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AN ALGEBRA OF QUASIORDERED LOGIC 

IVAN CHAJDA, Olomouc 

(Received February 6, 1992) 

By g-lattice (see [1]) we mean an algebra (.A; V, A) satisfying the following identi­

ties: 

associativity: a\/ (b\/ c) = (a\/ b)V c, a A (6 A c) = (a A 6) A c, 
commutativity: aV b = bV a, a A 6 = 6 A o, 
weak absorption: a V (a A b) = a V a, a A (a V 6) = a A a, 
weak idempotence: a V (b V 6) = a V 6, a A (6 A 6) = a A 6, 
equalization: aV a = aAa. 

Some elementary results on g-lattices are presented in [1]. A quasiorder on _4 y-= 0 
is a reflexive and transitive binary relation on _4. Let Q be a quasiorder on A. It is 
well known (see e.g. [2]) that the relation EQ = Q fl Q"1 (where Q _ 1 is an inverse 
relation of Q) is an equivalence on A, and the factor set A/EQ is ordered by the 
order ^ Q defined as follows: 

(*) B,CeA/EQ, B^QC iff (6 ,c)GQ for each b e J5, c € C. 

We call ^Q an order induced by Q. 

The following two theorems were proved in [1]: 

Theorem 1. Let (A; V, A) be a q-lattice. The binary relation Q on A defined by 

(a, 6) eQ iff a V b = b V b (or, equivalently a A b = a A a) 

is a quasiorder such that the induced ordered set (A/EQ, ^ Q ) is a lattice. 

We call (A/EQ, ^ Q ) the lattice induced by -^Q and Q the quasiorder induced by a 
g-lattice (Q,V,A). 

In [1], also the converse theorem is proved: 
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Theorem 2. Let Q be a quasiorder on a set A ^ 0 such that (A/EQ, ^ Q ) is a 

lattice. If K is a choice function K: Exp A —> A such that K([O]EQ) G [G\EQ for each 

a € A, then (A; V, A) is a q-lattice, where V, A are defined as follows: 

(**) a V 6 = tf(sup ^ Q ([a]EQ,[b]EQ)), 

a A b = K( inf < Q ([a]/?Q, [6]^Q)). 

Hence, the theory of g-lattices as quasiordered sets is an analogue of the theory of 
lattices as ordered sets. Moreover, we can prove 

Theorem 3. Let (.A;V,A) be a q-lattice and Q an induced quasiorder on A. 

Then EQ is the least congruence on (A; V, A) such that the factor q-lattice by EQ is 

a lattice, i.e. (A/EQ, -^Q) is the modification of (A; V, A) in the variety of all lattices. 

P r o o f . Let x G [a]EQ, y G [b]EQ. Then (x,a) G Q, (a,x) G Q, (y,b) G Q, 

(b, y) G Q, i.e. .rVa = a V o = a;Va;, yV6 = 6 v 5 = t /Vyby Theorem 1. Hence, by 
associativity and commutativity, also (xVy)V(aV6) = (xVa)W(yVb) = (aVa)V(bVb), 
i.e. (xVy,a\/b) G Q. Analogously, (xVy)V(aVb) = (xVa)V(yVb) = (xVx)V(yVy), 

i.e. (a V b, x V y) G Q, thus (a V b,xV y) G EQ. Hence x V y 6 [ a V 6]#Q. Dually we 
can prove that x Ay G [a Ab]sQ• Thus £ Q is a congruence on (A; V, A). 

It is easy to see that the factor g-lattice (A/EQ;V,A) is a lattice and that EQ 

is the least congruence on (A; V, A) with the required property. Indeed, if E is a 
congruence on (J4;V ,A ) such that E C EQ and E ^ EQ, then there is a pair x, 
y G A such that 

(x,y)eQ but (x,y)$E. 

The factor a-lattice (A/E; V, A) cannot be a lattice since the induced relation Q/E 
on A/E is not antisymmetrical. • 

E x a m p l e 1. Let A = {a, b, c, d, p, q, r, s, t, u, v, w} be a set. The quasiorder Q 
on A is visualized in Fig. 1 (here (x, y) G Q iff the point x is connected with y by a 
path composed of arrows with the same orientation). 

The induced lattice is visualized in Fig. 2, where {a,b,c,d}, {r,s,t}, {u}, {p,q}, 
{v,w} are all classes of the congruence EQ. Choose a choice function by Theorem 
2, e.g. 

K({V, W}) = w, K({U}) = u, K({r, s,t}) = t, 

«({P, q}) = P> * ( K b, c, d}) = a, 
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{v,w} 

{p.g} 

Fig. 1 

{o, ò, c, d} 

Fig.2 

and introduce V and A by (**). Then, by Theorem 2, (A; V, A) is a g-lattice, where 
e.g. 

6v6 = cVd = a, dVr = t, txAg = a, 

sV p~w, c A c = a, qVg = gAg = p, etc. 

Definition. A g-lattice (A; V, A) is distributive if it satisfies the identity 

x V (y A z) = (x V y) A (x V z). 

Lemma 1. A g-Jattice (A; V, A) is distributive iff the induced lattice is distribu­
tive. 

The proof is an easy consequence of the foregoing Theorems 1,2,3. 
Hence, a g-lattice is distributive if and only if it does not contain a g-lattice 

isomorphic to one of those in Fig. 3. 

Fig. 3 

Definition. A ^-lattice (A; V, A) is bounded if there exist elements 0 and 1 in A 
such that 

x A 0 = 0 and x V l = l for each x € A. 
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The element 0 is called zero and 1 is called unit of (A\ V, A). 

E x a m p l e 2. The g-lattice in Fig. 1 is bounded, the element a being its zero 

and w its unit. 

Lemma 2. If (A; V, A) is a bounded q-lattice, then (0, x) e Q and (x, 1) G Q for 

each x G A, where Q is the induced quasiorder, i.e. x V 0 = x V x and x A 1 = x A x. 

P r o o f . By definition, 0 A 0 = 0 a n d l V l = l, thus alsoa:A0 = 0, x V 1 = 1, 

i.e. (0,x) G Q and (x, 1) G Q. • 

R e m a r k . Contrary to the case of lattices it can happen that also (t/, 0) G Q or 
(1, z) G -Q for some elements y, z of a (/-lattice (A; V, A). For example, in the (/-lattice 
in Fig. 1 we have (6,0) G Q, (0,6) G Q or (c,0) G Q or (d,0) G Q, where 0 = a, and 
(1, v) G Q, (v, 1) G Q, where 1 = w. 

Definition. Let (A; V, A) be a bounded (/-lattice. An element 6 G A is called a 

complement o / a G A i f a V 6 = l and a A 6 = 0. If each a £ A has a complement, 

(A; V, A) is called a complemented q-lattice. 

E x a m p l e 3. The (/-lattice (A;V,A) in Fig. 1 is complemented. For example, 

u is a complement of p, r is a complement of p, v is a complement of 6, etc. 

Definition. Elements x, y of a (/-lattice (A; V, A) are neighbours if 

xV x = yV y or, equivalently, x Ax = y Ay. 

It is clear that x and y are neighbours iff [X]EQ = [y]£Q> where Q is an induced 
quasiorder. 

Lemma 3. Let (A; V, A) be a distributive q-lattice and let x, y, z G A. If the 

elements y, z are complements ofx, then y, z are neighbours. 

P r o o f . Since 

y v 0 = y V (x A z) = (y V x) A (y V z) = 1 A (y V z), 

zV0 = zV(xAy) = (zVx)A(zVy) = lA(yVz), 

thus yV0 = zV0. By Lemma 2, we have 

yVy = yV0 = zVQ = zVz. 

• 
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Let (A; V, A) be a distributive complemented g-lattice. Introduced the unary op­
eration * on A by the rule 

(***) a* = 6 V6, 

where 6 is a complement of a. By Lemma 3 this definition is correct. 

Lemma 4. Let (A; V, A) be a complemented distributive q-lattice. Then a* is a 
complement ofaeA and 0* = 1 and 1* = 0. 

Proof . Let a G A. Then a* = 6 V 6 for a complement 6 of a. By weak 
idempotence, we have a V a * = a V ( 6 v 6 ) = a V 6 = l . By equalization and weak 
idempotence, we obtain 

a A a* = a A (6 V 6) = a A (6 A 6) = (a A 6) = 0. 

Thus, a* is a complement of a. By the definition of 0 and 1, clearly 1 A 0 = 0 
and 0 V 1 = 1, thus 0 and 1 are complemented elements. Moreover, 0 A 0 = 0, by 
equalization also 0 V 0 = 0, thus 1* = 0. Analogously it can be shown that 0* = 1. 

• 

Theorem 4. Let (A\ V, A) be a distributive complemented q-lattice. Then for 
each a, 6 G A we have 

(1) (a V 6)* = a* A 6*, (a A 6)* = a* V 6* (De Morgan laws) 
(2) if (a, 6) G Q, then (6*, a*) G Q, where Q is an induced quasiorder. 

Proof . (1) Evidently, (a A 6) V (a* V 6*) = 1 and (a A 6) A (a* V 6*) = 0. Thus 
a* V 6* is a complement of a A 6. By Lemma 4, (a A 6)* is a complement of a A 6. 
Hence by Lemma 3, these elements are neighbours. It (***), (1) is evident. The 
second statement can be proved dually. 

(2) If (a, 6) G Q, then a A 6 = a A a. Hence 

a* V 6* = (a A 6)* = (a A a)* = a* V a*, which gives (6*,a*) G Q. 

а 
Let (A; V, A) be a distributive complemented g-lattice. Consider 0 and 1 as miliary 

operations on A. We have just proved that * is a unary operation on A. Hence, we 
are ready to introduce 

Definition. An algebra (A; V, A, *, 0,1) is called an algebra of quasiordered logic 
if its reduct (A; V, A) is a complemented distributive a-lattice, 0 and 1 are a zero and 
a unit of (A; V, A), respectively, and * is a unary operation defined by (***). 
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As a consequence of Theorems 3 and 4 we have the following 

Corollary. Let (A\ V, A, *, 0,1) be an algebra of quasiordered logic. The following 
conditions are equivalent: 

(1) (A\ V, A, *, 0,1) is a Boolean algebra; 
(2) the q-lattice (.A; V, A) is a lattice; 
(3) the induced quasiorder Q is an order. 

Hence, the concept of algebra of quasiordered logic is a generalization of Boolean 
algebra. Since Boolean algebras form a basis of two-valued propositional calculus, 
we are interested in what "logic" is connected with these algebras. In the next part 
we will show that it gives an "almost two-valued" logic which is more natural than 
that based on two-element Boolean algebra. 

Consider the four element algebra of quasiordered logic A| whose diagram is in 
Fig. 4. Its elements are 0, 1, F, T and the operations V, A, * are defined as follows: 

V 0 F 1 T 
0 0 0 1 1 
F 0 0 1 1 
1 1 1 1 1 
T 1 1 1 1 

Л 0 F 1 T 
0 0 0 0 0 
F 0 0 0 0 
1 0 0 1 1 
T 0 0 1 1 

0* = 1 
F* = l 
1* = 0 
T* = 0 

Fig. 4 

It is easy to check that (.A ĵV, A) is a complemented distributive g-lattice (which 
is not a lattice), and 0 and 1 are the zero and the unit, respectively. 

A proposition P is called atomic if it does not contain any logical connective 
(conjunction, disjunction, negation). If P, Q are propositions, the propositions (P 
and Q), (P or Q)} (non P), will be called the composed propositions. 

In the two-valued logic, every proposition has just one of the logical values TRUE 
or FALSE. 

However, we can make a difference between propositions whose logical values 
should be verified empirically and those whose logical values can be evaluated by 
the rules of propositional calculus. For example, the atomic proposition "this apple 
is red" cannot be analyzed by logical rules but by some empirical investment. In 
such a case, let us denote its logic value by T if the proposition is true and by F in 
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the opposite case. It looks rather natural that the logical value of such an atomic 
proposition is different from that of the composed proposition "2 + 3 = 5 implies that 

this apple is red". Therefore, we assign the value 1 or 0 to the composed proposition 
if it is true or false, respectively. Denote by v(P) the logical value of the proposition 
P. In accordance with two-valued logic, we use the same rules for evaluation of logic 
values of composed propositions, i.e. 

v(P and Q) = v(P) A v(Q), v(P or Q) = v(P) V v(Q), 

v(non P) = v(P*), 

where V, A, * are operations of the algebra A^. It is clear that all common logical 
principles are preserved in this "logic" but we can make differences between the 
given true or false of atomic propositions and the syntactical true or false of logical 
constructions; 

Connections between the algebra of quasiordered logic and the Boolean algebra 

are expressed in the following theorems: 

Theorem 5. Let (A; V, A, *, 0,1) be an algebra of quasiordered logic and let Q 

be the induced quasiorder. Then the factor algebra 

(A/EQ',V,/\,*,[0]EQ,[1]EQ) 

is a Boolean algebra which is a modification of A in the variety of all Boolean algebras. 

Theorem 6. Let Q be a quasiorder on a set A ^ 9 such that (A/EQ, ^Q) is an 

at least two element distributive complemented lattice with zero 0 and unit 1. Let 

K be a choice function K : Exp A -» A such that 

K([CL\EQ) € W E Q for each a G A. 

Introduce operations V, A by (**) and put x* = ac for each x € [O]EQ, where ac is 

a complement of a in the lattice (A/EQ, ^Q). Then (A; V, A, *, 0,1) is an algebra of 

quasiordered logic. 

The proofs follow from the foregoing results. 

References 

[1] Chajda L: Lattices in quasiordered sets. Acta Univ. Palack. Olomouc 31 (1991). To 
appear. 

[2] Chajda I., Haviar M.\ Induced pseudoorders. Acta Univ. Palack. Olomouc 31 (1991). 
To appear. 

Author's address: Ivan Chajda, katedra algebry a geometrie, pHrod. fak. UP Olomouc, 
Tomkova 38, 779 00 Olomouc, Czech Republic. 

135 


		webmaster@dml.cz
	2020-07-01T12:00:30+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




