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SOLUTION OF THE INVERSE PROBLEM
OF THE CALCULUS OF VARIATIONS

JAN CHRASTINA, Brno

(Received August 25, 1992)

Summary. Given a family of curves constituting the general solution of a system of
ordinary differential equations, the natural question occurs whether the family is identical
with the totality of all extremals of an appropriate variational problem. Assuming the
regularity of the latter problem, effective approaches are available but they fail in the
non-regular case. However, a rather unusual variant of the calculus of variations based
on infinitely prolonged differential equations and systematic use of Poincaré-Cartan forms
makes it possible to include even all constrained variational problems. The new method
avoids the use of Lagrange multiplitiers. For this reason, it is of independent interest
especially in regard to the 23rd Hilbert’s problem.

Keywords: inverse problem, Poincaré-Cartan form, Lagrange problem

AMS classification: 49N45

Half-century ago, the well-known paper [Do] appeared under the same title as
above. Only regular first order variational integrals were discussed there but it
seems that lengthy calculations producing a somewhat depressive final results have
negatively affected the following progress in this area. We believe that our geomet-
rical method based on infinitely prolonged Monge systems (diffieties) together with
a far going generalization of Poincaré-Cartan (PC) forms will be more successful.

Let us briefly recall the main principles paraphrasing a little [Do] and thus dealing
with the variational integral

(1) /f(:c,yl,...,y"‘,zl,...,z"‘)da:—-) extremum, 2*'=dy’/dz

in the regular case det(fi;) # 0 (fij = 82f/02'02%). If e = 0f Jgy* — d(8f/07%)/ dz
are the familiar Euler-Lagrange (L) operators, the £L system et = 0 can be uniquely
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brought into the shape
(2 dz' /dz = ¢ (z,9t,...,y™, 2%,...,2™), dy'/dz =7

with derivatives separated on the left. Then the inverse problem concerns the reverse
determination of (1) if (2) is known. It should not be confused with the weak inverse
problem when the £L operators are given. The latter problem is much easier since
the £L operators can be characterized by Helmholz identities and if these are satisfied
then f = [ Y y'e’ dt by a quadrature (at least symbolically), cf. [An, Sa, Ol]. In the
regular case, the two inverse problems are closely related: certain linear combinations
(with unknown coefficients equal to f;;) of the first group of equations (2) provide
the £L operators (by using the Helmholz identities as a criterion). This is the VIF
(variations integrating factors) method, cf. [An]. The direct approach to the inverse
problem is also possible. Conditions

of/0y' — (8/0x + Y. 278/8y’ + 3. ¢78/029)f |8z =

for the sought function f easily result from the expanded transcription of the ££
operators, however, the latter system proves to be of poor quality and obscures the
nature proper of the task, see the rather ingenious and artificial adaptations invented
in this connection in [Do].

The non-regular case lies without the scope of all available methods. But we should
like to deal even with the inverse problem for all constrained variational integrals

3) /p*/\ — extremum, p'w=0 (wWeEN)

where p = p(t) are curves (mappings of an interval a < t < b into the underlying
space), A is a given 1-form (the Lagrange density) and Q is a given set of 1-forms
realizing the differential constraints. (Clearly (1) arises as a very particular case of (3)
with A = f dz and Q consisting of all contact forms 9* = dy’ —z*dz.) This is possible
within the framework of a little strange calculus of variations based on systematic use
of generalized Poincaré-Cartan forms. The final result is as follows. In one direction,
given a variational integral (3), we are able to derive the £L£ system not involving
the Lagrange multiplitiers for the relevant extremals. In the reverse direction, given
a system of differential equations, we are able to write down a complete collection of
requirements for the sought Lagrange density A (or better, for the relevant PC form
of a kind prescribed in advance: of given rank, variables, order, and so on). The
crucial part of these requirements consists (as a rule) of an overdetermined system of
differential equations and then the compatibility is regarded as quite an other task
here so that only few comments to this point will be occasionally adjoined. For the
convenience of the reader, the main body of the article is devoted to preparatory
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examples which are of independent interest. They are chosen successively more and
more complicated and naturally enter the exposition of the general theory at the
very end.

In more detail, we begin with a geometrical transcription of [Do] to derive a slightly
simpler resolving equations than in [Do] by means of quite other and less technical
arguments. We continue with a still simpler approach to [Do] by employing the
family of first integrals. In particular, it will be seen that the inverse problem can
be expressed in geometrical terms: to determine a symplectical structure if a one-
parameter family of its Lagrange subspaces is given in advance. The next part is
devoted to non-regular integrals (1) with m = 2. Besides a rather complete discus-
sion of the relevant inverse problem (which cannot be resolved by the VI F-method
since, as we shall see, the given £L system is not algebraically generated by the
&L operators but appears only after a prolongation), we also deal with the peculiar
subcase when the £L system is constituted by a single equation for two unknown
functions. Then, passing to higher order variational integrals, the underlying spaces
become not quite clear (the £L system and PC forms depend on some higher deriva-
tives which cannot be specified beforehand) and so we take a vigorous measure, the
infinite prolongations, and briefly discuss a few typical examples. In this manner,
the common concepts are adapted to the concluding part which deals with the con-
strained variational integrals (3). In order to make our expression self-contained,
a somewhat unusual concept of a standard critical point of a functional [Ch] is re-
called which immediately gives the same extremals as [Gr] without any effort. But
using an axiomatic approach to Monge systems, we are also able to eliminate the
Lagrange multipliers (the auxiliary variables A, in [Gr]). This enables us to deal
with the inverse problem in full generality. At last, the concluding part is concerned
with various topics, in particular we mention the geodesics field theory and the 23rd
Hilbert’s problem.

Our reasonings are carried out in the real C*-smooth category. The definition
domains are not specified and, following the common convenience, we tacitly deal
with generic situations unless otherwise stated. (So the ranks are locally constant,
certain functions do not change sign, certain modules over the ring of C*°-smooth
functions possess free bases which turn into bases of R-linear spaces after taking
their value at a point, and so on.) We shall not use any advanced tools omitting
all needless formalisms of the jet theory. But it may happen that some concepts
will look somewhat strange (especially in the concluding parts) and ought to be
followed with a certain care. At this place we should like to recall the Lie derivative
Lz = Z]d+dZ] along the vector field Z, and the modified Lie derivative Mz =
0/dx + Lz acting on differential forms which depend on a parameter z (cf. Section 3
below). Let @ be the module of all differential 1-forms. A submodule E C & is
called flat if d=Z = 0 (mod Z). Alternatively, if =+ denotes the module of all
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vector fields Z satisfying 2(Z) = 0, the last congruence is equivalent to £zZ C =
" (Z € BL), or to [E+,EL]) € EL. Then, if £ = {€...,£™} is generated by a
finite family of forms £!,..., ™, the Frobenius theoi‘em may be applied (recall the
_ tacitly assumed genericity) and: we conclude that = has a basis consisting of total
differentials: £ = {dA!,...,dh"}, dh! A... A dh™ # 0. The functions hl,..., A"
(and alternatively, any composed function h = h(h!,...,h"™)) are the first integrals
(of Z). In particular, for any 1-form &, the module Adjd¢ consisting of all forms of
the kind Z| d¢ (Z is ranging through all vector fields) is flat and the forin d¢ can be
‘expressed in terms of the relevant first integrals, see [Ca, Br]. Analogously, if ¥ C ¢
is' a submodule then the module Adj ¥ generated by all forms from ¥ together with
all forms of the kind Z] dy ( € ¥, Z € ¥*) is also flat [Ca, Br]. This will be needed
in Section 23 below together with certain identities between Lie derivatives and Lie
brackets. (Incidentally, there is a basis of ¥ expressible in terms of the first integrals
of Adj¥.) Of course, it is not much necessity to recall such well-known results here,
and we do so only to specify a little the notation and terminology which seem to be
rather diverse in current literature.

THE FIRST ORDER REGULAR PROBLEM

1. Fundamental concepts. Our reasonings will be carried out-in the space of
variables z,y!,...,y™,2,...,2™ (m > 1) endowed with the contact forms 9! =
- dy*—z°dz and the Lagrange density A = fdz (f = f(z,9%,...,4™ 2%, ...,2™)).

We shall deal with the vana.tlonal mtegral (1): One can venfy that there is a unique
-form 13 satlsfymg

@. g, dggo (mod 9, ...,0™),
- namely the famous PC form § A+ Z fi0 (f: = 0f/02%). Clearly
(8 v df Za‘ﬂ’ Adz+ Za"ﬁ‘ 197 + Y fij 2t A

where a' Bf/ay‘ af,/az—z; z’af./ay’ ij (c‘?fJ /8y* —-Bf,/ayf) The module
‘Adj d{ is generated by the forms

:(6) Yo, z:f.,m adx+§:a'319’ Ef.,dz’ (i=1,...,m).

Let us suppose the regulanty det(f';,) # 0 from now on. Then the curves whlch satisfy
the Pfaff’s system ¢ = 0(<p € Adj d¢) are exactly the extremals. (Indeed, they satisfy
the contact conditions ¥ = 0 owmg to the regularity, and the EC system e* = 0 owing
to the equations 6* dz — 3" fi; dz? = 0 which follow from (6).) One can also see that
all vector fields lying in Adjd¢* are multiples of F = 9/8z+ Y 2'9/3y" + ¥ 9°0/02'
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(where g1,...,g™ are the same functions as in (2)). This follows from the fact that
the forms ¥, a*dz -3 fi;dz’ (i = 1,...,m) constitute a basis of Adjd¢ in the
regular case. As a result, the vector field F is tangent to the extremals.

On the other hand, Adjd¢ is flat. Let Adjd¢é = {dh?,... ,dhz"‘} in terms of the
relevant first integrals. Then d{ can be expressed as

(7) d¢ = SSHY dh AdR?  (HY = H (R, ..., h2™))
with appropriate functions H*/ or, alternatively, £ can be expressed as
(8) z =3 Hidhi+dV (H'= Hi(h!,...,h®™), V =V(z,9*,...,y™,2%,...,2™),

which follows from the Poincaré lemma. The regularity means that det(HY) =
det(9H7 /Oh' — SH' |9hi) # 0.

2. The inverse problem. We suppose that the extremals are given in advance
and search for the relevant density A = f dz or, which is equivalent, for the relevant
PC form £. In more detail, the vector field F (tangent to the extremals) is given and
we wish to determine a form ¢ of the special kind A: £ = fdz+ Y ;¥ (with an
appropriate f and f; = 8f/82") satisfying moreover B: det(fi;) # 0 (the regularity,
fi; = 0%f/982°82%) and C: F| d¢ = 0 (equivalent to the inclusion F € Adjdé*, that
is, ensuring that the given extremals belong to the PC form §).

Alternatively, in terms of first integrals, if functions b’ = h'*(z,9y,...,y™,2%,. ..,
z™) satisfy Fh'* = 0 (i = 1,...,2m) and dh!A... A dh®™ # 0, then C means
that dé can be expressed as (7) with appropriate HY = HY(h!,...,h?™) =
Ki(z,yt,...,y™, 24,... ... ,z™). It follows that (owing to C) the form d¢ can
be easily determined if its restriction

d€ = 3" K (const.,y?,...,z2™)d k' Ad kI, R* = h¥(const., y1,...,2™),

on a fixed hyperplane £ = const. is known. (Indeed, in this case we know the
restrictions H¥ (h1,...,h?™) = K (const., y*,...,2™), hence the original functions
H%(R,...,h®™) by the substitution i* — h*. Thus the form (7) on the total space
is determined.) The requirement B can be interpreted by saying that d¢ provides a
symplectical structure on this hyperplane. Our next aim is to “reduce” the remaining
requirement A to the hyperplane, too.

3. The reduction. (i) If a form ¢ = fdz+ Y u'¥ satisfies F'] dy) = O then
u® = f; (easy direct verification). It follows that A can be replaced by the congruence
A: €20 (mod dz,d!,...,9™).
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(ii) Let 9 be a 1-form satisfying dy) 2 0 (mod dz,dy!,...,dy™). Then 9 turns
into a complete differential if z,y!,...,y™ are kept constant, hence

Yp=udz+ Y v'dy'+dV = fdz+ T u' 9 +dV (f =u+ L uizb).

So we obtain a form £ = fdz + Y u'¥* satisfying A’ and d¢ = d¢. It follows that
A’ can be replaced by the congruence d¢ 0 (mod dz,dy?,...,dy™) and denoting
n=dz Ady! A...Ady™, this congruence is expressed by the equation A" : nAd¢ = 0.

(iii) For K > 1 large enough, there surely exists a linear dependence of the
kind £LEn = Y w*Ckn (sum over k = 0,...,K — 1, with appropriate coefficients
w!,..., w1, Assuming C, we have Lr df = dF] d¢ = 0 and thus

LEMmAdE) = Ly AdE = TuwkLhnAdé = TwkLh(nAde).

This may be regarded as a linear K-th order differential equation for the form nAd¢.
(In more elementary terms of temporary coordinates t,t!,...,t2™ such that F =
d/8t, we obtain a classical linear system of ordinary differential equations for the
coefficients of the form n A d¢ expressed in terms of these coordinates.) It follows
that if the Cauchy data at a fixed hyperplane = = const. are vanishing, the solution
n A d€ vanishes in the total space (and .A” is satisfied). More explicitly, if the forms
Lk (n A d€) = LEn A € vanish when z = const. is kept fixed but dz # 0 is retained
for k=0,1,...,K — 1, then n A d§ = 0 in the total space.

(iv) Let d€ be the form which arises if dz = 0 is inserted into d¢. (If moreover z =
const. is kept fixed in d€, we obtain the restriction d€.) The form d€ will be regarded
as a differential form depending on the parameter z in the reduced space of variables
y',...,y™ 2},...,2™. Let us introduce the vector field G = ¥ 2°0/9y’ + 3 ¢°0/ 92"
(depending on the parameter z) and the form p = dy* A... A dy™ in the reduced
space. Recall moreover the modified Lie derivative Mg = 8/3z + Lg. (A little
formally, F = 8/9z+ G, Lr = Mg, 1 = dz A, Mgu = Lpu = Fu for any function
u=u(z,y,...,y™,z,...,2™) which is regarded either as a function on the original
space or as a function depending on a parameter on the reduced space.) Then

LhnAde =deACuAdE = deAME A dE

and (inserting here z = const. but dz # 0) it follows that the vanishing of the initial
values at z = const. (discussed in (iii)) can be expressed by

©) (MEp)~Adé=0 (k=0,...,K —1).

The tilde means the restriction (we put = const. and dz = 0). Altogether, C and
(10) imply A" and the reduction is achieved.
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4. Summary. Let F (hence Adjd¢ determined by F' € Adjdét, and also the
first integrals h!,...,h?™ of Adjd€) be given and let us search for the relevant. PC
form . If d is already known then £ is determined up to a total differential (the
Poincaré lemma) and the Lagrange density A = f dz up to a divergence (cf. (4) and
(ii) above). The form d¢ can be determined if the restriction d{ on a fixed hyperplane
& = const. is known (cf. Section 2). In order to determine d¢, the system (9) with K
large enough is to be resolved. We are interested only in solutions d£ of the maximal
possible rank (i.e., in symplectic structures d on the reduced space).

‘5. Technical remarks. (i) The formula

(100 Meu=Y gtz dMEV A AAMEG Y™ (k=ki+ ... +km)
follows from the Leibniz rule. Inserting here
Mey' = 7, M2G+kyi = Fkgi,

one can obtain M%pu in explicit terms. .

(ii) Owing to A, one may assume d€ = ¥ dv‘Ady* where v; = dv/02%, v =
v(yl,...,y™, 2}, ...,2™) = f (the restriction of f). Inserting such a d¢ with dv; =
S vf dy? + S vi; d2? where v! = 8%0/82°0y, vi; = 8%0/82°927 into (9), a system of
second order differential equations for the function v = f appears and we search for -
solutions with det(vi;) # 0. '

(iii) Alternatively, owing to A’, we may put d = Y dv; Ady* with unknown
functions v; = v;i(y},...,y™,2%,...,2™). In this case, we obtain a system of first
order differential equations for the unknowns vy,...,v,. »

(iv) Also the substitution dé = 3" & A dy* with unknown differential forms ¢; =
Suldy? + Zv,, dz’ is possible. The family of linear relations for the unknown
coefficients v, , s; arising from (9) must be completed by the closedness requlrement
d?€ = Y dv! Adyd Ady + 3 dvij Adzi Ad2i =0, '

(v) For the constant' K in (9) we may take the least positive integer such that
the relations M& cuAv=0(k=0,. -1) imply MK acbAv =0 for any 2-form
v on ‘the reduced space. Such a K depends on the given vector field G (the form
_p=dy'A...Ady™ is fixed). One can then see that MuAv=0forany £ > K.

6. The Darboux case [Da]. We should like to briefly demonstrate the procedure
outlined in Sections 4, 5 on few examples. Let us first look at the case m-= 1.'Then
p'= dy', d€ = dv’ Ady! = v} dz* Ady! (cf. (ii) or (iii) of Section 5) so that (9) is
identically satisfied, an arbitrary nonvanishing form (requirement B) may be taken -
- for d€. It follows that d§ = H12?dh' Adh® where h!,h? are fixed first integrals.

with dh! Adh? # 0 and H'2 = H12(h!,h?) # 0 may be an arbitrary nonvanishing '
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function. Alternatively we may also put d¢ = dh! Adh? with h? fixed and h! an
arbitrary first integral with dh! Adh? # 0. So we have £ = h! dh? +dV, hence

dh? Oh? oV oV Oh? oV
~ (41 1 1 1 1 1
f_(h (6x+ 6y)+6 + 2z 61)d.’t;+(hal+ )d (mod 9%).

Since B,C (and even .A”) are already satisfied, the remaining requiremént A
h'0h?/82' + 8V /02! = 0 permits to determine the function V = — [ h10h? /02! - d2?
and thus the general solution

dh? dh? av ov
1 1 ov . a9Y
f= h( +2z 81)+6x+z8y'

An alternative formula involving fixed first integrals h!, h? and an arbitrary nonva-
nishing composed function H'2 = H'2(hl,h?) can be derived analogously.

7. The Douglas case. Passing to the much more difficult case m = 2, we shall be
able to slightly simplify the resolving equations [Do] owing to a very adaptable choice
of the sought d€ (cf. points (ii)-(iv) in Section 5) and to complete the elimination
of the parameter z. Then the compatibility problem slightly simplifies, too, but the
excellent exposition of the Riquier compatibility test [Do 109-115, 116-125] cannot
be improved and so we omit this topic here.

Assuming m = 2, we have p = dy' Ady?, d€ = wdy! Ady® + 3 vi; dz Ady

(w = v} — v?). Denoting

MEp = a* dy! Ady? + L b5 d2i Ady? + 3 ek dzt Ad2?,
the requirements (9) are expressed by
(llk) c"w - b’;z‘vu + b’;lvlg + b’f2’021 - blfl'vgz =0.

According to (v) Section 5, one can see that K < 6 so that only the relations (11°)-
(115) are important. Moreover, a* are not needed and the transposition y! +— y?,
z! «— z? turns u into —p and thus b¥!, b2 into —bk2, —bkl. So the shortened table
(following from (10) by lengthy but easy calculation) is quite sufficient:

C=b=c =bl=0, bl2=1, * =2, b¥' = —g3, b¥ =gy,

¢ = 3(gor + 902)» B} = —gfy + 343", b3% = g}, + 397,

c* = 4(g}, +93) + 6901932’ b = —g5 +497' - 6 [dgéh

b2 = gl + 497 — 69"l 05 = 5(gh1 + 0%) + 10(gL 02 — gl502)),

B! = g2, + 592" +10(g g — gli 1),

532 = g}y + 5922 + 10(gl g3 — gli gi?).

164



Here we abbreviate

9;?;';'.'.‘:'}., = 0Pt IFk gt Jay™ ... Oy'r 02T ... 920

and use the square bracket to denote the alternation, e.g., gl gl® = glg?b — g2glt.

As the relations (11) are concerned, (11°) is identity and (11') means that v;3 =
vg;. At this place, it is suitable to recall Douglas’ notation L = vy;, M = vy = v,
N = vg,. Then (112) reads

1
(12) w= 5(932L — 9 M + g5 M — g5\ N)
and permits to get rid of w from (11%3%) to obtain certain requirements
(13) AL+ BM +CN = AL+ BiM+C N =A;L+B;M+C,N =0

for the unknowns L, M, N. We state only the values

3 3
A= 5(9(1)1 +982)902 — 912 +390°, C = —5(951 + 962)901 + 911 — 395"
3 .
B = -2 (901 + 95,) (901 — 962) + 931 — 912 — 390" — 93)

which will appear most frequently (and note aside that A,...,C; differ from [Do
(7.6)—(7.9)] by a mere constant factor). The following development will depend on
the rank of the matrix A of the linear system (13). '

8. Continuation. If rank A = 3 then (13) admits only the trivial solution
L =M = N = 0, the regularity det(vi;) = LN — M? # 0 is not satisfied and the
inverse problem is not solvable.

If rank A =0 (thus A = ... = C3 = 0) then we have the sole condition (12) which
turns into the equation

v v 1 (8g' 3% 8¢> 9g'\ 0% 9g® 0%
ylaz?  9y20z1 ~ 2 (5;.5 (921)2 (ﬁ a ﬁ) 921822 ﬁ(az2)2>
for the unknown function v = f if one applies (i) Section 5. (As a particular case
including the inverse problem with extremal straight lines in the three-dimensional
space, the equation 8%v/dy' 922 — 8%v/8y?8z! = 0 satisfying the Asgeirsson mean
value formula appears!) No further comments are needed.
If rank A = 2 then the last equation (13) may be omitted and we obtain

(14) L= (BC;-CBy)u, M =(CA;, — ACy)u, N = (AB; — BA;)u
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where u = u(y?,y?, 2%, 2?) is a new unknown function. We search for a nonvanishing
solution u in the domain where the regularity

(BCy — CB1)(AB; — BA;) — (ACy — CA;)? #£0

is satisfied. Applying (iv) Section 5 and substituting (12), (14) into the relevant
closedness requirement d? £ = 0 (cf. Section 5), this inequality guarantees that the
resulting system for the unknown function u can be represented as

(15) Ou/dy' = uP, du/dy? = uQ, du/dz' = uR, du/dz* = uS,

where P,...,S are certain known functions. It follows that the solution exists if and
only if Pdy! +Qdy? +Rdz! +Sdz? is a total differential. We shall not give more
comments but it is to be noted that all “generic” variational problems are involved
in the case rank A = 2 as follows by a simple perturbation argument applied to the
function f. One can also see that this function is determined up to the substitutions
f=cf+09/0z+ 3 2'8g/0y* (c # 0 a constant g = g(z,y',9?)).

The remaining case rank A = 1 is the most difficult one. We shall outline a shorter
method than [Do] to obtain the resolving equations. In this case, (13) reduces to the
single equation AL + BM + CN = 0. We shall assume A # 0 for brevity and take
care of the equation At? + Bt + C = 0 with certain roots t, f. The subcases t # £,
t =t will be discussed separately.

9. Inequal roots. We introduce the coframe a = tdy' +dy?, @ = tdy' +dy?,
B = tdz! +dz?, B = tdz! + dz? and the “nearly dual” frame

in the sense that (t -1t)dg = Yg a+Yg-a+2g-B+Zg-pB is satisfied for any
function g. One can then verify the crucial formula

dé:RﬂAa+RBA&+SaA&

where R = (M - EN)/(t - ), R = (M — tN)/(t - ), S = w/(t ). Using (12) we-
obtain S = aR + aR where ’

) | _ _
= -———-i-)—;{g%zg& — 951962 — 3(98% 981 + 90" + 902)

' 'H(go(.gx,] 9129(])2 +3( 90;] +g 9'3 ))} ‘

(16)
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and a arises by the transposition ¢ «— f. Applying (iv) Section 5, the closedness
requirement

d*é =dRABAa+dRABAG+ (adR+adR)AaAa+Ry+Ry=0

appears where v, ¥ are certain 3-forms not depending on R, R. Using the above
frame Y, Y, Z, Z, this requirement can be represented by an equivalent and rather
special system of the kind

YR=(.), (X +aY)R=(...), YR=(...), X +aY)=(...)
where (...) are certain expressions linear in R, R. The self-evident identity
M? — LN = M? + (BM/A + CN/A)N = (M —tN)(M —iN) = (t - )RR

means that we are interested in nonvanishing solutions R # 0, R # 0. Then M =
tR+{R, N=R+R,L=-BM/A—-CN/A and w given by (12) determine the
sought form dé. (If the roots are complex conjugate, the complexification of the
tangent space appears as temporary tool.)

10. Equal roots. If t =t = —B/2A, then
dé = NBA a+ P(dz! Aa + BAdy') + Qa A dy*
with the same a, B as above and P = M —tN, Q@ = —w = aN + bP where

a = {the same as in(16)}/2A,

O o
b= (939 + 9ia0s + 90 985 + 96 9Lh) /2A.

Applying (iv) Section 5, the closedness requirement d? £ = 0 yields a system of the
kind
aP

ZN-55=(-), ZP=(.), (17+a-a%+bz)1v=(...), (7+a%)P=(...)

where (...) are certain expressions linear in N, P. The identity M? — LN =
(M —tN)? = P? means that we search for a solution N, P with P # 0. At this
place, we conclude the geometric exposition of the inverse problem closely related to
the point of view of [Do]. The conception of the subsequent chapters will successively
become more and more different.
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THE SAME PROBLEM THROUGH THE FIRST INTEGRALS

11. Digression. Before passing to the theme proper, we shall once more derive
the crucial resolving requirement (9) by using first integrals for new coordinates.
To this aim, let y* = §'(z,hl,...,h%™), 2t = 7(z,y!,...,h%™) (= 09*/0z) be the
equations of extremals (the integration constants hl,...,h?™ are kept fixed for a
moment). Then z,h!,...,h?™ can be used for alternative coordinates in the total
space and in particular

n=dzAd§'A...Ad§™ =dz AT hiim dhi AL Adhim = dz Ap,

where the coefficients are known functions of z,h!,...,h?™. Assuming (7) with
unknown functions H*/ (which ensures C), the requirement A d¢ = 0 (ensuring .A")
can be expressed by a family of certain linear relations Y c/H” =0 (¢ =1,...,L)

between the functions H*. Here the coefficients ¢ are well-known, they can be
expressed as linear combinations of the above functions A%, But unlike HY =
HU(h!,...,h?™), they may depend on the coordinate z. It follows that necessarily
also

Yok jark - Hi=0 ((=1,...,L; k=0,1,...)

must be satisfied. But in reality, only a finite number & = 0,...,K — 1 of these
relations is enough (where K < number of all H¥/ = m(m — 1)/2), even at a fixed
value z = const. This is a mere reformulation of the result (iii) Section 5 in terms of
new coordinates, of course. The present derivative 8/0z exactly corresponds to the
previous Lz.

It is to be noted that the equation u A d¢ = 0 means that d¢ = 0 (mod dg,...,
dg™), i.e., the system dj! = ... = d§™ = 0 determines a one-parameter family
of Lagrangian subspaces (given in advance) of the sought symplectical structure dé
(= d€ in the new coordinates). This provides a very nice geometrical interpretation
of the inverse problem.

12. An alternative approach to the inverse problem employing the first in-
tegrals h!,...,h?™ in a different and more direct manner can be explained as fol-
lows. The requirement C is satisfied if we assume the formula (7) with certain (as
yet unknown) functions H* (cf. Section 2). Then B is equivalent to the condi-
tion det(H*) # 0. The remaining requirement A", i.e., the congruence d¢ = 0

(mod dz,dy?,...,dy™) is expressed by

o .. OhlOhI  Ohi ORI
ij 1) —= Y = e — - —
Zc”"H =0 (c" T 9zp 829  0za 3zP)

where the sum is over i,j = 1,...,2m, for every »,4 < 1,...,m. (One can also
verify that for given functions H' = Hi(h!,...,h*™), the same conditions with
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HY = OH/ |oh' — OH*/dh ensure the existence of a function V such that the form
(8) satisfies the first congruence (4).) Since the coefficients c;,fq may depend on z,
also the requirements :

(17) Y g jezt -HI=0 (pg=1,...,mk=0,1,..)

make a good sense and should be satisfied. But in reality, only a finite number of the
conditions (17) at a fixed value z = const. is enough. (The reason is quite analogous
as in (iii) Section 5 and need not be repeated here.) _

If HY = OH’/0h' — OH*/0h? is inserted into (17) with £ = const. kept fixed,
a very interesting overdetermined system of differential equations for the unknown
functions H* = H*(h!,..., h?™) arises. Unlike the previous chapter where a special
choice of coordinates and frames was preferred (which is a typical feature of the
Riquier method), the present choice of variables h,...,h*™ is apriori free which is
suitable if the compatibility tests based on the involutiveness are applied (cf. [Br,
Ca]). Alternatively (17) can be regarded as a system of mere linear algebraic relations
between the unknown functions H* but in this case the closedness requirement
d?¢ = Y dH" A dhi Adh? = 0 must be adjoined (cf. (iv) Section 5) and we obtain
an exterior linear system of the kind thoroughly discussed in [Br].

13. The Darboux case. If m = 1 then p = ¢ = 1 and (17) is'identically satisfied.
It follows that (for given first integrals A, h? with dh! Adh? # 0) we may choose
¢ = H'dh' +H?dh? quite arbitrarily provided the necessary regularity condition
H? = 0H?/0h' — OH"[8h? # 0 be satisfied. Then the function V in (8) is to be
determined from the equation H'9h!/8z* + H 20h2/82! + 8V/8z = 0 in order to
ensure the first congruence (3) As a result; the formula

(18‘)- fo ZH,(Bh N 1:99}{1) e;v+ 16V | /Zm

provldes the general solutxon of the inverse problem

- 14. The Douglas case. Assummg m =2, the unknown functions H* (i < j;
i,j =1,...,4) are subjected to the relevant reqmrements (17), i.e.

(19) E(B"c /31:")"'H""0 (k=0,. K -1)

’ (:é = const..in the coefﬁcients) and we need det(H 'J) # 0. Sifice there'are 6 unknowns
H'J,| the number of linearly mdependent equations (17) is K < 6 (and it depends
on the nature of the coefficients c12, i.e., on the nature of the given first integrals

) h4) .
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If K = 6 then HY = 0 is the only solution of (19) and the inverse problem
is unsolvable. If K = 5 then all solutions of (19) are proportional, i.e., HY =
uK" where K% = K% (h!,..., h*) are known functions. One can then see that the
unknown factor u is subjected to a system of the kind (15) with the independent
variables hl,..., h* (instead of y!,y?, 2!, 22) and the resulting conclusion is analogous
as in Section 8. The cases K < 3 lead to a mere Cauchy-Kowalewska system and
will not be discussed here. The remaining case K = 4 is the most interesting one
and exactly corresponds to Sections 9, 10.

15. Continuation. Assume K = 4. Then (19) consists of 4 independent equa-
tions and may be represented (if necessary, after a sufficiently general change of
variables h!,...,h%) in the special and equivalent shape

HY=L' (i=1,2,3), L=0

where L!,..., L3, L are linearly dependent on H'2, H'3, H?3 and do not involve
any function H*. (In fact, such a state is achieved if the condition (19) produces
only one relation between the variables H'?2, H!3, H?3. In equivalent terms, if
HY = uK*% +vL" is a general solution of (19) with u,v arbitrary parameters and
K%, L known, then the pencil of forms Y (uK* + vL*) dh* A dh/ when restricted
to dh* = 0 should still be a pencil involving two essential parameters u,v. But such
a state can be achieved by a sufficiently general choice of the variable h%.) Inserting
HY = 9HJ /|Oh' — OH'|Oh?, we obtain the resolving system

(20) OH'/Oh* = 0H*/Oh* + L' (i =1,2,3), L =0,

where the absence of 9H*/0h* prevents its bringing into the Cauchy-Kowalewska
shape.

Turning to the problem of compatibility of (20), we shall abbreviate H*/0h* =
Hi, 0HY [6h* = H ,';j and analogously for higher derivatives. Moreover let us denote
L=R°

We should like to propose a compatibility test advantageous for the discussion
of “nearly Cauchy-Kowalewska” systems of differential equations. The test is of in-
ductive nature and consists of the reduction of a given system to another system of
equations for admissible Cauchy data on a hyperplane. So, unlike in the involutive-
ness theory, it proceeds from higher- to lower-dimensional compatibility problems
and the most important objects (e.g., the characteristics of codimension one) are (at
least implicitly) indicated at the very beginning of calculations.

As the system (20) involving unknown functions H1,..., H* of independent vari-
ables hl,...,h* is concerned, it clearly implies H}, = H} + dL*/dh*. It follows

HY = H}, - H}; = H}, + 0L |dh’ — HY, — OL* |k’ = 0L’ |0k’ — L*/0h?
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which are clearly functions of H ,';j (i,j,k = 1,2:3). As a result, the expressions H:j
can be eliminated from the equatjg, (0L /ah" =) OR®/8h* = 0 and we obtain a
linear relation R! = 0 between H'2 13 pr23 without derivatives 8/0h*, that is,

R(...,HY,...,HY% .. )<0 (i,j,k=1,23).

Quite analogously, owing to Hjx, = HA, + 8?L/0h*Oh%, the equation dR! /ht =0
(equivalent to 82L/(0h*)? = 0) can be replaced by an equivalent linear relation of
the kind

R*(...,HJ, . HZ,... H9 . )=0 (i,jk€=1,23).

Continuing in this way, we obtain a series of relations R* =0 (s =0, 1,...) between
derivatives of H!2, H13 K23 with respect to h',h%,h3. One can observe that if a
certain relation RS = 0 is a linear combination of the preceding R =... = RS-! =
0 possibly derived with respect to h!,h?, h3, then also all the following relations
RStk = 0 do not bring anything new (being analogous linear combinations, too;
this follows by a simple analysis of the above recurrent construction of the sequence
RO RY,...). Such an index S < oo does exist (as follows from the general finiteness
principles of the compatibility theory).

At this place, the compatibility of the original system (20) is converted into the
compatibility of the system R® = ... = RS~! = 0 with z* = const. kept fixed. In fact,
solutions of this system provide the Cauchy data for (the Cauchy-Kowalewska system
constituted by) the first group of equations (20) with unknown functions H', H%, H3
and H* quite arbitrarily chosen in advance. Then the remaining equation L = 0 of
(20) is satisfied (at least in the formal sense, i.e., compatible) since all derivatives
0°L/(0h*)* = 0 vanish at the hyperplane z* = const. (being equivalent to R®* = 0,
that is to R! = ... = R5~! = 0 in virtue of the first group (20)).

So we have to deal with the compatibility of the system R® = ... = RS-1 =0
with unknown functions K* = K*(h!,h?,h3) = H*(h!, h?, h3, const.) replacing the
previous H* in the expressions H = 9HJ/Oh* — OH!/OW (i,j = 1,2,3) which
occur in R®. We propose still onother simplification as follows. Denoting K%/ =
OK7 |0k — 8K |9k for clarity, assume that R® = AK'2+ BK'3+CK? with A # 0.
Then K2 may be eliminated from the remaining relations R! = ... = RS-1 = 0
(if S > 1) which turn into a system of linear differential equations for K3, K23
regarded as unknown function. However, then the closedness requirement

AL K% dhi Adh = d (K dht +K% dh?) A (G dht —Bdn? +dh° ) ) =0
must be taken into account (compare with (iv) Section 5). It yields the condition

(a B d aB/A)K,3=(a o) aC/A)Kw

o T 45K oh3 o~ AoR T on
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for the remaining unknowns K3 g23 which is to be adjoined to the previous
R! = ... = RS- = 0 (with K'? 3jready eliminated). In principle, this is a bet-
ter result than in Sections 9, 10 since we have only three independent variables h!,
h?, h3. Note at least that by an appropriate change of variables k!, k2, h3, the
factor § dh'* —EB dh? +dh® could be transformed either to h?dh! +dh® or to dh®
(the Darboux theorem). Then the above condition essentially simplifies but we do
not continue these reasonings.

THE NON-REGULAR INVERSE PROBLEMS

16. Fundamental structural results. Leaving the regular variational prob-
lems, we enter a rather dangerous realm involving many striking matters. The com-
mon methods (especially the Dirac theory of constraints) seem to be of little purpose
for our aim and we are compelled to follow another way. For simplicity, we will deal
only with the case m = 2. Our methods can be applied for the general m as well but
it is a toilsome task which deserves a separate book.

So retaining the previous notation, we will thoroughly deal with the variational
integral

(21) /f(z,yl,yz,zl,zz) dz = extremum (fi; #0, firfiz = (fi2)?).

One can then see that (4) essentially simplifies:
(22) d¢ = (a'9* + a?9?) Adz +ad A% + fLil A Y

where o' = 8f /0y*—0f:/0z—Y" 278f:/8y’, a = 1(8f2/0y' -8 f1/8Y?). In particular,
we introduce the forms ¢ = dz! +cdz?, ¥ = 9! + c¥? with ¢ = f12/ fi1 which will be
of the highest importance. Clearly the forms

a'?! + a?9?, aldz +av? - f11(, a?dz —a?' - cf11(,Y

generate the module Adjd¢ and it follows that all extremals satisfy Pfaff’s system
¢ =0 (¢ € AdjdE). (The converse is not true but the curves satisfying the system
and the contact conditions 9! = 92 = 0 already are the extremals.) One can then
see that the forms

(23) edz, e¥?, 9, a'dz +a¥? — f11¢ (e =a? —cal)

may be used for generators, too. It follows that e = 0 on every extremal. Assuming
that the function e effectively depends on 2, 22 (which can be expressed by de/9z* #
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0, see below), we shall prove that there exists another function & vanishing on all
extremals. In other terms, the £L system consists of two differential equations
e = & = 0 of the first order.

For the aim mentioned, look at the module Adj d¢ near the points where e # 0. It
follows from (23) that near these points, Adjd¢ is generated by dz, dy!, dy? together
with a certain differential dz where z = z(z, y*, y?, 2!, 2?) is a function satisfying the
congruence

dz = g:—ldzl +56:—2 dz? = 3%21'( (mod dz, dy', dy?).
(In particular 8z/02% = c9z/dz' so that 0z/3z! = 0 implies also 8z/32% = 0. We
shall soon see that e can be expressed in terms of ,y',y?, z, thus de/dz! = 0 implies
0e/0z% = 0, too.) The congruence clearly implies

0z 0z 0z 0z
(24) C:(dz—%dII—a—yldyl—*a——yidyz) 5;i'
The form d¢ can be expressed in terms of the variables z, y!, y2, z (even at the points
where e = 0). Consequently, if we insert ¥' = dy’ —z'dz, 9 = dy* +cdy? —(2! +
cz?) dz and ¢ given by (24) into the formula (22), then all coefficients of the exterior
products like dy’ Ady?,...,dz A dz necessarily depend only on the variables z, y!,
y?, z. Omitting these easy calculations, we state only the most important part of
the final result: the functions e, c, 2! + c2? can be expressed in terms of the above
variables. (In particular, the function e might play the role of the function z, as
well.) Hence

de ., Oe . 4 de 1 a2
o~ == —_- = —_
(25) de = Mdz +6z1 dz +6z2 dz Mdz:+az1 (mod ¥°,9%)
where we denote M = Je/0z + 2'9e/0y' + 2z20e/dy*. (In particular we obtain
the self-evident but highly important identity de/822 = cde/8z1.) Every extremal
satisfies e = 0 (and thus de = 0) and a’ dz — f11{ = 0 (see (23)). Consequently

de + }.—:—l%(al'dz —fi1¢) =édz =0 (e =M+ ﬁ%al)
on every extremal. It follows that & = 0 on every extremal, and the sought function
€ is explicitly found.

It is to be moreover proved that the functions e, & are functionally independent.
Instead, we shall see that the equations e = € = 0 determine a submanifold of
codimension at least 2. For this goal observe that the restriction of the module
Adj d¢ to this submanifold-is generated by the forms ¥ and a¥? (cf. (23), (25) with
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e = & = de = 0), that is, either by the forms ¥*,92 (if a # 0), or by the single form
9 (if a = 0). On the other hand, the restriction (of the flat module Adjd¢) is a flat
module and it clearly follows that the dimension of the submanifold cannot exceed 3
(look either at the congruences d¥! = d9? = 0 (mod 9*,9?), or at the congruence
dd =0 (mod 9)), and this concludes the proof. _

We shall not analyse all events which in principle may occur. For certainty, let us
assume that e = € = 0 is exactly a first order system, that is, it may be represented
in the shape z! = g(z,y!,¥?), 22 = ¢%(z,y!,y?) with derivatives separated on the
left.

17. The inverse problem. Every first order system dy’/dz = ¢'(z,y',y?)
(¢ = 1,2) may be regarded as the ££ system for an appropriate variational integral

/(zlfl + 22f;)dz = extremum (f; = fi(z,y',9?))

linear in variables z1, 22, as one can easily find. But we are interested in the recon-
struction of quite other variational integrals (21) to obtain all possible solutions of
the inverse problem.

Passing to calculations, let the mentioned ££ system z* = g* be given. Choose
a function e = e(z,y!,y?, 2z}, 22) with de/dz! # 0. Since e = 0 should belong to
the £L system, we further assume that the function e vanishes on the submanifold
z* — g* = 0. Moreover, in virtue of the above results, we require that

de /0
(26) 5;5/5:? = C(iL‘, yl,yZ’e)

is a function merely of z, y!, y?, e. (Note at this place the geometrical sense of (26):
if the variables z, y', y? are kept fixed, then the level sets e(:,,-, 2!,2%) = const.
consist of a family of straight lines in the plane 2!, 22. It immediately follows
that a lot of such functions e does exist.) Assuming (26), one can verify that also
2! +cz? = d(z,y',9?,e) is a function merely of the variables z, ¥, y?, e (look at the
Jacobian of e, d).

With the function e already chosen, our next aim is to determine the PC
form £. Since d¢ can be expressed in terms of z, y!, y2, e, it follows that

¢ = Pdz +Qdy! +Rdy? +Sde+dV, hence
(27) dé =dPAdz+dQAdy' +dRAdY? +dS Ade

where P,...,S are functions of z, y!, y2, e. The form d¢ should satisfy the second
congruence (4), that is,

8P 08S 1(9S 9Q o [0S BR)
—_——-—_—=z —_ 2| —=-=).
de Oz

5171- ~ Be dy?2  Oe
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Since the left hand side is a function of z,y!,y?, e, it follows that

0y 95 _OR_ (95 Q) 0P _os_ (35 0Q
92 Be \oyl Ge)’ e 9z “\By ~ Be

where d = z! +cz%. One can then express a!, a? (cf. (22)) in terms of the coefficients

P,...,S (cf. (27)) and then obtain the requirement

8Q OP OR 0P OR 9Q
2 _cql =e= b 2l I tiuh o Bl X
(29) a°—ca =e=c (61: ayl) 3z T 3y? d (3y1 3y2)

by easy calculations. At the stage already achieved, if (28), (29) are valid and
8S/0y' # 0Q/0de, then the module Adjdé¢ is of dimension 2 at all points where
e = 0 and of dimension 4 otherwise (direct verification). So it follows that the
relevant £ is a PC form to the integral (21) with

(30) f=P+2'Q+ 2’ R+ 8V/3z + 2'3V/dy* + 220V /0y* (V = - / Sde),

as follows by virtue of the first congruence (4). Moreover, we have already ensured
that the equation e = 0 is involved in the £L system.

At last, we pass to the complete control over the ££ system under consideration.
Owing to (28), the module Adj d¢ to the form (27) is generated by 9!, 92, de exactly
at those points where the equations

9Q_0oP _ ,(0R _09Q\ 9P OR_ ,(O0R _0Q
oz Oyl oyl 0oy?)’ 0y* Oz oyl  oy?

are satisfied (direct verification). The equations should be equivalent to the ££
system z* — g* = 0, that is, to the equivalent system e = 2% — g2 = 0 (we employ the
inequality de/8z! # 0). This equivalence takes place if the sole condition

9Q _9opP _ ,(9R _0Q
8D oz oyt Y (311‘ ay?

) on the hyperplane e = 0
is satisfied. Conversely, if 9R/3y* # 8Q/0e then the condition (31) clearly implies
the identity z2 — g2 = 0 on the hyperplane e = 0.

18. Summary. If an £L system 2! — g!(z,y',y?) = 22 — g%(z,y,y?) = O is given
and we search for the relevant variational integral (21), then a function e is to be
chosen as above, which uniquely determines the other auxiliary functions ¢ (cf. (26))
and d = 2! + cz?. Then the system (28), (29) with the boundary condition (31)
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for the unknown functions P, @, R, S of independent variables x, y!, 42, e is to be
solved under the inequalities 3S/3y! # 8Q/de, OR/3y* # 8Q/dy*. With such P,
Q, R, S already known, the sought variational integral is determined by (30).

- 19. Particular example. Assume g' = g? = 0 for a little diversion. Then we
may choose e = z! (which is not the most general possibility), hence ¢ = 0, d = e.
The functions

R / a5 de+®, P= /( a;;+Q)de—eQ+\Il

with & = &(z,y',4?), ¥ = ¥(z,y!,y?) arbitrary prov1de the general solution of (28).
By msertlng this into (29), we obtain

e_/ (3_‘?_ © 05 i) 9% _, 02 ov
= Jo 82 7 J, aytay? ¢ 9r oyl | oy?

so that ®, ¥ cannot be quite arbitrary but subjected to the condition 8%/dz =
0¥ /8y? (as follows by inserting e = 0 in the last equation). It moreover follows that

2?8 9%
3y13y2 T oyt

by derivation, whence

_[°8S LAY P .
Q-/o aylde+y +/0 a—yz-dy +0 (©=06(z,y,e)).

The inequality 8S/8y* # 8Q/de is satisfied if 0 /e # 0. The inequality IR/dy* #
8Q/dy? is always true. The boundary condition (31) means that 80/8z = 8% /dy!
at the hyperplane ¢ = 0 and permits to specify ¥ (and even ®) in terms of ©.
We will not state the relevant explicit formula here and mention only the choice
$ =% =¥ =0, © = e which yields the solution f = (y? + (22)?/2)2! by using (30).
But the point is that we are in principle able to determine all the relevant variational
integrals (21).

'20. The underdetermined case. On this 6ccasjon, let us mention'the case of
the underdetermined ££ system, that is, the case of such variational integral (21) for
which the function e is identically vanishing (and thus the extremals do not depend

o merely on constants but on arbitrary functions). One might expect that such a kind

of “degeneratlon” can occur only if f is in reality depending on one variable function, .
that i 1s, if
f = g(z,h, dh'/dz)‘ where h = h(z,y*,y?).
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However, we shall see that it is far from being true. We shall even resolve the relevant
inverse problem.

So let us deal with the variational integral (21) and assume e = 0. Then the ££
system consists of (prolongations of) the differential equation dz! /dz +cdz? /dz =
al/f11 arising from the last form in (23) linear in the second derivatives dz* /dz =
d?yt /dz®. On the other hand, assuming e = 0, the module Adjd¢ is generated by
merely two forms (see (23)), hence d¢ = du A dv and § = udv + dw for appropriate
functions u, v, w. But alternatively ¢ = fdz +f19! + f29? whence

(32) u(vg + 20! + 2%0?) + w, + 2'w! + 22w? = f,
(33) U’Ul+’w1 =f11 uv2+w2 =f2v
(34) uv; + wy; = uvg +wg =0,

where the abbreviations like u, = 0u/dz, u* = 0u/dy*, u; = Ou/dz* are used. Owing
to (34) necessarily v = 9(z,y!,y?, z) and w = w(z,y!,y?, z) are composed functions
of the above mentioned kind with a certain argument z = z(z,y*, %%, 2!, 2%). Then
(34) implies that u = —@,/?, = 4(z,y',y? 2) is also a composed function of the
kind mentioned. Inserting this into (33), we obtain

It follows that fi = r(z,y',¥?%,2), fo = s(z,y*,y?, 2) are composed functions of the
kind mentioned. Then (32) yields

(35) M+2r+22s=f (M= M(z,y', 9% 2) = G, + ).

Let us denote N = M, +2z'r,+2%s,. Then (35) implies 2; N = 23N = 0 by derivation
with respect to z!, z2 and it follows that N = 0.

By looking at the identity N = 0 one can observe that if the variables z, y!, y?
are kept fixed, then z! and 22 are affinely related, that is, z = Az! + B2% + C where
A, B, C are functions of z, y!, y?. Looking at the identity N = 0 again, one can
conclude that

r,=AD, s, =BD, M, =(C —2)D

where D = D(z,y',92,2) is a certain nonvanishing factor. Our calculations are
coming to the end. Regarding z, 3!, y2, 2z, 22, z as independent variables for a
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moment, we recall (35) and write
f= /6(M +2'r 4 225) /02 - dz = /(C —z+2'A+2°B)Ddz

=(C+z1A+zzB)/Ddz—/dez=z/Ddz—/dez

=/(/Ddz)dz=}(x,y1,y2,z).

So it follows that f = f(z,y',y?, A2! + Bz2+C) is a very special composed function.
With this result, the original identity e = a? — ca® = 0 is expressed by the equation

-
A%-B%+(A(§%—%—?)—B(%—-%§)
+(z—c)(%—%))%=0

as follows by direct substitution. Here A (A # 0 since ¢ = fi2/f11 = B/A), B, C
may be arbitrarily chosen in advance and then the last equation has a lot of solutions
f. (In particular if A = dh/dy', B = 8h/0y?, C = 0h/0z where h = h(z,y',y?)
is arbitrary, we obtain the variational integrals depending in reality on merely one
variable function.)

21. Continuation. The results hitherto obtained seem to be interesting but of
little importance for the inverse problem. So let us again return to the original PC
form £ = udv + dw from the very beginning. The second congruence (4) then reads

(36) (uz + 3 2'ut) /(vz + 3 2'0F) = w1 g = ug/ve

after some simple calculations. Conversely, if (36) is satisfied for certain functions u
and v, then there exists a function w such that the form £ = udv + dw satisfies the
second congruence (4) and thus ¢ is a PC form. (Explicitly, f = u(v; + Y z'v) +
w; + Y z'w' where w is determined to satisfy uv; = w;. Such a function does exist
as follows from the second and third equation (36).) Note at last that the module
Adj d¢ is generated (mod ¥!,92) by the forms

(37)  du(uz+ Y z'u)dz+ Y uidei,dv = (v, + Y 2v')dz + Y v d2t

that are proportional owing to (36). So omitting the latter form in (37), the gener-
ating equation of the £L system is given by the former:

(38) uy dz' / dz +ug dz? [ dz +(us + 2 ul + 22u?) = 0.
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After these preliminaries, we may turn to the subject proper.

22. The inverse problem. Given is a multiple of the equation (38), that is,
an equation of the kind dz! /dz +U dz%? /dz +V = 0 (we assume the coefficient of
dz! /dz in (38) nonvanishing, for certainty). We search for certain functions u, v
 satisfying (36) and such that the corresponding ££ equation (38) differs from the
given one by a mere factor. (We have already seen that the knowledge of these
functions u,v permits to determine the corresponding PC form £ = udv + dw and
even the relevant variational integral (21) by the first congruence (4).) Denote 9 =
dz! +U d2% +V dz for a moment and consider the module © = {91,929} generated
by the forms 9!, 92, 9. The module © is not flat (easy).émd contains both differentials
du and dv (look at the congruences (37) and observe that the right hand sides are
multiples of 9), hence it contains the flat submodule {du,dv}.

On the other hand, one can directly find all flat submodules generated by two
independent forms of the module ©. Using the common methods. [Br, Gr], one can
find that only the submodule generated by the forms

U v v ‘.a'U_aU)

191+Uv2a1?+W192 (W Val— a +5;2- 2557 " bz

is flat provided the functions U , V satisfy the ‘family of identities

U U OV OV V. W ow . ow
921 9% oyt 82+.3z1 V8z1+2z3_‘7"+3’
v av
-t W
UaU U wdY _yW W _,,

oyl Gy .9z 021 = 922

So these identities yield necessary conditions for the equation dz! /dz +U d2? / dz +
V = 0 to constitute the (underdetermmed) EL system for a certain variational
~ integral (21).

Conversely, let the coefficients U, V' of the equation satisfy the above identities.
Then we have the flat module {¥! + Ud?,9 + W92} = {du,dv}, where u, v are
‘appropriate functions. The form d¢ = duAdv satisfies the second congruence (4)
(being a multiple of the form (9* + Ud¥?) A (9 + W9?)). Since this congruence is
_equivalent to (36), there is a function w such that { = udv+dw is a PC form
~(cf. Section 21). Clearly ¥ + W92 € Adjd¢, hence ¥ € Adjd¢é modulo the contact
forms. But the extremals satisfy Pfaff’s system ¢ = 0 (¢ € Adjd§) and the contact
conditions ¥* = 0, thus in particular the equation ¥ = 0 which is however equivalent
to the differential equation given in advance. No other ££ equations may appear
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since the module Adjd¢ = {du,dv} = {9 + Ud?,9 + W92} is generated by the
single form ¥ modulo the contact forms.

We have seen that even the inverse problem for non-regular variational integrals
can be effectively investigated. However it is to be noted that the general concept of
regularity seems to be not yet well understood in current literature, cf. Section 27.

HIGHER ORDER VARIATIONAL PROBLEMS

23. The scalar case. Modifying a little the notation, we pass to the inverse
problem for the variational integrals

(39) /f(x, Yo, .., Yn)dz = extremum, vy, =d°y/dz’.

Assuming n > 1, the family of variables z,yo,...,y» appearing in (39) proves to
be too narrow at a very early stage of investigations since the PC forms and ££
systems involve some derivatives of higher orders that cannot be easily specified in
advance. An analogous difficulty will appear again and again in future, so we take a
radical measure from now on: the infinite prolongations employing the derivatives of
all orders. Since the functions and differential forms will always depend on a finite
number of variables as before, the common rules of calculations may be accepted
without any change. The vector fields will be represented by infinite series but it
does not cause any trouble.

As the variational integral (39) is concerned, we introduce the space of variables
Z,Y0,¥1,. .. endowed with the contact forms ¥, = dys —ys+1dz (s = 0,1,...) and
the vector field D = 8/9z + ) _ ys+18/0ys (infinite series) usually called the total or
formal derivative. Since every function g = g(z,¥o,...,¥m(s)) under consideration
will depend on a finite number of variables, clearly dg = Dg - dz + Y dg/dy, - ¥°
makes good sense. Let us define the PC form ¢ by the congruences

(40) £ fdz (mod all 9,), D|d£ =0 (mod ).

In a certain sense, (40) is a generalization of (4). The PC form is uniquely determined.
In explicit terms

(41) £=fdz+) a'd, (s=0,...,n—1;a"-1 —a—f—a‘*:?-L—Da‘),

B ay"’ aya
42)  dé=ewAdz+Yald A, (€=Z(—D)‘¢%§,aisg;:).
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Here e is the ££ operator. The (infinitely prolonged) extremals ¥s = f,(z) (s =
0,1,...) satisfy the contact conditions 9, = 0 (clearly equivalent to the recurrence
§s+1(z) = d7s(z)/ dz) and the EC equation e = 0 (and thus the prolongation De =
D?e=...=0).

We are interested in the inverse problem, i.e., we wish to determine the variational
integral (39) if the extremals are given in advance. It is sufficient to deal only with
the regular case defined by 82f/8y2 # 0. The argument for this assertion is as
follows.

First recall that the £L operator e is identically vanishing if and only if f = Dg for
an appropriate function g. (We omit the proof and refer to a far going generalization
in Section 39.) If (39) is a non-regular variational integral then clearly f = A+ By,
where A and B do not depend on y,. So, instead of (39), we may deal with the
variational integral

/(f — Dg)dz —» extremum (g = /den_l)

with the same £L operator (and thus the same extremals) but the new kernel function
f — Dg not involving y,, (easy verification). If the new variational integral (of order
n~—1) again would be a non-regular one, we may repeat the construction. So it follows
that, as the inverse problem is concerned, we may suppose regularity of the sought
integral (39) and thus the given ££ equation of the kind y2, = g(z,%0,...,Y2n-1)
with the highest derivative of order 2n separated on the left.

24. The inverse problem can be resolved both by the direct and by the VIF
method but we will outline a geometrical approach more adaptable for our future
aims. So let us introduce the subspace E consisting of all points which satisfy all
equations D*e =0 (k = 0,1,...), explicitly y2n+x = D*g. Denoting by ¢ the natural
inclusion of E into the total space of all variables z, yo, 1, - . ., the pull-backs z = *z,
Yo = L*Yo, - -, Y2n—1 = L*Y2n—1 may be used for coordinates on E. (We accept the
common convention of omitting the pull-backs whenever possible.) In terms of these
coordinates

F=0/3z+y:10/8yo+ ...+ Y2n-10/0y2n—2 + 98/3yan—1

is a vector field on E, the restriction of the vector field D (which is tangent to E).
The curves lying in E and tangent to F are just the extremals. Concerning the PC
form ¢, it is expressed in terms of the variables z, yo, . . . , y2n—1 (direct verification), so
we may identify £ = ¢*£. Owing to regularity, the module Adjd§ is generated by the
forms 9o = ¢*Jo, ..., Yan—2 = t*P2n_2, dyan—1 —gdz (as follows from (42) by easy
calculations). So df is of the maximal possible rank 2n and moreover F € Adjd¢t
or, equivalently, F'| d¢ = 0 is satisfied.
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Let us turn to the inverse problem. Then E (equipped with the above coordinates
and contact forms) and F are given in advance and we search for the relevant PC
form £. It is sufficient to ensure the properties (40), rank d¢ = 2n, F|d¢ = 0.
They are analogous to the requirements A, B,C of Section 2. (In fact, the second
congruence (40) means that £ is a PC form to a variational integral (39) determined
by.the first congruence (40). Then the rank condition on d¢ ensures regularity, and
the extremals are guaranteed by the last condition.) Slightly adapted arguments of
* Sections 2 and 3 imply that it is sufficient to determine the restriction dé of d€ on a
fixed hyperplane z = const. The form dé should be a symplectical structure in the
reduced space of variables yo, ..., ¥y2n—1 satisfying the requirement (9) where

p=dyoA...Adyn-1, G =110/0yo+ ...+ Y2n-10/0y2n + 90/0y2n_1.

We omit the proof and note that an alternative approach through the first integrals
following the lines of Section 12 can be realized, too.

25. Example. Let n = 2 and let y4 = g(z,¥o0,-..,¥3) be the given ££ equation.
Assuming d¢ =Y a™ dy, Adys and '

MEp =3 (%) dys Adyr-i—1 = X b5 dy, Adys  (yask = Frg)
(both sumé- with r < sandr,s=0,...,3), the requirements (9) are expressed by
- ;101 b33 — qO2b13 4 g3p12 4 o120 — 13502 4 23401 = .
We state only those coefficients which are nonvanishing and really needed:
bgl - b(1)2 - b(2)3 ___b§2 — I, bg3 = aéyg_a’ b§3 =_2,

—_— ——

=000 g 380y 30 ym_y

. vaila ' Oy Oys’ . »
"0F%g - 8Fg _9g OFg . dg
bg® = , =4 5=, bP=4——, BP=5—.
dys P70y o C dys’ ° " Oys
Then the requirements (9) with k =0,...,4 read
a® = al% = g12 4 00 = _a_.‘l_an — 92
v 3
320300, Fo
v ' Oya - Oys
and determine the functions
a% = g13 =0, a?=—-a®=u, ¢?=uP, " =uQ
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and thus the restricted form
d€ = u(dyo A(Q dy1 +P dyz — dys) + dy; Adys)

up to an unknown factor u = u(yo, . ..,¥3). Here we have denoted

1 dg 1 ( dg ) 89 OFg
P = =-—, = - +3‘— -5 1]
2 y3 Q=3 ( Oys Oys Oys

One can see that the nonvanishing u # 0 is necessary and sufficient for regularity (8
is expressed by d€ A d€ # 0) and that the next requirement (9) with k = 5 yields
the necessary compatibility condition

OFg 999 0Fg ,0F 158y (1(91)2+_<9_g_> g _

dys  20y3 dys  Jy2 2 Oys dys dys

for this nonvanishing. If this condition is identically satisfied, all requirements (9)
with & > 5 may be omitted. At last, the unknown factor u should satisfy the
closedness condition d2 £ = 0 (cf. (iv) Section 5) which may be easily converted into
the system

n_,(09-P % or) 0 w0 &
Jyo 0ys dys 0y )’ oy 33/3 0y dys’ Oys

(quite analogous to (15)) with the conclusion that the nonvanishing solution u # 0
exists if and only if the form

aQ-P) 8Q ap) aQ aP
_ dy d —d
( Gus Oy oy ) W0 Ty, Wty 2

with z = const. kept fixed is a total differential (of In |u).

26. Several variable functions. We introduce the space of variables z, y}
(i=1,...,m; s = 0,1,...) equipped with the contact forms ¥ = dy} —yi,, dz,
total derivative D = 8/8z + 3 yi4,, and the variational integral

(43) /f(ib' Yor+-1Y P Yhye ., y™)dz = extremum, y:=d°y'/dz".

First assume the regularity det(8f /9yi yi) # 0. Then, if &' = 3(—D)*df/8y: are
the £L operators, the £L system €' = 0 can be uniquely represented by an equivalent
system of equations of the kind

(44) y;n Eg‘(x'ly(li’“-1y6nl""y%n—11y;':|,—l)
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with the highest derivatives of order 2n separated on the left. In the inverse problem,
we search for (43) if (44) is given in advance.

Let E be the subspace defined by D*e! =0 (i = 1,...,m; k = 0,1,...) of the total
space. It may be equivalently defined by the equations g}, ., = D*g* and it follows
that the functions z, ¥ (i =1,...,m; s =0,...,2n — 1) may serve for coordinates
on E. Quite analogously as above, our aim is to determine the PC form

§=fdz+3 a0, (an_, =0f/dy;, ai_, =8f/dyi - Da})
satisfying the congruences
£2 fdz (mod all ¥), D|d¢ =0 (mod all 93).

It may be regarded as a differential form on E. Owing to the property F|d¢ = 0
where

F=0/0x+ Y ys0/0ys+ ...+ Y Ysn_10/0ysn_o+ Y 9'0/0y5,_,

is the restriction of D on E, it is sufficient to determine the form df , the restriction
of the form d¢ on a fixed hyperplane z = const. The form d¢ should provide a
symplectical structure on the hyperplane and should satisfy the conditions (9) where

p=dygA...AdYyTA...AdyE_A...Ady",, G=F-9/oz.
The proof of all these assertions may be omitted.

27. On non-regular cases. Assuming m = n = 2, let us first mention the
variational integral

/ (Ayl + By?)dz - extremum

where A, B are dependent on z, y3, ¥, y}, y?. Omitting all lower order terms, the
EL operators are

e=...+Cy e’ =...-Cyl (C=0A/0y? -3B/dy}),

and assuming C # 0, the £L£ system can be uniquely expressed by certain formulae
of the kind yi = ¢* (i = 1,2) with the highest derivatives separated on the left. So,
introducing the vector field

F =08/0z + Y yi0/0ys + Y y30/3yi + ¥ ¢°9/ 0y}
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on the subspace E defined by y}, , = D*g*, the PC form £ (defined quite analogously
as in the previous section) may be regarded as a differential form on E satisfying
F|d¢ = 0. If E is given in advance and we search for the variational integral, it is
sufficient to determine the restriction d¢ of d¢ on a hyperplane z = const. The form
d€ should be a symplectical one and should satisfy (9) with u = dy3 A dy3 Ady} Ady?
and G = F — 9/9z. So regardless of the non-regularity, the results are of the same
nature as in Section 26.
On the contrary, the non-regular variational integral

ff(z,yé,yé,-..,yé,yﬁ)dw — extremum (fi1 # 0, fi1f22 = (f12)?),

where we temporarily denote f;; = p*f/3yid}, leads to analogous results as in
Sections 16-20. In particular, the ££ system involves the equation (e =) e! —
ce? = 0.(c = fi2/f11) of at most the third order and if de/dy} # 0, then (¢ =)
fi1De —e'de/By} = 0 is another third order equation of the (prolonged) ££ system.
One can observe that the PC form cannot be identified with its restriction on the
relevant subspace E.

It follows that the common definition of regular problems is not the best possible
one. Some deeper interrelations between the PC forms and ££ systems should be
taken into account.

"FORMAL CALCULUS OF VARIATIONS

28. Prelude. The common approach to the constramed variational problems
through the admissible variations resembles a little the vicious circle: in order to
obtain the extremals, certain boundary conditions are chosen in advance but the
derived £L system does not depend on them and on the contrary, the possible shape
of boundary conditions is to a large extent determined by the width of the family
of the resulting extremals. It seems that without some assumption of regularity, the
general constrained variational problems are lying beyond the scope of this method.

" For this reason, we shall propose another approch. Temporarily, it may be regarded
as a mere formal variant of the usual Lagrange multipliers rule but the multipliers
will be soon eliminated..

We begin at a very general level. Let F be a function on a manifold M. (In
reality, an infinite-dimensional space of certain curves will be substituted for M but
we prefer a certain ambiguity here since only very general properties of M and other
relevant objects to follow will be needed.) Let G: M — V be a mapping into a
vector space V, Pg € M a fixed point with GPo = 0 € V, dF and dG differentials
‘at Pg. Let

45 | P(T)EM(—e<‘r<e,e_>0), P(0) =
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be a one-parameter family of points, Z = dP(7)/ dr |, its tangent vector at Py.

We introduce the following properties I-IV of Py:

I. dF P(7)/dr |T=0 = 0 for every family (45) with GP(7) = 0,

I: dF P(7)/dr |, _, = 0 for every family (45) with dGP(r)/dr| _, =0,

III: dF(Z) = 0 for every Z with dG(Z) =0,

IV: there exists a linear function L on V satisfying dF = L o dG.

Property I recalls the usual concept of a critical point Po of F at the level subset
G~1(0) C M of the mapping G. Owing to the common definition of differentials, I
and IIT are equivalent. The other neighbouring properties are very near one to the
other and clearly equivalent if the data F, G, M, V are favourable enough. The
property IV resembles the concept of a standard G-critical point of F [Ch]. It may
(and will) be used for a convenient substitute of the original concept of a critical
point from now on.

We continue with a particular realization of the previous abstract scheme. Let N
be a manifold, & the module of all differential 1-forms on N, A € @ a fixed 1-form,
2 C ® a subset, V = @ R. the direct product of real lines R,, = R indexed by the
family of forms w € Q and equipped with the direct product topology. Let M be the
space of all curves P: p =p(t) € N, 0 < t < 1, embedded into the manifold N. We
introduce the function F: M — R and the mapping G: M — V as follows:

1 1
FP =/ p*A, GP= {/ p*w} .
0 0 weN

Then a moving point (45) is realized as a one-parameter family of embedded curves
P(r):p=p(t,7) E N,0< t <1, —e < 7 < ¢, and the relevant tangent vector Z
may be visualized as a family of vector fields

Zp(t,O) = dp(t7T)/ dr |r=0

along Po: p = p(t,0). For technical reasons, it is appropriate to extend the family
into a global vector field (noted Z) on N. Occasionally abbreviating p(t,0) = p, the
differentials are as follows:

1 1
dF(Z) = /0 LA = /0 BZ] AN+ MZoi0) = MZoo),

dG(2) = { /0 : p;,czw} = { /0 52 do+0(Zya ) —w(z,,(o,o))} :

We shall suppose Zp(1,0) = Zp(0,0) = 0 (being not interested in the boundary condi-
tions and refering to [Ch] for the general case). Since every linear function L on V
can be explicitly expressed by a finite sum

L({'-’N}WEQ) = Eewvw (ew’ vy, € R)
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for appropriate constants l,, we have
LodG(Z) = Y b, [y p3Z] dw = [, psZ) d@,

where @ = ) f,w € Q. It follows that the requirement dF = L o dG (cf. IV) can be
expressed by

1
/ ppZ)d(A—@) =0 (appropriate @, arbitrary Z),
0

that is,
(46) PoZ]d(A —@) =0 (appropriate @ € §, arbitrary Z).

It is to be noted that the level set G™!(0) coincides with the set of all embedded
curves P: p = p(t) € N, 0 < t < 1, which satisfy Pfaff’s system w =0 (w € Q,
easy verification). Altogether taken, the theory of constrained variational integral
(3) is identified with the study of standard G-critical points of F. The curves Py:
p = po(t) € N, 0 < ¢t < 1, satisfying the constraints pjw = 0 (w € Q) and the
requirement (46) will be called eztremals (see also [Gr, I d 14]).

As yet the form & appearing in (46) may in principle depend on the choice of the
extremal Pg under consideration. But such a form @ is not unique and our next aim
will be to find a universal @ such that (46) is valid for all extremals. In a certain
sense, this @ is already unique (cf. Section 38) and can be abstractly characterized
by a certain congruence (55). The construction of this universal @ will be easy and
explicit but some rather unusual preliminaries are needed.

29. Ordinary differential equations. An arbitrary system of such equations
can be converted into an equivalent first order system if the higher order derivatives
are taken for new unknowns. So without any loss of generality, we may deal only
with systems of the kind

dyct* dy! dyc
%_xEgk(xvyl"",ymv_dy?,-"’%); k=0""1m—c'

The infinite prolongation then arises if we introduce the infinite family of variables

P i (g i _dy
yOEy‘ (1'=11"'vm), yZE dxya (.7:1’"-’6;3:0’17'-')’

and it consists of the infinite system of differential equations

dyldyl _ ;. _ e — dyst™ _
—5 =V GG=1,...,¢8=0,1,...), 3 =9 (k=0,...,m—c).
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But in order to eliminate the effect of the particular choice of coordinate systems,
this equations will be represented as an equivalent Pfaffian system, namely by

wi=0@G=1,...,¢8=0,1,...), wit*=0(k=0,...,m-c),

where wi = dyf —y! ., dz, w§t* = dyo°** —g* dz, and even by the module  gener-
ated by all the forms mentioned. Thus the original differential equations are equiva-
lent to the infinite Pfaffian system w = 0 (w € ), where  C @ is a given submodule
of the module @ of all differential 1-forms. It is interesting that the submodules (2
arising in this manner can be abstractly characterized.

First, 2 C @ is of codimension 1 since ® is clearly generated by € and the differen-
tial dz ¢ Q. It follows that the module Q- of all vector fields Z satisfying w(Z) =0
(Z € Q) is 1-dimensional: every Z € Q' is a multiple of the vector field

D =0/dz+ Y ¢*d/dys™ + X ul,,8/0y].
One can also observe that LpQ C 2, explicitly
Lpw! =w!,, Lowst* =0 (mod all wi™*,wi).
The just mentioned properties of {2 prove to be typical and quite sufficient.

30. Definition. Let N = R be the infinite product of real lines, i.e., the
space of real infinite sequences {t!,¢2,...}. Denote by F the module of all functions
f=f@,...,t™), let & be the module of all differential 1-forms ¢ = ¥ fidg
(f,g* € F, finite sum), let & be the dual module of all vector fields Z = 5 2°9/dt*
(2* € F, infinite sum). A submodule  C @ of codimension 1 is called a diffiety if
there exist w!,...,w® € Q such that the family of all forms

Lk (k=0,1,...;j=1,...,c; 0£DeQt)

may be used for generators of . Concerning the vector field D, there does exist
dz € ®, dz ¢ Q. Then every p € ® can be uniquely expressed as ¢ = gdz +w (for
appropriate ¢ € F, w € Q depending on ¢) and the identity ¢(D) = g defines a
vector field D € Q1 which may be used in the above definition.

It is to be noted that infinite prolongations of underdetermined systems of differ-
ential equations are diffieties (cf. the previous section). The converse is also true (but
not needed here and therefore we omit the elementary but lengthy proof) so that the
diffieties provide an abstract substitute for the infinite prolongations mentioned.

31. Filtrations. For every diffiety €2, there exist many filtrations
Q:0=0c...ccatc..ca=|Ja
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by finitely generated submodules Q¢ C Q satisfying
(49) Q1 5 LpQf (all ), Q4 =Qf + LpQ! (I large).

(In practice ¢ may be generated by all forms L%w? (k < £) where w!,...,w® are
the forms in the definition of a diffiety.) But our aim is to find the normal filtrations
satisfying moreover

(50) LpN~ c Q7Y D: 940t 5 /0l is injective if £ > 0.

Here the mapping denoted by D is the natural module homomorphism induced by
Lp for a nonvanishing vector field D € Q+. In more detail, we put

D[w] = [Lpw] € Q41 /Q¢ for every w € O, [o]nt/Q41

where the square brackets denote the relevant classes (the first inclusion (49) is
employed here).

The properties (50) can be achieved by a simple successive change of a finite
number of terms of an arbitrary filtration Q* satisfying (49). In fact, clearly D:
Qt/Qf-1 5 1 /Q¢ is a surjection and hence a bijection for all £ large enough, say,
for £ > L. One can then put Q¢ = Q¢ (¢ > L) and inductively with £ = L—1,L-2,...

(51) Q¢ = the kernel of the composition {3+ — (¢+2 o Q4+2/Q4H!,

(factorization after £p). The proper inclusions ... D ¥ D 1~ D ... necessarily
terminate by the equalities QX = X1 = ..., Then a mere change of indices yields
the desired result.

32. Theorem. The ‘“residual term” R(?) = Q~! of a normal filtration is
identical with the maximal element of any of the following families of modules ¥; —
\1’3.'

(i) the family of all finite-dimensional and flat submodules ¥; C (,

(ii) the family of all finite-dimensional submodules ¥, C Q satisfying Lp¥2 C ¥,
(0# D € Qt),

(iil) the family of all finite-dimensional submodules ¥3 C ® satisfying Lsp¥3 C ¥3
(0 # D € Q1) for all f € F. Especially, the module Q! does not depend on the
choice of the normal filtration Q* of .

Proof. Let R(Q) be the set of all » € @ such that the family of all forms £ o
(k=0,1,...; f € F) lies in a finite-dimensional submodule of ®. Clearly R(2) C &
is a submodule and L;pR(2) C R(2). Then the formula

Lspp = fLpyp +(D)df
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implies that necessarily ¢(D) = 0 for every ¢ € R(f), hence R(Q) C Q. Clearly
Q-1 C R(N) for any normal filtration Q*. On the other hand, if w € Q¢! but
w ¢ Qf where £ > —1, then the class [w] € Q¢+!/Q* satisfies

(52) 0 # D[] = [Cho] € A+ /-t

for any k = 0,1,... and thus w ¢ R(Q). It follows that R(2) C Q! and (iii) is
verified.

The equivalence (ii) <= (iii) follows from Lfpw = fLpw (w € N).

It is clear that a finite-dimensional submodule ¥ C Q, ¥ ¢ Q! cannot be flat
(use (52) with w € ¥, w ¢ Q71). On the other hand, if ¥ C Q is a submodule and
Ly ¥ -C ¥ for a certain vector field Y, then Ly Adj ¥ C Adj¥. (Proof. AdjV¥ is
generated by ¥ and all Z|d ¥ (Z € ¥1) whence Ly ¥ C ¥ C Adj ¥. Moreover,

Ly(Z]d¥)=[Y,2]]d¥ + Z]d Ly T

where Z|dLy¥ C Z]d¥ C Adj¥ and [Y,Z]]d¥ C Adj 7V (since [Y, Z] € ¥+ as
follows from 0 = Ly(Z|¥) = [Y,Z]|¥ + Z|Ly ¥ = [Y, Z]|¥). This concludes the
proof of the inclusion.) Choosing ¥ = Q~! and Y = D, we obtain Lp AdjQ2~! c N1
hence Adj Q2! C Q7! (cf. (ii)) and thus Adj Q! = Q~1. This concludes the proof
of (i). O

33. The crucial construction. We begin with the choice of a special basis of
a diffiety Q suitably adapted to a given normal filtration Q*. First of all, by virtue
the injectivity of D (cf. (50)), there exist forms

Wiy €N, Wl QY (r=0,1,...5 j=1,...,5)
such that the classes D"[w{r)] = [L'.’}_,w{,)] € /! (where k = 0,...,6 -1 j =
1,...,jr) may be used for a basis of the module 2¢/Q¢-! for any £ > 0. Choosing
moreover a basis dz’,...,dz* (a > 0) of Q~1, all forms

do* (i=1,...,a), Lhuwl, (k+r<bj=1,...,j)
constitute a basis of Q¢ (for any £ > —1). However, it is useful to introduce also the
alternative notation |

14 A dr-1+7 k J k 1 1
U)ﬁ{-r r=t = £Dwfr) €n tr (-7 = 1)”‘1]1‘)’

This is a mere formal measure ensuring the simple rule £Lpw} = w},,. Recall that
the forms dz',...,dz" together with all w} (0< 8 < £, 1< i< j1+...+je) may be
used for a basis of Q¢ (¢ > —1). Especially the initial forms

w{,)zw;'ﬁ (r=01,...;5i=di+...+Gr_p3i=1,...,5r)
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(with k£ = 0 in the above formulae) should be pointed out. Since j; = 0 for all £ large
enough (as follows from the second requirement (49)), there is only a finite number
u=pu(R) =jo+j1+... (afinite sum) of them. (The constant u(02) does not actually
depend on the choice of the filtration but it will not be needed in future.)

Returning now to the topic of Section 28, we choose N = R> and a diffiety for
the relevant subset 2 C ®. Let an embedded curve

Po: p=po(t) = {t'(¢),t3(t),...} ER® (0<t<1)

be “nearly” an extremal in the sense that pjw = 0 (w € ) but (46) is satisfied only
“modulo !”. In correct terms: denoting

(53) dA—@) =Y aldrAw! (modulo 27! and 2 AN)
(where dz ¢ Q and the basis wi of 2/Q~! are fixed) we suppose only
(54) p5Z] Y aidr Awi =0 (Z arbitrary),

that is, p§aJ = 0 for all j and s.

Since dal = Daj-dz (mod (), the last identity implies 0 = pjda? = p§ Da? - p§ dz
hence p§Dal = 0 and thus p§D*aj = 0 for all k. Consequently, if afw{ is a particular
summand in (54) with w} = Lpw?_, not an initial form, then

pi2)d(a3ws_1) = pyZ)(Daj - dw Awj_, + ag dz Awg) =0

and it follows that the original form @ in (53) can be replaced by @ —ajw_, without
destroying (54) but then the original summand afw{ turns into the lower order term
—Dajw!_,. Repeatedly applying this reduction, the procedure terminates when
only the initial summands survive in (53), that is, when we obtain

(55) dA-@) =T e, wi) Ade (mod R(Q) and R A Q)

in a slightly changed notation. Clearly pae{r) = 0 (and thus p{,D"e’Zr) = 0) is
true for our curve Py as before. But the point is that the form & satisfying the
congruence (55) is unique modulo 2~ (trivial, use the basis wj together with the rule
dw! = dz /\wf +1)- So the resulting form @ does not depend on Py or, equivalently,
p*el =0 for all curves P: p = p(t) € R™ which are “nearly” extremals.

Finally, let @ = 3" biwi + 3 b*dz’ be a form satisfying (55). Recall that bj € F
are uniquely determined but b € F may be (as yet) arbitrary. If Py is a “nearly”
extremal and d A = ¥ ¢! dz* A dz (modulo all w) then the original requirement (46)
reads

(56) pyZ]d(\ — @) = p§ Y(c' + Db')Zz* - pgdz = 0.
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However, the identities p§(c' + Db*) = pjc’ + Spsb* = 0 can be always satisfied by
a proper choice of b*. We conclude that Py is in reality a true extremal.

- 34. Summary and definition. 7o every A € ® there ezists a unique modulo
R(Q) form @ € Q satisfying (55). Then a curve Po: p = po(t) e R® (0 <t K1)
is an eztremal if and only if pfw =0 (w € Q) and p};e(‘ ) =0 (hence p4DFe f y=0)
are satisfied. The form { = A — & may be regarded as a true generahzatlon of the
- concept of PC forms for the constrained variational integral (3), e(r) (or even all

D"e’ )) are EL operators, D¥e f y = 0 is the (infinitely prolonged) EL system. The
mverse problem consists in the reverse determination of the form A € @ (or better,
of the PC form £) if the diffiety 2 and the subspace E C R™ consisting of all points
which satisfy the £C system D*e i )= =0 are given in advance.

35. Example. Denoting by z,y, ¥o, 20, ¥1, 21, - - - the coordinates in R*, let 2 C
® be the submodule generated by all forms n = dy —udz, ns = dyYs —Ys+1 dz, (s =
dz, —2,41dz (s =0,1,...) where u = u(Z,y, %0, 20) € F. Clearly Q! consists of all
multiples of D = 8/0z+ud/dy+3 Ys+10/0ys+Y_ 2s+10/0%s. One can easily see that
LpNs = Ns+1, LDCs = (541 so that Q is a diffiety (namely the infinite prolongation
of the underdetermined differential equation dy / dz = u(z, v, yo, z0) With unknown
functions y, Yo, 20). We shall suppose 0u/8z # 0, for certainty. Then the modules
Qf =0 (£ <0), 2 = {n} of all multiples of n; and Q¢ = {n,70,Co,---,Me—1,Ce—1}
(¢ > 0) provide a normal filtration of 2. The forms w(lo) =ne o, w(ll) =no € N! are
the initial ones (hence jo = j1 = 1, j» = 0 if r > 1) and the family w; = L%n € QF,
w? = Lmo € Q1 (k= 0,1,...) may serve for a suitable basis of 2.

We shall deal with the variational problem (3) where A = f(z,9, %o, 20) dz. One
can then easily find the PC form { fdz +(8f/8%)/(8u/02) - n and the £L
operators '

1_ 9f  of 3“

of du,ou _[0f
2 —
0= Oy Oz 3?/0 /320 b ( Bzo)

‘= 5@7 By a_zo 0z
of the zeroth and ﬁrst order, respectlvely After thxs prepa.ra.tory result we pass to
the i inverse problem proper. ,
“Given data for the inverse problem consist of the prescnbed constraint equation
dy / dz = u (i.e., of the diffiety ) together with the £L system generated by a zeroth
order equation zo = v(z, ¥, Yo) and a special first order equation dyo / dt = w(z, y,yo)
(since the equations 29 = v, dZp /dz = Dv permit to eliminate the arguments 20,
dz° /dz). The subspace E C R™ corresponding to the infinite prolongation of the
EL system is defined by the equations D*(20 — v) = z; — D¥v = 0, D*¥(y; — w) =
y‘m ~ Dky = 0 and it follows that z, y, yo may be used for coordinates on E.
Alternatively, z, h!, h? (where h* = h*(2,,y0) are independent first integrals of
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extremals) may be used as well. Recall the property 8h'/dz +@dh’ /0y +wdh' /3y =
0 (@ = u(z,y,Y0,v)) of these first integrals. It is equivalent to the useful identity

(57) DR = (u— 2)9h /By + (u1 — w)Oh' /Oy,

In order to determine the variational integral, we shall search for the relevant PC
form £ or better, for its differential d§.

According to the above results, d can be expressed in terms of the variables z,
Y, Yo, 2o or, alternatively, in terms of z, hl, h?, e = 29 — v. Following the general
suggestions of the subsequent Section 37, we may assume

d¢ = Hdh' Adh? +dK Ade + dAAdz + Y dB' Adhi +dC Ade

where H = H(h!,h?), K = K(z,h!, h?), and the functions A, B!, B?, C of variables
z, h!, h?, e vanish at the hyperplane e = 0 and satisfy 0A/8e = 0K /Oz at the
hyperplane e = 0. Then, if we deal with a PC form (i.e., if the congruence (55) with
A—w=¢, w(lo) =1, w(ll) = 1o and appropriate e%o), e%o) € F is satisfied), the inverse
problem is “almost resolved” in the sense that the ££ system corresponding to d§
always vanish on the prescribed subspace E (see Section 37 below) so that only some
additional “nondegeneracy” is needed to ensure the exact coincidence.

Let us turn to explicit calculations. The condition dA/de = 0K /dz (ate = 0) is
equivalent to A = e(0K/0z + L) where L is an unknown function vanishing at the
hyperplane e = 0. Inserting this A into d¢, we conclude

d¢ = Hdh! /\dh2+(dK— ?i{-dz) Ade
(58) oK 9z
+ (edb-; +d(eL)) Adz + Y dB AdR +dC Ade.

The remaining condition (55) is clearly equivalent to the congruence
D]d¢ =0 (mod dh! —Dh! dz,dh? —Dh? dz).

hence to the congruence D] d¢ = 0 (mod dz,dh!,dh?), since always D|d¢ € Q. In
terms of the coordinates x, h!, h?, e, we obtain the sole condition

8K 8B'\ _, (0K 8B\ ., d(eL) _
(59) ('a—’—{f-—a—e—)ph +(5ﬁ—?é—)Dh +"3€"+DC—0,

the coefficient of de in the form D] d¢. Here only the summand DC = ...+ 8C/de -
De = ... + 8C/de.z; may depend on the variable 2; (as follows from (57)) so that
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necessarily 3C/8e = 0 whence C = 0 (since C = 0 at the hyperplane e = 0).
Inserting C = 0 and (57) into (59) one can obtain two requirements

(2 _omyar  (ox_omyor
Oh! Oe 3yo ’

(2K _omy o (oK o)oK _ 1 ot
Ohl  Oe ) Oy 0h? Oe ) Oyo u-—1a Oe

(60)

for the unknown functions K, B!, B2, L (by looking for the variable y;). They
constitute a very favourable system with a lot of solutions. In any case, the form

= /Hdh1 -dh? +Kde+ Adz + Y _ B'hi +dV (A =e(%§ + L))

arising by integration is a PC form to the variational integral (3) with A = f dz,

(61) f= fHdhl -Dh* + KDe +e (%—I: +L> +Y " B'DK + DV

and the relevant £L system vanishes on the given subspace E C R*. Altogether
taken, two troubles still remain to be discussed.

First, the function (61) may depend on the higher order variables y;,2;. Using
(57), the explicit formula

oh? ; ov pv
- 1 i dh —_y —
f_...+{/Hdh ay0+§)B Byo+3yo}y +{K+ ae}<z1 ylayo)

gives two necessary and sufficient conditions {...} = 0 if we insist on the functions
of the special kind f = f(z,¥, Yo, 20). It seems to be not impossible to analyze these
conditions in more detail (e.g., the latter gives V = U — eK where U and K depend
only on z, h!, h2) but we are not daring enough to do it here.

Second, let us look for the £L system corresponding to the solution (61) of the
inverse problem. According to the general theory, it is generated by the coefficients
e}, el of the form D|d¢ = Ze’ w’ = eln + elno. But it is simpler to use the
equivalent development D | d§ = Pdh{ +Qdh? (mod dz). One can then find

9B' 0B\ ., (9B' 0K 8A B!
”-(““'a‘h—z am)”" (W"%)D‘W’Lﬁ’

8B! 0B? 1, 8B? 0K 8A 0B?
Q-(H’W*‘ahl)”' (‘a:‘W)D'aﬁ*W-

Here 04 /0h' = e(BK /8z + L), Dh’ can be expressed by (57), and B* = eC* (with
appropriate C* = C%(z, h!, h?, €)) vanish on E by supposition, so that both functions
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P and Q do vanish on E. But in general the system P = Q = 0 (clearly equivalent
to the £L system e} = e} = 0) need not be equivalent to the prescribed system
y1 —w = 20 — v (= e) = 0 owing to the presence of the terms De. A necessary
condition for the equivalence is o

B! 9K 0B* 0K

"de  Oh! T e  OhZ
If this condition is satisfied then the system P = @ = 0 is an algebraic consequence
of the prescribed system y; — w = zp — v = 0 so that the converse (and thus the
equivalence) takes place if the solution is nondegenerate enough (a certain Jacobian
should not vanish). It is interesting to note that it implies both requirements (60)
(and also d(eL)/de = 0 hence L = 0) and permits to determine the solution of the
inverse problem in terms of quadratures. We will not pass to obvious details here.

So altogether taken, in addition to all solutions of the inverse problem, even certain

“weakened solutions” can be obtained.

36. Example. Let z,z,Y0,¥1,-.. be coordinates in R™®. We shall deal with
the submodule @ C ® generated by all forms = dy—udz, 9, = dys —Ys+1 dz
(s = 0,1,...) where u = u(z,¥,¥0,y1). Clearly Q' consists of all multiples of the
vector field D = 8/8z+u8/8y+ 3 Ys+10/3ys. One can easily see that 2 is a diffiety
(the infinite prolongation of the Monge equation dy /dz = u(z,y,yo,dyo / dz)) and
the submodules Q¢ = 0 (£ < 0), ¢ = {n — u/dy1 - No;Mo, - - -y Me—1} (£ >.0) provide
a normal filtration of Q. There is only one initial form, e.g., the form w%o) =1n-
Ou/dy1 - 1o (thus jo =1, j. =0 if r > 0). ,

We shall deal with the constrained variational mtegral (3) where A = fdz, f =
f(z,¥,y0) dz. One can then easily find the PC form ¢ = fdx +aw(0) where

(2. Y au)/(zu.+_61§g_pzu_)
9o ay )/ \Oyo Oydy ~Oy)"
and the ££ operator ey = of /9y — aau/az — Da of exactly the third order so
that the equation e} = 0 may be equlva.lently expressed as y3 — g = 0 where g =
9(z,¥,%0,¥1,¥2) and the infinitely prolonged EL system consists of all equations
Yk+3 = D*g. The variables z, ¥, Yo, ¥1, ¥2 may be used for coordinates on E.
Passing to the inverse problem, the functions u '(that is, the diffiety 2) and the
equation y3 — g = O (the subspace E) are given in advance and we search for the
relevant PC form £. It may be expressed in terms of the variables z, y, o, ¥1, ¥2
but also alternatively, in terms of the variables z,h!,...,h% where h',...,h® are
independent first integral for extremals. As follows from the next Section 37, we
may assume d¢ = Y dH* A dh? and thus V : -

€= Y Hidh +dV (H‘ H‘(h‘ b4,V =V(z,h, .. b))
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Then (55) means that D|d{ =0 (mod “-’(o)) This congruence can be expressed as
S (DH*dh* —Dhi dh') =

3h Oht . . OH’ OH*%\ .
—_ ij — J | o~ i =270 77
(v =) 3 H' ( v ayzd")"’ (H o7 ahf)

if one employs the identities DH* = 3" 8H/0hi-Dh?, DhI = (y3 —g)Oh? /Gyz. Even
more explicitly, the last congruence is equivalent to the system

3 (2 (2 uam) oh (0 )
Oyz \Oyo Oy Oz Oy \Oyo Oy1 0z o
J Oht i 9hi .
¥ (L) iy,
Oy2 0y Oyz2 Oy
as we obtain by separating the variable y3. Here the coefficients may depend on z
but the sought functions H* must be independent of it. So we find ourselves in a
quite analogous situation as in Sections 11, 12 and the following analysis leads to
a similar compatibility problem as in the Douglas case of Section 14. (Instead of

first integrals, one may also use the original coordinates z, ¥, Yo, ¥1, y2. Then the
resulting theory closely simulates Sections 3-5, 7.) We omit all details.

37. Concluding directions to the inverse problem. Given are a diffiety
2 C ¢ and a subspace E C R*™. We suppose that the generating vector field
D € Q1 is tangent to E (if some e € F vanishes on E then De also vanishes on E)
so that there is a vector field F on E, the restriction of D. We choose a fixed normal
filtration 2* and the relevant initial forms w{r) as a mere technical tool.

First assume E to be of a finite dimension a + 1 (that is, the ££ system to be a
determined one) which is the common classical case. Concerning the coordinates, let
hl,...,h* € F be independent first integrals of extremals (i.e., dA' A...Adh® # 0
and all Dh' vanish on E or, equivalently, Fhi = 0) and let £ € F be a function
transverse to extremals (i.e., satisfying Dz # 0, and we shall even suppose Dz =1

for technical reasons). Then z,hl,..., h° may be used for coordinates on E. We
shall moreover suppose that there are el,e?,... € F vanishing on E such that the
complete family z,h!,...,h% el e?,... may be used for coordinates on the total

space R>. (The choice of the coordinates is a matter of art for every problem under
consideration. In principle they may be quite arbitrary but in reality a suitable choice
essentially simplifies the calculations.) Given 2 and E, we search for the PC form ¢
modulo the residuum R (). Since F|d€ =2 0 (cf. (55) and realize that e{r) =0on
E), the restriction of d€ on E can be expressed in terms of h!,...,h* whence

=Y H'dh' +dV (H s H'(W,...,h%), V=V (z,h',...,h?))
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is valid modulo R(R2) for the restriction of & to the subspace E. It follows that at
the points of E we have

=Y H'dh'+ Y K'deé' +dV (K'=Ki(z,hl,... k")
and at quite general points, that is, in the whole space necessarily
£y H'dh'+) K'de'+p+dV

where ¢ € ® is a certain form vanishing at the points of E, that is, ¢ = Adz +
3. Bidhi+ 3 Ctde’ with the coefficients A, B?, C? vanishing on E. Consequently,

(62) dé=Y dH'Adhi+Y dKiAde'+dAAdz+ Y dBiAdhi+ Y dC! Ade!

with coefficients of the above mentioned special kind. For the form (62), the original
requirement F'| d¢ = 0 simplifies to the boundary condition

9K = 6— at the subspace E,

(63) oz det

as one can see by direct calculation. Let us turn to the condition (55) which ensures
that £ is indeed a PC form. It may be also expressed by the congruence D|d{ =0
(mod R(f2) and all wfr)). But using (62), we explicitly obtain

OH OHI
D|d¢ = Z(W' X )Dh’a’

Z oK —p + Z (DhJﬂ' De'ad)
Z ah‘ - Z 5;;5
oB* of 0B i ipj
+d 5 +Z(8hi_ h)Dh’ +Z (De’ — DHipY)
ac
i int 1 - 4
E ﬁ+z < (Dnig Dha’)+2( ae)De’B
(mod R(R2)) where ' = dh* —Dh'dz, B¢ = de' —De*dz € Q. The forms af, 3¢ can

be expressed as linear combinations of the forms wJ. Then the condition (55) means
that in the complete sum only the initial summands ""'(7'-) survive. This provides a

large system of linear partial differential equations for the unknown functions H?,
Ki, A, Bt, C*. If this system is satisfied then we have a formula of the kind

Djd¢ =) el \wi, (mod R(R)),
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and thus the form £ under consxderatlon is a PC form to a variational integral.:
Moreover, the coefficients e(r) (the EL operators) are linearly dependent on the

vanables .
0K* O0A 0A 8B' oC!

8k  de'’ Oh’ 9z’ Oz

that all vanish on E. So, altogether taken, we have a “weakened” solution of the
inverse problem: the given system of equations determining the subspace E implies all
relations efr) = 0 (and thus the prolongation D"e{r) = 0) but the converse need not
be true. In order to ensure the exact coincidence, some additional “nondegeneracy”
conditions of a.lgebraic nature are needed: the lowest order equations of the prolonged
system D* eJ = 0 (in current cases already the equations e(' y = -0) should be
equivalent to the lowest order equations which determine the subspace E. We abstain
from more details since they cannot bring any new ideas.

If E is of infinite dimension (that is, we deal with an underdetermined system
of differential equations) then the residuum R(Q/g) of the restriction Q/g of the
diffiety 2 on E is generated by certain total differentials which assume the role of
the previous first integra.ls hl,...,h%. At the place of the previous variable z, a
series of variables !, z2,. should be introduced to obtain a system of coordinates
hY,...,h%, z},22,... 0on E. With this change, the previous directions (especially the
formula (62), (63)) may be accepted. »

Dh, Deé',

APPENDIX

38. Uniqueness of PC forms. Let us consider two normal filtrations Q*, *

of the same difﬁety 1 with the corresponding families of initial forms w{r) (4 =
ir), @ ) (j =1,...,Jr). To a given constrained variational integral (3), we

obtam the relevant PC forms &, together with the families of ££ operators el
(G=1,...,4), & (j =1,...,]r), respectively. It is self-evident that the resulting
&L systems D"ei =0, D"eJ = 0 appearing after prolongation aré equivalent, that
is, the relevant subspaces E = E C R are identical (since they can be defined in
terms of the intrinsical concept (46) of an extremal).

However, the PC forms ¢, £ need not be equal. Assume for certainty { = E +2 clwi
(modulo R(R2)). Then

Zez,)aﬂ Adw-(za -Dczwz-zczwzﬂ)m'

(modulo R(2) and QA Q) after taking the exterior differential (cf. (55)) Here the
forms w{,, on the left can be expressed by linear combinations of the forms w? and
it follows that the higher order nonvanishing coefficients ¢ (with maximal s) of the
term wf,;,'l\ dz on the right can be expressed by linear combinatioxis of functions &’.

198



In particular, these coefficients are all vanishing on E. Since then D¢} = 0 for these
coefficients on the subspace E, too, we may proceed with lower order coefficients ¢}
in an analogous manner.

As a final result, all coefficients ¢/ prove to be vanishing on the subspace E and
we conclude that ¢ = £ (modulo R(f)) at every point of E. Consequently, the
restrictions of the PC forms &, & and thus of their differentials dz, d £ on the subspace
E C R*™ are identical modulo R(€2). So it does not matter which PC form is used
for investigations of properties of extremals since they all lie on E.

39. Vanishing of PC system. Assume E = R*, hence e/ = 0 is identically
vanishing. In virtue of (55) we have d¢ = 3" a¥wi A w] (modulo R(2)) where the
sum may be taken only over 7 < s and r = s with ¢ < j. Then applying the identity
d*¢ = 0 (mod R(R2)) and using the formulae dwj = dzAwl,, (modR(Q) and
QAQ), one can easily find that necessarily a/, = 0 are identically vanishing. It follows
that d¢ = 0 (modulo R(Q)), hence ¢ = 3" a*da* +dV for appropriate af, V € F,
dz* € R(Q). Choosing a function z € F transverse to D, i.e., satisfying Dz = 1, we
may write A 2 (3" a'Dz*+ DV)dz (mod ) for the constrained variational integral
and in particular, A & DV - dz is a generalized divergence if R(R2) = 0.

40. E. Noether’s theory. Let a vector field S be a divergence symmetry of the
variational problem (3) in the sense that we suppose Ls2 C 2, LsA = dg (mod Q)
for appropriate g € F. Let Po: p = po(t) € R* (0 < t < 1) be an extremal, hence
p§Z] d€ = 0 for all vector fields Z where £ is a PC form (cf. (46)). It follows that

dpyS|€ = pg dS)€ = pg(S] d€ +dS|¢)
= poLsé = poLsA = pydg = dpyg

and hence S|£ — g = const. on every eztremal.

41. Variational formula. Let a two-dimensional surface lying in the space
R> be constituted by a one-parameter family of curves P(7): p = p(t,7) € R®
(a(r) €t < b(7), @ < 7 < B) that are solutions of Pfaff’s system w = 0 (w € Q) for
every fixed value of the parameter 7. Assume moreover that dz‘ =0 (i = 1,...,a)
on the surface (where R(Q) = {dz!,...,dz"} as above). Then

(64) fg://da;':z://e{w{,)/\dz

for the PC form £ by virtue of Green’s formula on (55). The double integral on
the right is taken over the surface, the curvilinear integral on the left is taken over
its boundary: the curves P(a): p = p(t,a) (a(a) < t < b(a)) and P(B): p = p(t, B)
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(a(B) < t < b(B)) completed by the “end point curves” p = (a(7),7) and p = (b(7),7)
(a <t < b) together constitute the boundary.

If B = a + e is “infinitesimally near” to a, the surface degenerates into a thin
band and the above formula yields '

d o
(65) (5 /P e £)€=0 — &(Zp(a)) + E(Zaa) = D, /P “ €l Z:)(wl,y A dz)

where Z; = %p(a(t),a + s)|£___0 is the “variational vector”. For the transverse
variations satisfying Z,z = 0, the right hand side simplifies to

(66) >/ o (@) s

and resembles the common variational term for classical unconstrained variational
problems. Like in the case of the above problems, the functions w{,) (Z:) can be made
quite arbitrary by appropriate choice of the vector field Z;, which implies el = 0 on
all extremals by elementary classical arguments.

42. Integral invariants. If the curves P(7) of the preceding section are ex-
tremals, (64) simplifies to § £ = 0. It follows easily that this identity is satisfied
for any closed curve lying in the above mentioned surface or more generally, for
any closed curve lying in a two-dimensional simply connected surface constituted
by a one-parameter family of extremals. In equivalent terms, we conclude that
§ & = const. if the closed curve of integration depends on a parameter and moves
in the direction of the flow of extremals. (That is, £ is a relative integral invariant
for the £L system.) In still other terms, [[ d¢ = const. if the two-dimensional inte-
gration domain moves in the direction of the flow of extremals. (That is, d¢ is an
absolute integral invariant.) Since we are working in the subspace E, we in fact deal
with uniquely determined forms &, d¢ here.

43. Geodesics field theory. A (k + 1)-dimensional subspace F C E is called a
field of extremals if F is constituted by a k-parameter family of extremals P(7): p =
p(t,7) € R™ (a(r) < t < b(7),7 = (7},...,7*) is varying in a subdomain of R¥) and
moreover § £ = 0 for e‘very closed curve lying in F' (where £ is a PC form). Since the
llast condition can be expressed by [[ d¢ = 0 for every two-dimensional integration
domain in F, we conclude that d§ = 0is vanishing on F. By comparison with classical
theory, Pfaff’s equation d§ = 0 appears as a far going generalization of the Hamilton-
Jacobi eguation for all constrained variational integrals (3). Analogously ¢ may
serve as a convenient substitute of the Hilbert invariant integral which immediately
leads to the generalized Weierstrass theory. It seems that the 23rd Hilbert problem
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(suggestively explained but not explicitly formulated by Hilbert, cf. [Ma]) which
might have consisted in a reasonable generalization of the geodesics field theory can
be resolved for the constrained integrals of the kind (3). However, it is to be noted
that the multiple variational integrals cause much more difficulties. Although the
concept of a diffiety can be carried over to several independent variables without
troubles, the investigation of PC forms and inverse problems still belongs to the
most important and urgent mathematical impositions at all.

References

[An] Ian. M. Anderson: Aspects of the inverse problem to the calculus of variations. Archivum
Mathematicum (Brno), vol. 24 (1988), 181-202.

[Br] R.L. Bryant — S.S. Chern — R.B. Gardner — H.L. Goldschmidt — P.A. Griffiths: Exterior
differential systems. Math. Sc. Research Inst. Publ. 18, Springer Verlag 1991.

[Ca] E. Cartan: Les systémes différentielles extérieurs et leurs applications. Actualités scient.
et. ind. no. 944, 1945.

[Ch] J. Chrastina: Formal calculus of variations on fibered manifolds: Folia Fac. Scient. Nat.
Univ. Purkynianae Brunensis, Mathematica 2, Brno 1989.

[Da] G. Darbouz: Legons sur la théorie génerale des surfaces. Paris 1894, §§604 and 605.

[Do] J. Douglas: Solution of the inverse problem of the calculus of variations. Transactions
AMS 50 (1941), 71-128.

[Ma] Mathematical developments arising from Hilbert problems. Proc. Symp. in Pure and
Appl. Math. AMS, Vol. XXVII, 1976. '

[O1] Peter J. Olver: Application of Lie groups to differential equations. Graduate Text in

" Mathematics 107, Springer-Verlag 1989.

[Sa] R.M. Santilli: Foundation of theoretical mechanics I., The inverse problems in Newto-

nian mechanics. Texts and Monographs in Physics 18, Springer-Verlag 1978.' .

Author’s address: Jan Chrastina, Pfirodovédecka fakulta MU, Janitkovo nim. 2a,
66295 Brno, Czech Republic.

201 -



		webmaster@dml.cz
	2020-07-01T12:02:29+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




