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Summary. We show that certain symmetries of maps imply the existence of their invari­
ant curves. 
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1. INTRODUCTION 

In this paper we shall investigate the following problem: Does a symmetry of a 
continuous map imply the existence of invariant curves? An affirmative answer to a 
similar question for ordinary differential equations was given in [1]. 

We study a continuous map F: Rm —-> Rm, m ^ 2 equivariant under an orthogonal 
representation of a compact Lie group. Then assuming some other properties of F 
we show the existence of invariant curves which lie on spheres. The proof of the 
theorem of this paper is based on results of the paper [1] and features of orthogonal 
representations. 

2. MAIN RESULT 

Consider a continuous map F: Rm —• Rm, m ^ 2 such that 
i) there exist x\, x<i satisfying 

(in«i)|-|«i|)(|F(«-)|-|«a|)<0; 
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ii) F is equivariant under a linear othogonal representation T of a compact Lie 
group G, T = {Tt: g G G), i.e., 

F(T9x) = TgF(x); 

iii) T is transitive on the unit sphere Sm~l C Rm, i.e., 

{Tgx:gGG} = Sm'1 

for each x G S"1"1 (see [1, p. 478]). 

Theorem. Under the above assumptions F has an invariant curve. 

P r o o f . Since F is equivariant under T and T is transitive, we have |F(x) | = 
£(|x|) for a continuous function g: [0, oo) —+ [0,oo). We note that the assumption ii) 
implies F(0) = 0. The condition i) implies 

(*(l*il)-l*il)-(«(l«-l)-N)<o. 

Hence there is ft > 0 such that g(h) = h. Thus the sphere 5/» = {x: |x| = h} is 
invariant under F. Take xo G 5A. Then by [1, Lemma 1 and Lemma 2] there is 

A'o € C(T) = {K: K is an m x m matrix, KTg = TgK for each £ G G) 

such that F(xo) = K0x0. 
Further AoT^xo = TgK0x0 = TgF(x0) = F(7;x 0 ) . Thus 

|A'o7>0 | = \F(Tgx0)\ = |F(x0) | = h. 

Since T is transitive and Tgx0 G 5*, we see that |Aox| = |x|, Vx G Sjj. Thus Ao is 
orthogonal. Hence the eigenvalues of A'o lie on the unit circle. 

We have K0Tgx0 = F(7^xo). Since T is transitive we have 

A0x = F(x) 

for each x G £*». Hence F/S/i = Ao, i.e., the restriction of F on 5/» is the linear 
map Ao. 

Since T is transitive, T is irreducible. Hence the minimal polynomial of A'o is 
irreducible as well. Indeed, let the minimal polynomial p be expressed as p = p\p^ 
for pi , P2 nonconstant polynomials. Then 3 a G Rm such that /? = P2(A0)a -̂  0. 
Consider 7 = kerpi(A0) . Then /? G Y, since pi(A0)/? = Pi(Ao) • P2(A'0)a = 
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p(K0)a = 0. Hence Y £ {0}. Using the property K0Tg = TgK0l Vp G G, we 
have p\(K0)Tg = Tgp\(K0), V<7 € G. This implies that Y is invariant under Tg, 
V</ E G. But T is irreducible, hence Y = Rm and P2 has to be constant. This is a 
contradiction. Thus A'o satisfies either an equation A'o = d • I, d G R or 

(1) K2 = bK0 + c l 

for 6, c £ R and 7= Identity. 
Let the minimal polynomial of A'o be j/ —d, i.e., A'o = d-1. Since A'o is orthogonal 

we have d = ±1 and the existence of an invariant curve is trivial. 
Let y2 — by — c be the minimal polynomial. Since A'o has only eigenvalues on the 

unit circle, 

y2 = h + c 

has only roots with absolute values 1. We have applied the Cay ley-Hamilton theorem 
[2]. This implies 

| * | ^ 2 , c = ± l . 

From (1) and I<J = A'J*1 we have 

A'o = 6 7 + A'o""1 = 6 . / ± A ' 0
T 

(2) A0 + A'0
T = 6 7. 

First, we consider 

(3) 7i'0 - A'0
T = 6 7. 

Then 6 = 0, 7\'o = K0 . In this case the polynomial y2 — 1 is not irreducible. Thus 
it is not minimal and we arrive at the first case. 

Now we consider the second version of (2), 

7i'0 + 7i'T = 6 7. 

Let us take B = 7i'0 - f • 7. Then I<0 = f • 7 + B and BT = - B . By 7 ^ 7 ^ = 7 we 
have 

-ß-.+-)G"-) 

(4) ŕ=(Ç-i).;. 
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Let |6| < 2. Then B is invertible. Consider 

A = {cx + d>Bx: c , d € R } , x -/ 0. 

Note that i?T = — B implies x±Bx. Then by (4) KQA = .4 and easy computation 
shows that the matrix KQ/A = E under the basis Bar, x has the form 

-(! V) 
E has eigenvalues | ( 6± \ /& 2 — 4). Hence E is equivalent to a rotation. This implies 
that C = A O Sh is an invariant circle of F and F/C is equivalent to a rotation. 

Finally, let 6 = ±2. Then the polynomial y2 -F2i/+ 1 = (t/T l ) 2 is not irreducible. 
Thus we have again arrived at the first case. • 

Corollary. The dynamics of F on an invariant curve predicted by Theorem is 

equivalent to a rotation. 

P r o o f . The statement follows immediately from the above proof. • 
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