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Abstract. This paper deals with A-spaces in the sense of McDonald over linear algebras 
A of a certain type. Necessary and sufficient conditions for a submodule to be an A-space 
are derived. 
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According to [1] we define: 

1. Defini t ion. Let A be a local ring. Let M be an A-module. Then M is called 

an A-space if there exist ex , e „ i n M with 

(a) M = Aei © . . . © Ae„ , 

(b) the map A —» Ae; defined by £ >-» £e; is an A-isomorphism for 1 ^ i ^ n. 

The set { e i , . . ., e„} is called an A-basis of M . 

2. R e m a r k s . 

A module M over a local ring A is an A-space if and only if it is a free finitely 

dimensional module. 

If A is a local ring and M is an A-space then all bases of M have the same number 

n of elements and we say M has A-dimension n. (See [1].) 

Every direct summand of an A-space is an A-space. (See [1].) 

3 . Defini t ion. A direct summand K of an A-space M is called an A-subspace 

of M. 

4. Def ini t ion. Let T be a commutative field. The plural T-algebra of order m 

is every linear algebra A on T having as a vector space over T a basis 

{ l , n , ; / - ' — , r/"*-1} with if1 = 0. 
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5. N o t a t i o n . In what follows we denote by A the plural T-algebra of order 

m introduced by Definition 4. 

Propositions 6, 7 and Lemma 9 are proved in [3]. Thus the proofs of them will be 

omitted. 

6. P r o p o s i t i o n . A is a Jocai ring with the maximal ideal i)A. AJJ ideals of A are 

just n3 A, 1 ^ j ^ m. 

7. P r o p o s i t i o n . TJie ring A is isomorphic to the factor ring of polynomials 

R[x]/(xm)-

8. T h e o r e m . Let K be a submodule of an A-space M . Then K is an A-subspace 

of M if and only if K is an A-space. 

P r o o f . It follows from Definition 3 and from Theorem 7 in [4]. • 

9. L e m m a . Let K be an A-space and Jet { e i , . . . , e s } be some A-basis of K. 

Then K is a vector-space over T Laving dimension (called T-dimension) sm and 

the set { e i , . . . . e ^ t T e j , . . . , i / e s , . . . , n ' " ~ 1 e 1 , . . . , » ) m - 1 e s } forms a basis of K over T 

(T-basis). 

Let us define a linear operator n on an A-space M by the relation: 

Vx £ M : n(x) = 17.x. 

10. T h e o r e m . Let K be a submodule of the A-space M and iet t9 = rj\K. Then 

{ u i , . . . , u s } is an A-basis of K if and oniy if {»jm_fcu1 , ifl~k\is} is a T-basis of 

Keri9fc reJativeJy* to Keri9fc_1 for every k = 1 , . . . , m. 

P r o o f . The operator n is a nilpotent linear operator on the vector space M . 

Using well-known properties of nilpotent linear operators on vector spaces (see [2]) 

we get the following properties of kernels of powers of n and of factor modules 

K/ K e r t ? m - 1 , . . . , Kertf2/ Ker ti, Kertf. 

The kernels form the chain of inclusions 

{0} = Kertj0 C Kerrj C . . . C K c r n r _ 1 C Ker); r c . • • C Kern" 1 - 1 C Kern m = M . 

For every subset {0} C K C M we obtain an integer r, 1 ^ r < m, such that 

K C Ker)/ r A K <£. Ke r t ) r _ 1 . Since K is an n-invariant submodule we get the 

following chain for the operator v1 = n \ K on K: 

{0} = Kertf0 C Kertf C . . . C K e r t T - 1 C KertT = K. 

* = modulo 
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These submodules as well as factor modules 

K/ K e r t r - 1 , K e i - i ? r - 1 / K e n T - 2 , . . . , K e r ^ / Keri9° 

may be considered vector spaces over T. 

Let Ui, us„ be a T-basis of K relatively to K e r i > - i . Then there exist elements 

of K 

u S | l + 1 , . . . , u s i , u s i + 1 , . . . , u S 2 , . . . , u s , . „_ + 1 , . . . , u,r__ 

such that 

) . u 1 , . . . , ) . u s „ , u S | 1 + 1 , . . . , ^ i 

is a T-basis of Ker i9 r - 1 relatively to Kertf r - 2 , 

. rf-kux,... , ) . r - ' c u s „ , ) . r - A - 1 u s „ + 1 , . . . ,rir'k-1usi,... _u,,_____1+_....., u.r___ 

is a T-basis of Keri?* relatively to Kertf* -1 , 1 < it < r - 1, 

j ? r - 1 u i , . . . , ) . r - 1 u s „ , ) . ' - 2 u S l ) + i , . . . , i f - 2 u „ u,,._, + i , . . . , u s ,_ , , 

is a T-basis of Ke r i l 

Viewing K as a vector space we get that the union of the above set (including the 

basis of K relatively to Keri? r~1) forms a T-basis of K. 

I. Let ) , m - f c u i , . . . , ^ m - * u , be a T-basis of KertJ* relatively to Kertf* -1 for every 

k = m,...,l. Then the union [j { ) . m - f e u i , . . . ,» . m - *u,} is a T-basis of AT as a vector 
fc=j 

space. It follows that every x € K may be written in the form 

= £ ( É - W W Чfeт 

It means that { u i , . . . , u s } forms the set of generators over A of the submodule K. 
s m-1 s m-1 

Supposing ___ £iUi = o and f; = £_. Xylj^.x,, e T , we have o = ____ _T x;_ (JJ^U;). 
; = I j=o ;=i j=o 

This yields that (for all indices) x y = 0 which implies & = . . . = £, = 0. 

We prove that U i , . . . , u s is an A-basis of K. 

II. Let us suppose that u j , . . . , u , form an A-basis of K. According to Lemma 9, 

K is a vector space over T having a T-basis 

B = {u_ , u s , ) / u i , . . . , ) ju s , . . . , » j m - 1 u i , . . . , ) . ' " - 1 u s } . 

We prove that { j j m - *Ui , . . . , J . m ~*u ,} is a basis of Keri9* relatively to Ken?* - 1 , 

fc = l , . . . , m . 
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i) the linear'independence (over T) relatively to Ker_**-> : Let Yl Ciilm^k
Uj g 

i= i 
Kertifc-i .Thus 

o = - * - 1 ^ c « - m - f c u i = 5 _ c i ( - m - l
u < ) . 

, = i i= i 

As {ijm~lui,... , ? ; m - 1 u s } C D is linearly independent over T we get ci = . . = 

cs = 0. 

ii) Let x_ Ker# fc, x = £ Y > - . . - " . • Then 
i= l 3=0 

o-=- f c x = ^ m 2 ' 1 x . 3 ( * y , + " u i ) . 
i= l j=0 

Since B is linearly independent over T we obtain 

xw = ... = ~i,m_i._i = x2o • • • = ~2,m-k- i = • • • = - « _ . . • = a:Sirr,_ic_i = 0, 

which implies 

s s m-1 
X = E Xi.m-kVm~kUi + X . ___ ^ij '^Ui 

i= l i=l j=m-A;+l 

where the second summand belongs to Keri9 fe_1. It means {77m~ fcui,... ,57m~fcu,} 

forms a set of generators of Ker dk relatively to Ker _>~-1. D 

1 1 . T h e o r e m . Let K be a submodule of the A-space M and let i9 = 77 | K. 

Then K is an A-subspace of M if and only if there exists an integer s such that 

s = dimKer i9fc relatively to K e n ? * - 1 for every k = l , . . . , m . 

In this case s is the A-dimension of K. 

P r o o f . Let K be an A-subspace. Then according to the previous theorem the 

bases of all factor modules considered have the same number of elements and it is 

equal to the A-dimension of A". 

Let A" be a submodule such that the factor modules considered have the same 

dimension. Let {ui , u s } be a T-basis of A' relatively to Ken?"* - 1 . Construct­

ing bases of factor modules Kertffc relatively to Ker,** - 1 , k = m — 1 , . . . , 1 , by 

the introductory part of the proof of the previous theorem we obtain that the 

set {i]m~kui,... ,?;m~ f cu s} forms a T-basis of Ker _fc relatively to Kert? f c - 1 for all 

k, 1 : . k SC m - 1. Using the previous theorem we get that A" is an s-dimensional 

A-subspace of M . • 
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