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Abstract. On cotangent bundles the Liouville field, the Liouville I-form ¢ and the canon-
ical symplectic structure ds exist. In this paper interactions between these objects and
(1, 1)-tensor fields on cotangent bundles are studied. Properties of the connections induced
by the above structures are investigated.
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INTRODUCTION

We assume that all manifolds and maps in this paper are infinitely differentiable.

Let M be a manifold and (%) a local chart on M. Let (2%,z) be the induced
chart on the cotangent bundle T*M of all 1-forms on M. Let us recall that the
Liouville vector field V = 2;0/9z; the flow of which is formed by the homotheties
on individual fibres of T*M, the Liouville 1-form ¢ = z; d2*, and the symplectic
2-form w = de = dz;A dz’ on T*M exist. Let F be a (1,1)-tensor field on M. It
is known, [4], [7] that there is no connection on M, i.e. a linear connection on TM,
which could be constructed by natural operators from F only. In other words no
linear connection on T*M can be constructed from natural lifts of F on T*M only.
We deal with the connections on the vector fibre bundle 7: T*M — M which are
induced by (1,1)-tensor fields a on T*M that are very close to the natural lifts of F'
on T*M. We favour almost complex structures o (ACS). First of all, two cases are
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investigated: a preserves the vertical subbundle VT* M or not. In the former case
we deal with connections I', when a preserves the horizontal subbundle HT' and in
the latter with connections I'y for which a(VT*M) = HT? or o(HTL) = VT*M.

The main results are in the third part of the paper. We deal with symmetric
(1,1)-tensor fields « when the form de*(X,Y) = de(aX,Y) is symmetric, and with
symmetric connections I' on T*M when de|gr = 0, where HT' is the horizontal
bundle of a connection I.

When a does not preserve VI'* M our investigations are concentrated on the semi-
linear case of @ when B = T'w - alyr+am is a base morphism and the map T'r-a - X:
T*M — TM is a vector bundle morphism for any projectable linear vector field X :
T*M — TT*M on T*M. Propositions 5-7 determine sufficient conditions for the
connection I'}, to be linear, for the equality 7% = TB(I'}) and for the connection v}, to
be just the Levi-Civita connection determined by the pseudo-Riemannian structure
B~! on M, where 'yll is the connection on TM induced by the linear connection
TL. Propositions 8 and 9 describe some properties of the ACS a(T', B) which are
determined by a linear symmetric connection I' on T7*M and by a vector bundle
morphism B.

In the case a(VIT*M) C VI M there are morphisms A = T -a: TT*M — TM,
H = alyr-m- Remember that the complete lift o« = FC of a (1, 1)-tensor field F
on M preserves VT*M, A = H and it is a V B-field, i.e. for any linear projectable
vector field X on T* M the vector field a(X) is again linear and projectable. When
is symmetric then A = — H. Propositions 12 and 13 state sufficient conditions under
which a symmetric (1,1)-tensor field o (especially an ACS) determines connections
T'yonT*M.

Our investigations are local.

CONNECTIONS INDUCED BY (1,1)-AND (0,2)-TENSOR FIELDS ON FIBRE BUNDLES

Let m: E — M be a fibre bundle. Let (2*,y*) be a local fibre chart on Y.
A connection I on E can be regarded as a (1,1)-tensor field hr on E (called the
horizontal form of ') such that hp(VE) =0, Tw-hr = Tw, where VE is the vector
fibre bundle of the vertical vectors on E and T f denotes the tangent prolongation
of a map f. In coordinates,

(1) hr = da’ 2 9/92* + r'é(a. y)dz? @ 9/ay".

Denote HI' := hp(TE) C TE the vector fibre bundle of the I-horizontal vectors
on E, i.e. such vectors (a,y®, da?,dy®) on E which satisfy the equation

dy® = I‘;-'dy;j.
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The functions I‘;‘ are called the local components of the connection I'. Readers
are refered to [6] for more details on connections on fibre bundles.

1. Let
o = (di(z,y)da? + b (2,9)dy™) @ 8/0z" + (¢S (2, y)da? + h§(x,y)dy®) @ 8/dy™

be a (1,1)-tensor field on E. We will briefly denote by B the vector bundle morphism
Tr-alye: VE - TM over m: E = M. It can be interpreted as a section £ —
V*E®@TM, B =b.,dy™ @9/

We will say shortly that « is vertical if B =0, i.e. if a(VE) C VE. We will recall
some properties of connections connected with a (1,1)-tensor field «, see [2].

Let hr be the horizontal form of a connection I" on E given by (1). Let ¥ =
n*d/dy™ € V E be an arbitrary vertical vector on E and let X = £:9/9z*+T'¢£:0/dy~
be a [-horizontal vector. Then a(Y) = bynP8/0x" + Lgnd/dy™ or a(X) = (ai +
bg[“?){j(?/@m’ +(c§ + hgrf)e‘a/ay“ is [-horizontal for any vertical vector ¥ or
vertical for any I'-horizontal vector X iff

(2) Teby=hg or af+by0% =0.
We have

Lemma 1. Let dimM be the dimension of the fibres on E. Then there is
a unique connection T, and a unique connection T'% on E such that a(HTL) =
VE, a(VE) = HT? if and only if the vector bundle morphism B is regular. Then
—ba¥ and hglf] are respectively the local components of T, or I3, and I'}, = I'% if
and only if a® is vertical.

We will suppose that dim M is the dimension of fibres on E.
The coordinate conditions for « to be an almost complex structure on E, i.e.

o? = —Idrg are

(3) alag+bhcf =6, alby +bih} =0, cSal +hc] =0, b% — hSh) = G5,

If B is regular then the third and fourth equations of (3) are consequences of the
first and the second ones.
By the equalities (2) and (3) it is easy to prove

Lemma 2. Let T' be a connection on E. Let B: E - V*E @ TM be a vector
bundle isomorphism V E — T Al over m. Then there exists a unique almost complex
structure a(I', B) on E such that Tm -a|lvg = B and TL =T? = T,.
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In the case of E = TM, if we choose B = Id|v7am then the almost complex struc-
ture (I, B) is the canonical almost complex structure determined by the connection
T on TM, see [5].

Let Q = Q2dx’ ® 3/9y® be a section E — T*M & VE. Denote

at: Q - Qo = (Qfalda? + Qpbidy®) ®8/0y”, ot : T"M G VE » T*E®VE
o™ Q = aQ = b5Q7da’ ©0/0x" + h3Qdal ©0/dy*.a™: T*MRVE-T*MOTE.

We say that two (1,1)-tensor fields ay, a2 on E are (+)-equivalent or (—)-equivalent
if af = af or af =« respectively for any Q: E = T*M ® VE.
If B is regular then using (3) we get (2] Proposition 6)

Lemma 3. In every class of all (+)-equivalent (1,1)-tensor fields on E there
is a unique almost complex structure on E. The same is true for the class of (—)-
equivalent (1, 1)-tensor fields.

In the case when a is vertical, i.e. when B = 0, denote

A:=Tr a=adr’ ®9/0x", A:E—-T*MopTM,
H:alyy = h3dy’ ©9/0y™, H:E-V'EQVE.

Let T',T be two connections on E and a a vertical (1.1)-tensor field. Then
(4) Thal = + hgT?

is the coordinate condition for the inclusion o(HT) C HT.
Using (3) and (4) we get (see [2], Proposition 10)

Lemma 4. Let A: E—-T"M@gTM, H: E - V*E ® VE be sections. Let T
be a connection on E. Then there is a unique vertical (1,1)-tensor field a(A, H,T')
such that a(HT) C HT, T7-a = A, ajyg = H. Moreover, if A>(u) = —Idp,,um for
any u € E and H? = —IdyTwm then a(A, H,T) is an ACSon E.

Remark. If A is regular then for any connection I' there exists a unique
conection T on E such that a(HT) C HT.

2. Let w = fi;da’ @ d2? + fioda' ® dy® + faidy® ® dz’ + fapdy® ® dy® be a
(0,2)-tensor field on E. Recall some well known facts.

Denote by wt the (0,2)-field transposed to w, w*(X,Y) = w(Y,X). Then w is
symmetric or skew-symmetric if w® = w or w* = —w, respectively.
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Let a be a (1,1)-tensor field on E. Denote by w®, wq, wa the following (0,2)-tensor
fields:

WY X,Y) = w(aX,Y), wa(X,Y) = w(X,aY). wa(X,Y) :=w(aX,aY).
It is evident that

(5) @) = (ar (wa) = ()" (W) =w'a

(7

in the case of an ACS a on E.

We say that a tangent subbundle V5 C T E is w-orthogonal to asubbundle V; C TE
if w(X,Y)=0for any X € Vj(u), Y € Vo(u) at any u € E. A tangent subbundle
V C TE is said to be w-zero if w|y = 0.

Let 'y, I’y be two connections on E. We say that I'; is w-orthogonal to I'y if the
T'>-horizontal subbundle HT'; is w-orthogonal to HT';. .

If X = £0/0x' +T569/0y" is T1-horizontal and X = £ 9/0z* + T;€ is Ty
horizontal then w (X, X) = (fij+ fial ; + foi T8 +fa,,r;'ff)gi? and so the connection
T'; is w-orthogonal to I'y if and only if

(8) fig + fa‘(f? + fos T + fagTiL; = 0.

Consider the following restrictions of a (0,2)-tensor field w:

w1t = w|rExpvE. W1 = fiadt' @ dy® + fapdy® @ dyP,
Wyt = WVExpTE W2 = faidy® @ da' + fopdy™ @ dyP,

Wt = wlVExgvE. we = fapdy® @ dy”.
The equality (8) immediately gives

Lemma 5. Let I'|,I’y be two connections on a fibre bundle 7: E — M. Let
01 = fiad2' @ dy® + fapdy* @ dyP, 01: E-T*EQpV*E, 2= faidy*® da’ +
fosdy®*® dyP, p2: E - V*E@ET*E be two bilinear forms such that ¢1|vexgve =
w2lvExgvE. Then there is a unique (0,2)-tensor field w(v1,v2,T1, I'2) on E such
that wy = @1, wy = 2 and I'y is w-orthogonal to Ty.
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If Iy = 'y = I" then the tensor field w(¢1,¥2,T) from Lemma 5 is such that the
connection I is w-zero, i.e. w|yr =0.

We can find subbundles #,H’ C TE such that A is w-orthogonal to VE and VE is
w-orthogonal to H'. Let Y = n*8/8y" be vertical and let X = dz'0/0z"+ dy*d/dy™
be an arbitrary tangent vector on E. Then the equation w(Y, X) =0orw(X,Y) =0
is satisfied for any vertical vector Y iff

foida + fapdy® =0 or
(8 fiadz® + faady® = 0.

This immediately gives

Lemma 6. There exist unique connections I',,, I, such that T, is w-orthogonal
to VE and VE is w-orthogonal to I, if and only if the form w, = w|y g is regular .
If w is symmetric or skew-symmetric then [',, = T'.,. The vertical subbundle VE is
w-zero if and only if w, = 0.

In the following lemma we suppose that dim M is the dimension of fibres on E
and that B = T7 - a|vg is regular (so there exist connections I'},I'2, a(HTL) =
VE, «(VE) = HT? on E).

Lemma 7. Let w be a (0,2)-tensor field and « a (1,1)-tensor field on E. Then
1. VE is w-zero iff VE is w”-orthogonal to T}, or T'l, is we-orthogonal to V or
HTY, is wa-zero.

. The connection T}, is w-orthogonal to VE iff T, is w®-zero.

. VE is w-orthogonal to the connection T, iff [}, is wa-zero.

. VE is w®-zero (wa-zero) iff T} is w*a-zero (woa-zero).

. VE is wa-zero iff the connection T'2 is w-zero or HI'% is w*-orthogonal to
VE or VE is wa-orthogonal to HT'Z.

. VE is w®-zero iff VE is w-orthogonal to T'2.

. VE is we-zero iff T'% is w-orthogonal to VE.

TR N

. The connection I'2 is w™-zero iff VE is wa-orthogonal to T'2.
. The connection I, is w,-zero iff I' is wa-orthogonal to VE.

L 00 No;
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CONNECTIONS INDUCED BY ALMOST COMPLEX STRUCTURES ON T*M

In the induced chart (2%, 2;) on T*M a (1,1)-tensor field a on the fibre bundle 7:
T*M — M is of the form
a = (ai(z, 2)dz’ + b7dz;) ® 8/9z + (cyjda’ + hidz;) ® 8/z:.
According to the identification VT*M = T*M X,; T*M the vector bundle mor-
phism B = T alyrspm: VI'M — TM, B = bdz; ® /da%, can be interpreted
as a vector bundle morphism B: T*M xp T*M — T*M xp TM, i.e. as a section

B:T*M — TM @7y TM, i.c. as a bilinear form in VI™*M.

Definition 1. A (1,1)-tensor field & on T*M is called v-symmetric or v-skew
symmetric or v-basic if the section B is symmetric or skew symmetric or if B is the
m-pullback of a section M -+ TM @ TM.

Let us introduce the coordinate expression of some forms and tensor fields con-
structed from the Liouville form ¢ = zda?, w = de = dz; A dz? and a:
ia€ = z(afda? + b*idz;),
iade = cijda’ Ada® + (b + al)da; A dr® + b dz; A dz;,
iadelyrem = b9dz; A dzj,
where i, denotes the algebraic graded derivation determined by a,
de® = ¢;;da* @ da? + hldz; ® d' — alde’ ® dzj — b7dz; ® da,
deo = —cijdat ® da? + aldz; @ dz’ — hlde’ @ dz; + bidz; ® dz,
dea = cuabda’ Ada? + (cub — ath)dz’ A dz; + Bibdz A dz;.
It is evident that

9) de™ + deq = igde,

(10)  de* — deq = (cj + cij)da’ © da? + (b — af)(de’ © dz; + dz; ® da)
= (b9 + V')dz; @ dz; is symmetric,

(11)  iade is the antisymmetrization of de*,

(12)  (de®)! = —deg, ie. (de)™ is symmetric or exterior
ff de* = —deg, or de® = de,.

In coordinates (de)® is symmetric or exterior if

¢ij = cji, Rl = —al, BV =V or

— . Jo o3 pii — i
cij = —c¢j, bl =al, b9 = ="
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Proposition 1. Let a be an ACS on T*M. Then

1. (iade)a = —iqde,

2. (de® — deg)a = de* — de,,

3. de® is symmetric or skew symmetric iff dear = de or dea = —de, respec-
tively,

4. de*a = de® if de® is moreover symmetric.

Proof. 1 and 2 follow from (6) and (9). Assertion 3 is a consequence of (7).
The equalities (6) and (12) imply 4. [m]

Corollary. Let a be an ACS on T*M. Let ds* be symmetric, i.e. let de be
invariant under a. Then de® is a pseudo-Hermite metricon T*M and (T* M, a, d=®)
is a pseudo-almost Kéhler space, [T).

Proof. By Proposition 1 de®a = de® so de® is a pseudo-Hermite metric. As
(de®)™ = —de is exact so (T*M, o, de®) is pseudo-almost Kihler. [m]

Definition 2. A (1,1)-tensor field & on T*M is called symmetric or skew
symmetric if de® is symmetric or skew symmetric.

In the induced local chart (27, 2;) on T*M a connection T' on T*M is given by the
equations

dz; = I'y(z, z)dad.

As the form de is symplectic, there exists a unique connection I'* which is de-
orthogonal to I'. By (8) its local components are T;; = T';;. So T is de-zero iff
I' = T. In this case we will say that I' is symmetric on T*M.

Analogously in the case when the form iqnde is regular, i.e. almost-symplectic.
Remember that if de® is symmetric then i,de = 0.

In our futher consideration we will deal with two cases of the (1,1)-tensor field
on T*M.

I. Let o be such that B = T - alyr-pr = bYdz; ® 0/0x" is regular. Then
by Lemma 1 there are connections T} and I'2 such that a(HTL) = VT*M and
a(VT*M) = HT2. Then

(14) T} = —buah, T%=hiby, bub =0/
are their local components.
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By Lemma 6 there are two connections ngu,l"ile., such that Ty.~ is de® orthog-
onal to VI™*M and VT*M is de™-orthogonal to I',_... According to (8') their local

deer

compouents are respectively

t I t
Ty = by, T = —bial.

ij

Comparing the local components of the connections I'y, 2, T'gea , [y, we get

Proposition 2. Ifa issuch a(1,1)-tensor field that B is regular then de®|y7-m
is also regular and
a) TL =T, and so VT*M is de“-orthogonal to T},
b) Tyeo = (I'2), i.e. the connections Tye and T2 are de-orthogonal and thus
the connection (I'2)* is de®-orthogonal to VT*M.

Remark.  As (de*)! = —de, therefore Tge,, = I'jo and Ty, = Cgen. So
the connection I'}, is de,-orthogonal to VI™M and VT*M is deq-orthogonal to the
connection (I'2)*. By Lemma 7/1, T, is de-zero because VI'* M is de-zero.

Proposition 3. Ifa is such a (1,1)-tensor field that B is regular, a® is vertical
and de® is symmetric or skew-symmetric then the connection Ty = I't = T2 is

de-zero, i.e. (I'a)! = a.

Proof. Ifde® is symmetric then by; = bjk, —af = h;?. When o? is vertical then
L =T2 ie —b,-kaf = h¥by;, i.c. beih¥ = be;h¥, ie. Ty; = I'ji. Analogously when
k —

—bi; = bjk, af

hf, i.e. when de® is skew symmetric. ]
Let us remark that if a is an ACS then a? is vertical.
The inverse B~! = b;j(z, 2)dz’ ® 8/0z;: T*M xp TM — T*M x 3 T*M can
be interpreted as a semibasic bilinear form b;;dz* ® da? on T*M, ie. as a section
T*M — T*M @p-p T*M.

Proposition 4. Let a be such an ACS on T*M that B is regular and let hr,,
be the horizontal form of the connection Ty =T} =T2. Then de®hr, = —B~! and
deghr, = (Bt

Proof. hr (X,) = £0/02" + hflﬂls,gga/r?zﬁ ¢ = 1,2. Then using (3) we get
de*(hp, X1, hr,, X2) = (cij + hihSbs; — a?hfbs.- — b thib;hiby: )61 €5 = —bi;€1€5. This
proves the first part. The second is a consequence of the equality (dw*)t = —dwq.

a

Remark. As B™! = b,vjdzi ® 0/dz; is a semibasic 1-form with values in
VT*M then if hr is the horizontal form of a connection I' on T*M then hr + B!
is the horizontal form of the other connection on T*Af.
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Recall that a projectable lincar vector field X on T*M is such a vector field that
TrX is a vector field on M and its flow is formed by linear maps of fibres on T* M,
i.e. in coordinates X = £ (z)8/dx* + 1} (x)z;0/0z:.

Definition 3. A non-vertical (1,1)-tensor field @ on T*M is said to be semi-
linear if it is v-basic and for any projectable linear vector field X: T*M — TT*M
on T*M the map T'w - aX: T*M — TM is a vector bundle morphism.

In a local chart it is easy to see that « is semi-linear iff a}(z,z) = a¥¥(x)z: and
b (2, z) = b (x).

Proposition 5. Ifa (1,1)-tensor field « on T*M is semi-linear and such that B
is regular then the connection T}, is linear.

Proof. The local components of T} are Ti; = —bjsaf = —bis(2)ai*(x)2, ie.
T'! is linear. 0

Let us recall that every lincar connection I',T;; = F{szk, on T*M is induced
by the linear connection 7 on the tangent bundle TM with the local components
'yf = —F;F,-z{ . The connection I is symmetric if and only if « is symmetric.

So, if a is semi-linear and B is regular then the connection I’ is induced by the
connection v} on TM with the local components v} = ~i,a¥, 7i, = besaf’. As
B:T*M = TM, T = 2%, T = b¥(2)z;, is a vector bundle isomorphism therefore
TB(T}) is a connection on TA. We find its functions.

TB:7 =a, i =b7(2)z;, dT' =da?, dal= szz,-dzk +bYdz;,
hry = dz' © a/azi - bisafzkdxj ®0/0z;,
TB-hr, = de* @ 8/0x* + (b ~ b¥*byea}’)z;da* © 8/07.

Then Ti = (bi — a¥)bskw} establish the components of the connection TB(T}).
Therefore v} = TB(I'Y) if and only if

(15) breaf’ = (0F — 0F)bk, ie. brualiFC = b ~ i,

Proposition 6. Let a be such a semilinear (1,1)-tensor field on T*M that B
is regular and symmetric, i.e. « is v-symmetric. Then v} = TB(TY) if and only if
iy d(iae) = 0.

Proof.

e =zdak, dae= aktzpzde’ + b9 zdz;

dige = a;ffzkzldxi Adad + af‘(ztdzk — zxdzy) Ada? + 0 zedat A dzj + 6 dz A dz;
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where we use the notation f; := (%[;, fi = ‘5‘;4- Then

iy dige = (af” + a;k — b;?')zkndzj + (057 — %) dz;

= (af‘ + a;-k — b?‘)zkz,dzj =0

if and only if b}* = a4* + a%*. When B is symmetric then (15) reads af' = bi® — a*.

This completes our proof. o

If B: T*M — TM is regular and symmetric then B~! = b;;(z)dz’ ® dz’ deter-
mines a pseudo-Riemannian structure on M the Levi-Civita connection ~, of which
is given by the local components Ci, = — 30" (bsj + bsji — bjns)-

Proposition 7. Let a be such a semi-linear (1,1)-tensor field o on T*M that B
is regular, de® is symmetric, o? is vertical and iy d(ine) = 0. Then the connection
Yo determined on TM by I', is just the Levi-Civita connection 7y, of the pseudo-
Riemannian structure on M induced by B™1.

Proof. Bysupposition b = b/, bi = —ai*z;, a¥b* = bald or bisast = af'bs;

Kt _ okt 4 otk
and b* = aj* + a;*. Then
T = =50 (Dakj + bji — biks) = $0Fbok + $bby; — 507000 bur
= 5(a§ + a§)bok + 5(aff + aff)bs; — 50 bse(al + @ )bur
= %a?bsk + %bjsaii + %af;bsj + %bksaji - %a}“b”k - %affbj:

1y osig 1 si_ 1,si 1p, osi si_
= gbjs.ay + §bksaj = 505'bey + 2bksaj = bksa]- = Yk

This completes our proof. a

Recall in the sense of Lemma 2 that by a(F', B) we denote the almost complex
structure a on T*M determined uniquely by a connection I' on T*M and by a vector
bundle isomorphism B: VT*M — TM over w: T*M — M.

Proposition 8. Let I' be a symmetric connection on T*M, i.e. Tt =T. Let
B: VT*M — TM be a symmetric vector bundle isomorphism. Then the almost
complex structure oI, B) is symimetric.

Proof. Let B=10bdz; ®3/0x%, b9 = b, and I';; = I';; be the components of
[. Let a be such a ACS on T*M that Tmalyr+y = B and T}, =T'. Using (14) we
get @5 = ~b**Ty;. Then by the second equality of (3)

/1; = —bj,u,;_bsi = bbb = 1Ty = 7@3—.

The first equality of (3) reads ci; = —bi; — bualai = —bi; — 0" T;Tyj. So ci5 = cji.
This completes our proof.




Proposition 9. Let b = b;; da’ ® d2? be a symmetric and regular bilinear form
onTM. Let Iy be the connection induced on T*M Dy the Levi-Civita connection 7,
on TM established by the pseudo-Riemannian structure b. Let B = b dz; ® 8/9x*
be the inverse of b. Then the alimost complex structure a(I'y,, B} is symmetric and
iv d(iag) = 0.

Proof. The symmetry of «(T'y, B) is a consequence of Proposition 7 and the

equality iv d(is€) = 0 follows, according to Proposition 5, from the well known fact
that Tb(v) = [s, where b is interpreted as a map b: TM — T*M. ]

It is easy to prove

Corollary. Let J = dz’@d/dx! be the almost tangent structure on TM (which
can be identified with Idyra ). Then the vector bundle isomorphismb: TM — T*M
is an almost complex map of the almost complex structures a(v,J) and a(Ty, B)
where we use the notation from Proposition 9.

We turn to the second case when B vanishes.

II. Let a be such a (1,1)-tensor field that B = T - oy 7+as = 0.
Now,

A:=Tr a=ade’ ®9/8z": TT*M - TM,
H:=alyr.y = hidz; 8/dz;: VI'M = VI™M.

So A and H can be interpreted as sections A: T*M —» TM*@p-MTM, H: T*M —
TM @p-pm T*M. If o is a VB-(1,1)-tensor field on T*M, i.e. a(X) is a linear and
projectable vector field on T*Af for any projectable and linear vector field X on
T*M, then A and H are the 7-pull-backs of the sections A: M — TM*Q@TM, A =
a;(z)dzj ®9/0z": TM - TMand H: M - TM ©T*M, H = hf-'(a:)a/azj ® dat:
T*M — T*M. 1t is easy to see that in the V B-case c;;(z, 2) = cfj(x)z, see [1].

Let A": T*M — T*M,z; = a{ zj, denote the transposed vector bundle morphism
to a vector bundle morphism A: TM — TM over Idy, A" (e)(X) = e(AX). Ifa
V B-(1,1)-tensor field on T*M is symmetric or skew symmetric then H = -4 or
H = A", respectively.

Let T',dz; = [';j(%. 2)da?, be a connection on T* M. It is de“-zero, i.e. de®|yp =0
if and only if

(16) ¢ = Tsal = Tyzhi.

Proposition 10. Let ' be a symmetric connection on T*M. Then T is de®-zero
if and only if o(HT) C HT.
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Proof. The equalities (4) read

4" cij = Dyal = hily;.

Comparing (16) with (4’) we get our assertion. a
Proposition 11. Let a be such a vertical (1,1)-tensor field that A is regular.

Let a connection T’ be ds®-zero and a(HT') C HT. Then T is symmetric.

Proof. It follows from (16) and (4) that (I';e — Fh)a; = 0, which completes our
proof. O

In the case of a vertical almost complex structure o on T* M the formulas (3) read

o i i o pte . — ips _ _si
(3" agai = =8, cuaj +hic; =0, Nhihi= -0

We suppose that A is the 7-pull-back of a (1,1)-tensor 4 on M. Denote by w the
exterior derivative of the form i,e = zka;-‘(z)d:tj, ie. w:= dige = a;-‘dz;, Adzd +
zka_’;i(l;v‘ Adz?. Then

W = (abor + zrafal — zpafjal)de’ @ da? + hjaldz ® de? - alalds’ © dz;.

Let T, dz; = F{]‘dl‘j be a connection on T*M. Then
t I3 3 t t t i J
Wy = (aben + (aj, — a;‘j):kui + hia;Tsi — aja;T;)da © da?.

If a is symmetric, 4 is an almost complex structure on M and I is symmetric, then
w*|pr = 0 if and only if

17) abeu + (af, — afj)zal + 20y = 0.
Let us recall the Nijenhuis-Frolicher bracket, see for example (7],
[A, A] = (af, — af;)alds? Ada* & 9/z*.

We conclude

Proposition 12. Let a be such a symmetric almost complex structure that A
is an integrable almost complex structure on M, i.e. [A,A] = 0. Then there is a
unique symmetric connection I'y on T*M such that w*|yr, = 0. If a moreover is a
V B-tensor field then 'y is linear.
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Let H: T*M — T*M be a vector bundle isomorphism and I" a linear connection
onT*M, H = Rl (z)0/0x' ® duj, dz; = Ff] (z)zrda’. Then

TH:TT*M » TT*M; T =2', % = hiz;, 47" = da’, d%: = hijzda’ + hidz;,
TH hr = d2* © 8/0z + (htjz + hiTS;2¢)d2? © 9/0z:.

J

Therefore TH(HT) C HT at any (z,%; = htz,) if and only if
a7 Tihf = B + Tkt

Let  be such a symmetric (1,1)-tensor field on T*M that A = T'r-a is the m-pull-
back of a regular (1,1)-tensor field A on M. Then H = ~A". Let T be an arbitrary
connection on T*M. Denote § := H de = deTH = hi;zdz’ A dz’ + hidz; A dat.
Then Blur = (hf;z + hily;)da? Adz’ and Blar = 0 if and only if

(18) (h%; = 1)z + BTy — BT = 0.
The equalities (16) and (18), using af = —hi, give
(19) i+ (hE; = DY)z + 200 =0, ie. Ty = —1hi(cy + (hE; — hE)z0).

These functions I';; satisfy (16) and (18).
We conclude

Proposition 13. Let a be such a symmetric (1,1)-tensor field on T*M that
A = Tra is the m-pull-back of a regular (1,1)-tensor field A on M. Then there
exists a unique connection T, such that (deTH)|yr, = 0 and ds®|gr = 0. If
moreover

1. « is a V B-tensor field then T, is linear,
2. « is such a V B-almost complex structure that the almost complex structure
AonMis integrable then ' =T';.

Proof. The first part of Proposition 13 is evident. The equality of the functions
of the connections I'y, T follows from the equalities (17), (19), (3') and [4, 4] = 0.
a

Corollary. Ifa is such a symmetric V B-almost complex structure that [, 4] =
0 then by Proposition 10, a(HT o) = HT,.

Remark. The connections I',, '} cannot be constructed when H= X*, for
example when « is skew symmetric. Let us recall that if « is the so-called complete
lift of a (1,1)-tensor field F on M then it is skew symmetric, see {8]. In a more

general case when « is the first order natural lift of F' then H = A", see [3], and so
the connections Iy, '} do not exist.
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Propositon 14. Let a be such a symmetric V B-almost complex structure that
[A,A] = 0. Then TH(HT.) C HT if and only if the Nijenhuis tensor [a,a] is
semibasic with values in VT*M.

Proof. By virtue of [4,4] = 0 we get i[a,q] = (Bldz A da? + Di;dz* A
da?) ® 0/8z;, where BY, = cihk + h¥hk, + hE bt — h¥ck;. Using (3') we obtain
BE = (¢ — hi;)ht + (hf, — cﬁ'u)h;. The relation TH(HTo) C HI'y is true iff the
functions T'}; established by (19) satisfy the equality (17'). Putting T'f; in (17') and
using (3') we get (c}; — h}‘j)hfL = Y (ck, — hk,). So TH(HT,) C HT, if and only if
Bﬁf,- =0, i.e. iff [, a] is semibasic with values in VI™M. The proof is complete. O

Remark. Itiseasy to show that the condition TH(HT ) C HT is equivalent
to the one that V, A4 = 0, i.e. the (1,1)-tensor field A on M is constant with respect
to the covariant derivative established by the linear connection v, on TM which
induces the connection I’y on T*M.
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