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Summary. In the paper we prove an Ambrosetti-Prodi type result for solutions u of the 
third-order nonlinear differential equation, satisfying u(0) = u'(l) = u(rj) = 0, 0 .$ n ^ 1. 
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1. INTRODUCTION 

In a recent paper, Fabry, Mawhin and Nkashama [3] have considered periodic 
problems of the form 

u" + f(x,u) = 5, 

u(0) - U(2K) = u'(0) - ti'(27c) = 0 

and have proved that if 
/ (x,u)-»oo as |tx| -> oo 

uniformly in x G [0,2it], an Ambrosetti-Prodi type result [1] holds, namely, there 
exists s\ such that the above problem has no solution if s < si, at least one solution 
if s = si, and at least two solutions if s > s\. A similar result holds for 

u' + f(x,u) = s, 

u(0) = U(2K) 

(see [5]) and the corresponding proofs rely on a combination of the techniques of 
lower and upper solutions and the degree theory. 
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In [2] a somewhat weakened Ambrosetti-Prodi-like [1] result is given only for the 
following special case of a higher order boundary value problem (BVP): 

u^ + g(u) = s + e(x,u), 

u(0) - U(2K) = . . . = u^l\0) - u(n-V(2n) = 0. 

In this paper we prove an Ambrosetti-Prodi-like result [1] for the third-order BVP 

(1). u'" + /(t ,u,u' , ix")=s, 

(2) u'(O) = ti'(l) = U(TJ) = 0, 0 ^ 7] ^ 1. 

This problem models the static deflection of a three-layered elastic beam. 
The proofs in this chapter are based on a combination of the techniques of lower 

and upper solutions and the degree theory. 

2. NOTATIONS AND DEFINITIONS 

H-r||=max{|s(t)|, t€[0 , l ]} . 

Functions or and a2 € C3(0,1) satisfying 

a'^s-f^x.a'^.a'Kt)), 

°2 ^s-f(t,x,a'2(t),a'i(t)) 

for t e [0,1], x € [min{ai(t),a2(t)}1max{ai(t),a2(t)}] and 

cri(7/) = ( j 2 ( r ? ) = 0 , 

<7[(0K0, <ri( lK0, 

^ ( 0 ) ^ 0 , (7^(1)^0, 

will be called a lower andan upper solution of the BVP (1)«, (2), respectively. 
By replacing the above inequalities with strict inequalities we obtain the definition 

of a strict lower and a strict upper solution of the BVP (l) s , (2). 
The BVP (1)«, (2) is equivalent to 

Lu + N8u = 0, 
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where 

L: dom L -* C°(0,1), Lu = u'", 

X = {xGC 2(0,l), x satisfies (2)}, domL = C3(0,1) O.K, 

1V5:X->C°(0,1), 1V5u = /(*,u,u',u")--s, 5 6 R . 

It can be easily proved (see [4]) that L + N8 is L-compact on ft- (with fi the closure 
of 0), where fi is an open bounded subset of X. 

3. LEMMAS AND THEOREMS 

Lemma 1. (On a priori estimates) Let u be a solution of(l)8> (2) and let \\u'\\ < 
R, R G R, R > 0. Assume that for every R G R, R > 0 there exists a continuous 
function /in: R+ -» [a#, oo) (CIR > 0) such that 

(3) \f(t,x,y,z)\<hR(\z\) 

for x,ye [-.R, R], t G [0,1], zeR, where 

( 4 ) /o M*) 
^00 tdt 

= 0O. 

Then there exists r* (depending only on s, ii, /i/ej such that 

Ik'IKr*. 

Proof . Let u be a solution of ( l) s , (2) and ||u'|| ^ R. We define 

tdt 
Щx) = / 

Jo Ml*l) +1*1 

Prom (4) it folows that fi is a bijective mapping of R+ onto itself. Prom (2) it follows 
that there exists oo G (0,1) such that u"(oo) = 0. Let r* = ^ ( f ^ l ) + 2R) and 
assume that |u"(Ji)| > r*, where i\ G (oo,l]. Let [ai,&i] C [ao,l] be the maximal 
interval containing t\ in which \un(t)\ ^ 1 and let si G (ai,6i] be such that 

(5) |u"(si)| = Ql = max{|u"(*)|: <n < t < 6i}-

Prom (3) and (1)5 it follows that 

(6) |u'"| = |s - /(t,u,u',u") | ^ hR(\u»\) + | 4 
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If «"(*) ^ 1 , then 
/•»i u"u'" f1 . . . 

L hR(u") + \s\^Jai
udt-

The last inequality implies that fi(#i) - ft(l) < 2R and QI -̂  r* which contradicts 
(5). We can obtain a similar contradiction if u"(t) ^ - 1 on [ai,8i]. For ti G [0,ao] 
the proof is analogous. Lemma 1 is proved. • 

Theorem 2. Let a\ he a lower solution and 0*2 an upper solution of the BVP 
(l)a, (2) and let a[(t) < a2(t) for every t G [0,1]. If the function f satisfies (3), then 
the BVP (l)^, (2) has a solution u such that 

a[(t) < u'(t) ^ a2(t) for each t G [0,1]. 

Proof . The theorem follows from Lemma 1 (On a priori estimates) and from 
the results given in [6]. • 

R e m a r k . [6] deals with the BVP 

W'" = /(t,u,u',u"), (2). 

The existence of a solution u satisfying 

ai(t)<u'(tK<r£(t), 

where or, 02 is a lower and an upper solution, respectively, is proved under a more 
general growth condition than (3). 

Theorem 3. Let f be nonincreasing (or nondecreasing) for t G [0,77] (for t G [77,1]) 
as a function of x for every fixed y,z G R. Further suppose there exist R\, s\ G R, 
.Ri > 0 such that 

(7) / M i ( t - r / ) , 0 , 0 ) < 3 i for te [0,1], 

and for any r\ ^ i?i the inequality 

(8) s i < / ( * , - r r ( t - T7),s/,0) for tG [0,1], y < - r x , 

is valid. If the function f satisfies (3), then there exists SQ < si (with the posibility 
that SQ = — 00) such that for s < SQ the BVP (1)5, (2) has no solution and for 
s G (50,8\] the BVP (l)fi, (2) has at ieast one solution. 
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Proof . Let s* = max{f(t,0,0,0); t G [0,1]}. Prom (7) and (8) it follows that 
s*-/(t , ;r ,0,0) ^Oands*- / ( t , a : , - .Ri ,0) ^ 0 for t G [0,1], a; € [min{0,-/?i(t-
r])}, max{0, -i?i (t - rj)}]. Prom the last two inequalities we get that ai = -JRI (t - rj) 
is a lower solution of (l)s*, (2) and a2 = 0 is an upper solution of the BVP (1)**, 
(2), so Theorem 2 implies that the BVP (1)**, (2) has a solution. 

Next we show that if the BVP (l)s, (2) has a solution u for s = s < si then 
it also has a solution for s G [s,si]. If s G [s,si] then u'" = s - f(t,u,u',u") and 
u"' ^ s — f(t, x, u', u") for t G [0, rj\,x^u or for t G [77, 1], x ^ u. It is easily seen that 
for s ^ si all solutions of (l)s, (2) satisfy the relation —Ri ^ u'. If u'(to) ^ -Ri for 
some t0 G (0,1), then there exists ti G (0,1) such that mm{u'(t), t G (0,1)} = u'(ti), 
u"(ti) = 0, u'"(ti) ^ 0. If *i G fa,l) then u'(t{) = - n ^ -Ru u'(t) ^ -rx for 
t G [77,1) and u(ti) ^ - r i ( t i - 77). Prom (8) it follows that si < f(ti,u(ti), - r i ,0 ) , 
u'"(ti) < 0 and this contradicts our assumption. A similar contradiction can be 
obtained for ti G (0,7?]. 

(8) implies that s - f(t,x,-Ru0) ^ 0 for t G [0,1], x G [mm{u(t),-Ri(t -
rj)},max{u(t), -Ri(t - rj)}]. Setting ai = -Ri(t -17), <T2 = u and using Theorem 2 
we can see that the BVP (l)s, (2) has a solution. 

Taking s0 = inf {s G R: (l)s, (2) has a solution} with s0 = -00 if the BVP 
(l)s, (2) has a solution for any 5 ^ si, it follows from the above discussion that 
so ^ s* < si and that (l)s, (2) has a solution for any 5 G (s0,$i]. Theorem 3 is 
proved. • 

Lemma 4. Let Q = {x G domL: a[(t) < x'(t) < a'2(t), \\x"\\ < k}} where 
or <a2} ai is a strict lower solution and a2 is a strict upper solution of (1)5, (2). If 
f satisfies (3) then there exists k G R such that the coincidence degree of L + N8 in 
Q, relative to L (see [4]) satisfies 

dL(L + Ns,n) = ±l (mod 2). 

Proof . We define 

g(t,x,y,z) = f(t,a(t,x),/3(t,y),z) ^y + /3(t,y), 

f min{ai(t),a2(t)} for x < min{tji(t),cr2(t)}, 

a(t,x) = < x for min{ai(t),a2(t)} ^x ^ max{or(t), a2(t)}> 

{ max{c/i(t), a2(t)} for x > max{oi(t), a2(t)}, 

(a[(t) lory' <a[(t), 

0(t>v) = < V foia'i(t)^y^a'2(t), 

[a'2(t) fort/' > a'2(t). 
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The BVP 

(9)8 u'" + g(t,u,u',u") = s,(2) 

can be written in the form of an operator equation 

Lu-fGsu = 0 in domL, 

where G8: X -* C°(0,1), G8u = g(t,u,u',u") - s. 
In fi the BVP (l)5r (2) is equivalent to the BVP (9)5, (2), the operator equation 

Lu + N8u = 0 is equivalent to the operator equation Lu + Gsu = 0 and 

dL(L + G8,Sl) = dL(L + Ns,n). 

We define fii = {x G domL: \\x'\\ < r*, ||x"|| < A:}, where r* > max{||<7i||J|<72||}. 
We shall prove that for A € [0,1] every solution of the equation 

(10) Lu - (1 - X)Iu + XGsu = 0, 

where lu = u/, satisfies u & Qi. If ||u;|| > r*, then there exists to G (0,1) such that 

u ' ( t 0 )^r* (ort i ' ( to)^-r*), 

u"(to) = 0, 

^"(toJ^O (^"(toJ^O). 

If r* is large enough, then 

f(t,a(t,x),cr[,0) -s + r*+a'1 > 0 and 

/(t,a(t,x),<72,0) - 5 - r * +(Ta < 6 - for zG R, t G [0,1]. 

For u'(to) ^ ^r* we obtain 

u'"(t0) - (1 - A)u'(to) + A(/(t0,a(to,u(to),c7i(to),0) - s - u'(to) + ai(t0))) = 0. 

It follows from the last equality that it'"(to) < 0 which contradicts um(t0) ^ 0. A 
similar contradiction can be obtained if we suppose that u'(t0) ^ r*. We have proved 
that ||u;|| < r*. Since (3) is valid we get the inequality 

| - (1 - A)y - x(f(t,a(t,x),(3(t,y),z) - s - y + P(t,y)) | < hR(\z\) + 2r* + \s\ 
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for y < r*, and 

sds . 1 f°° sds 
ҺR(S) 

f°° sds 1 Г „ ^ _ 

The last inequality implies that we can use Lemma 1 and for k large enough also 
||u"|| < k is satisfied. 

For A = 0 the equation (10) has only the trivial solution and dL(L — I, fii) = ±1 
(mod 2). By the property of invariance under a homotopy we obatain dL(L + 

Gs,fii) = ±1 (mod 2). Next we prove that every solution u of the equation Lu + 
Gsu = 0 satisfies u G fi C fii. If u'(t\) > a'2(h) for some ti G (0,1) then there exists 
an interval (a,6) C (0,1), t\ G (a,6), u'(t) > a'2(t) for t G (a,b) and u'(a) = a'2(a), 
u'(b) = a'2(b). This implies that there exists t2 G (a, 6) such that 

u'(t2)>a'2(t2), 

u"(t2) = a'2\t2), 

u'"(t2) ^ a'2"(t2). 

Since u is a solution of (9) and a2 is a strict upper solution of (1)5, (2), it follows 
that 

u'"(t2) + f(t,a(t2Mt2)M2(t2)M2(t2))) - s - u'(t2) + a'2(t2) = 0, 

u'"(t2) > a'2"(t2). 

This contradicts the inequality u'"(t2) ^ a'2"(t2). If u'(*) < a'2(t) for * G (0,1) 
and there exists t3 G (0,1) such that u'(t3) = ^(^3) then u"(t3) = a2(t3) and 
u'"(t3) ^ o^s). This implies that 

u"'(t3) + f(t3,a(t3Mt3)M2(t3)M2'(t3))) - 5 = 0 

and since 02 is a strict upper solution of (9) we obtain u'"(t3) > a'2"(t3). This 
contradicts u'"(t3) ^ <?2"(t3). 

It is possible to prove in a similar way that u'(t) > a[(t) for every possible solution 
u of the equation Lu + Gsu = 0 and for every t G [0,1]. 

By using the excision property of the degree we obtain 

dL{L + G„U) = ±l (mod2) 

and, finally, 
dL(L + Ns,Q) = ±l (mod 2). 

Lemma 4 is proved. • 
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Theorem 5. Let us suppose that the assumptions of Theorem 3 are fulfilled. 
Moreover, suppose that there exists M(si) G R such that for s ^ si any solution of 
the BVP (l)a, (2) satisfies the inequality 

(11) u'(t)^M(Sl) for* €[0,1] 

and that there exists a G R such that 

(12) f(t,x,y,z)>a 

for t G [0,1], x G [min{-.Ri(* - 77), M(si)(t - 77)},max{~i?i(t - 77), M(si)(t - 77)}], 
y G [-.Ri, M(si)], 2 6 R , Then the number s0 provided by Theorem 3 is finite and 

for s < s0 the BVP (l)s, (2) has no solution, 
for s = so the BVP (l)s, (2) has at least one solution, 
for s G (so, si] the BVP (l)s, (2) has at least two solutions. 

Proof . First we prove that s0 is finite. Let u b e a solution of (l)s, (2). Prom 
(1)5 it follows that u'" ^ s - a. Prom (2) it follows that 

u"(t)^\(a-s) fortG[0,|] or 

u"(t)^\(s-a) fortG[f,l]. 

If we take s such that -^~ > M(si) we obtain a contradiction to (10). 
Let s G (so,si) and let u be a solution of the BVP (l)s, (2) for s = s. We can 

assume that i?i < |M(si)|. 
Let fti = {x G X: \\x(t)\\ < |M(si)|, ||x'(t)|| < |M(si)|, ||rr"(t)|| < g}, where g is 

taken sufficiently large. Since the BVP (l)s, (2) has no solution for s_i < So, it is a 
consequence of the basic properties of the degree that 

(13) dL(L + N8_1,n1) = 0. 

On the other hand, for s ^ si all solutions of (l)s, (2) satisfy the inequality \\u'\\ < 
|M(si)|. If g is large enough and s G [s_i,si] then we have ||u/;|| < g for all 
solutions of (1)«, (2) (the bound given by Lemma 1 can be taken independent of s 
for s G [s_i,si]). Prom the properties of the degree and from (13) it follows that 
dL(L + N8,Qi) = 0 for s G [s_i,si] D (s0,si]. 

Let Sle = {x G X: \\x(t)\\ < |M(si)|, - |M(si) | < x'(t) < u'(t)+efort G 
[0,1], ||x"(t)|| < (?}> where u(t) is a solution of (1)5, (2) for s = s G (s0,si) and 
u(t) =. u(t) + e(t ~ v). For s G (s,si] it is possible (because / is continuous) to 
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take e such that ||M'|| < |Af(si)| and u(t) is a strict upper solution of (1)*, (2). 
-\M(si)\(t - rj) is a strict lower solution of (1)*, (2). According to Lemma 5 for 
s € (s,si] we have 

(14) dL(L+ N8,ne) = ±l (mod 2). 

Prom the additivity property of the degree it follows that 

(15) dL(L + NSin1-Ti£) = ±l (mod 2) 

for 5 e (s, si]. Relations (14), (15) imply the existence of a solution of the BVP (l)s, 
(2) in Q£ and in Hi - fte. Since 5 is arbitrary in (s0,si), the BVP (1)5, (2) has at 
least two solutions for s £ (so, si]-

Now we prove that (l)s, (2) has a solution for s = so. Let us take a sequence 
{5n}n^=1, where sn G (so,si], n E N, lim sn = s0- We know that for any sn (1)5, 
(2) has a solution un satisfying ||un|| < |M($i)|, ||un|| < \M(si)\, and according to 
Lemma 1 we get ||un|| < Q for g large enough. Since un is a solution of (l)Sn, (2) 
the sequence {u'n'}n

cL1 is bounded in C°(0,1). By the Arzela-Ascoli lemma we can 
suppose that {un}n

<L1 converges in C2(0,1) to a solution of (1)5, (2). Theorem 5 is 
proved. . •' • 
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