M' be a matroid on a finite set T with rank function Q' and let 
SB = (Ba: s G S) be a finite family of subsets ofT. Then the function Q: 2S -» R+ 
satisfying 

(2) Q(X) = Q'(U{B,;S€X}) 

for any X C S is the ground set rank function of an integral polymatroid P on S. 
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3. PROPERTIES OF ^-POLYTRANSVERSALS 

Primarily we can extend the theorem of Edmonds and Fulkerson [2] to M-
polytransversals. 

Theorem 2. Let &/ = (At: t G T) be a finite family of subsets of a finite set S and 
let JK bea family (M8: s G S) ofmatroids on T with rank functions gs, respectively 
Then the partial JZ-polytransversals of si are the integer valued independent vectors 
of the integral polymatroid P = (S, g) such that for any X C S, 

(3) Q(X) = min ( £ Q. (A(s, J)) + \T\ J\). 

Proof . Let g be the function defined by (3). Then, by Lemma 1, g(X) denotes 
the maximal length of a partial ^-polytransversal of the family srfx = (AtnX: 
teT) of subsets of X. 

Take the family SS = (Bs: s G S) of subsets of T such that Bs = A(syT) for any 
s E S. Let M's be the restriction of M8 to A(s,T) (s G S) and M' the union of all 
M'81 s G S. Let g' be the rank of M'. 

It is easy to check that there exists a one-to-one correspondence between the Jt-
SR of #/x and the subsets of U{i?s; s € X} which are independent in M', Then, 
by Lemmas 1 and 2, (2) and (3) determine the same function, i.e. P = (S, g) is an 
integral polymatroid and any ^-polytransversal of &/ is independent in P. 

On the other hand, let u G 1% be independent in P, i.e. u(X) ^ g(X) for any 
X C S. Denote by M" the truncation of M8 at u(s), i.e. the rank g" of M" satisfies 

tf (J) = mm{ga(J), u(s)} (seS.JC T). 

Denote by JKU the family of matroids (M": s G S) on T. We assert that 

(4) u(5) < m i n ( X > ? ( A ( 5 , J)) + | T \ 7 | ) . 
~ ^ s € S ' 

Indeed, if this is not the case, take K C T such that 

u(5) > £ t f (>(•,*)) + |T\ AT| = £ (mm{e.(A(S,iO),u(S)}) + m*1, 
*€S ses 

and let y = {5€ S;^(A(s\ K)) ^ u(s)}. Then 

. u(S) > Y, Q* (Ms, K)) + u(S \ Y) + \T \ K\ > u(S \ Y) + g(Y). 
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Therefore u(Y) > g(Y) - a contradiction. Thus (4) holds. 
Let v G Z+ be a partial ^u-polytransversaJ of si with the maximal length. Then, 

by Lemma 1 and (4), u(5) ^ v(5). But, by definition of Mu , u(s) ^ v(s) for any 
5 € 5. Thus u = v and u is a partial ^u-polytransversal (and also a partial Ji-
polytransversal) of si. Thus the partial ^-polytransversals of si are the integer 
valued independent vectors of the integral polymatroid P = (S, g), which concludes 
the proof. D 

The polymatroid P = (5, g) from Theorem 2 will be called the polymatroid of 
partial M-polytransversals of si. 

Theorem 2 has interesting consequences. Primarily, we can extend the theorems 
of Rado and Perfect. 

Corollary 1. Let si = (At: t G T) he a finite family of subsets of a finite set 
S and let J% be a family (M8: s G S) of matroids on T with rank functions g8, 
respectively. Let Pi = (5, g\) be an integral polymatroid on S with vector rank r\ 
and d G Z+, d ^ \T\. Then si has a partial JK-polytransversal of si with defect d 
which is independent in Pi if and only if for all J CT, 

ri(Q9(A(*,J)):seS)2\J\-d 

(note that (gs(A(sJ J)): s G S) denotes a vector in 2%.). 

Proof . Let P = (5, g) be the (integral) polymatroid of partial ^-polytrans­
versals of V . Then Theorems 1 and 2 imply that si has the required property if 
and only if 

\T\-d^mm(e(X) + Q1(S\X)) 

= ^sndn(y£iQ,(A(s,J)) + \T\J\ + Q1(S\X)). 

Thus, by (1), 

\T\-d^xmn(r1(et(A(s,J)):s€S) + \T\J\), 

concluding the proof. D 

Ford and Fulkerson's theorem [3] gives a condition for two families of sets to have 
a common transversal. We extend this result. 

Corollary 2. Forj = 1, 2, let s/W = (A[j): t G TO)) be a Bnite family of subsets 
of a finite set S and let JK^) he a family (Afij): s G S) of matroids on TO) with 
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rank functions gij), respectively. Then there exists u e Zf, |u| ^ k (k € I+), such 
that u is a partial JKU)-polytransversal of s&U) for both j = 1, 2, if and only if for 
any J C T*1), tf C T&), 

J2(^n{e^(A^(s,J)),g^(A^(s,K))}) 
*єs 

^ | J | + |AГ| - |Г«-)| - |ГÍ->| + *. 

Proof, follows immediately from Theorems 1 and 2. • 

^-polytransversals and ^ - S R generalize several known notions from transversal 
theory.. For instance, if M is a system of uniform matroids of rank k then we 
get in fact the fc-transversals from [15] and [16]. A little more complicated "fc-
transversals"were introduced in [6], but they can be also described by a special class 
of ^-polytransversals. In [7] we dealt with another generalization of transversals, 
the so called "^-transversals". Note that from Theorem 2 some of the results from 
[7] can be obtained, too. 

As pointed out in [9] (see also [5], [8], [10]), any integral polymatroid on 5 can 
be represented by the construction of Lemma 2. Then it follows from the proof of 
Theorem 2 that any integral polymatroid on S can be represented as a polymatroid 
of ^-polytransversals of a family of sets &/. This contrasts with the known fact 
that transversal matroids from a proper subclass of matroids. 
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