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SUBSTITUTION METHOD FOR GENERALIZED LINEAR 
DIFFERENTIAL EQUATIONS 

DANA FRA^KOVA, Praha 

(Received March 6, 1989) 

Summary. The generalized linear differential equation 

dx = d[A(t)] x + df 

where A,fe B V^C(J) and the matrices / — A ~~ A(r), / + A + A(t) are regular, can be transformed 
to an ordinary linear differential equation 

dy 
-- = B(s)y+ g(s) 
6s 

using the notion of a logarithmic prolongation along an increasing function. This method enables 
to derive various results about generalized LDE from the well-known properties of ordinary 
LDE. As an example, the variational stability of the generalized LDE is investigated. 

Keywords: generalized linear differential equation, logarithmic prolongation, ordinary linear 
differential equation with a substitution, variational stability. 

AMS classification: 34A30 

INTRODUCTION 

The generalized linear differential equation 

(1) dx = d[A(t)] x + df 

has been investigated many times, e.g. in [SI], [STV]. Equivalently, this equation 
has the integral form 

(1') x(t2) - x(tt) = ft d[^(s)] x(s) + f(t2) - /( . ,) 

where the Lebesgue-Stieltjes integral is used. Usually it is assumed that A is a real 
or complex n x n-matrix valued function on an interval J and f, x are real or 
complex n-vector valued functions. A very common assumption is 

(2) the matrix-valued function A is locally of bounded variation. 

Let us denote A + A(t) = A(t+) - A(t), A" A(t) = A(t) - A(t-) . 
When studying the equation (1), one can notice that the irregularity of matrices 
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j _ j - A(t)> I + A+ A(t) can cause an odd behaviour of the equation (l) and of its 
solutions- However, if it is assumed that 

(3) for every te J the matrices I — A" A(t), I + A+ A(t) are regular 

then many of the properties of the equation (1) are conspicuously similar to the 
properties of the ordinary linear differential equation 

(4) ^ = B(s)y + g(s). 
as 

In this paper it will be shown that this similarity is not accidental because every 
equation (1) can be transformed to some ordinary linear differential equation (4), 
provided the conditions (2) and (3) are fulfilled. As an example, a theorem on varia­
tional asymptotic stability will be proved. 

1. LOGARITHMIC PROLONGATION 

1.1. Notation. Rn, Cn denote the n-dimensional real and complex vector spaces 
n 

with the Euclidean norm [[xfl = ( £ |**|2)1/2- Mn(R),Mn(C) stand for the spaces 
k=i 

of n x n-real or complex matrices with the norm [|A|| = sup |-4x[|. 
11*11-!-

Let J be an interval and a 0 e / a given point. If a matrix-valued function A is 
locally of bounded variation, it can be written as the sum of a continuous function Ac 

and a break function Ab such that Ab(a0) = 0. 
For a function x we denote x(t —) = lim X(T), x(t+) = lim X(T) provided the 

X~*t- X~>t + 

limits exist, x o y denotes the composed function x(y(t)). 

1.2. Throughout this and the next section let us assume that a complex matrix 
valued function A: J -> Mn(C) is given such that the assumption (2) holds. Further, 
assume that an increasing function v: J -> R is given such that 

(5) \\A(h) - A(h)\\ .= v(h) ~ v(h) h o l d s f o r evefy h> he J 

such that tt ^ t2 . 

For instance, the function v can be defined by v(t) = t 4- var£0 A for t e / , t ^ aQt 

and v(t) = t — var?° A for t e J, t < a0. Let us denote 

(6) J' = conv {v(J)} 

i.e. the convex hull of the set v(J) = {T e R; x = v(t) for some te J}. Evidently* 
J' is an interval which can be written also in the form 

•r = u |>(t-), *<<+-)]= n K«M/0]; 
t£j [I .?]CJ 
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of course, the interval [v(t—), v(t+)] consists of a single point v(t) provided v is 
continuous at t. We will assume that 

(7) if t is the left endpoint of J then v(t—) = v(t) ; 

if t is the right endpoint of J then v(t + ) = v(t) . 

1.3. Definition, a) >4 matrix-valued function A: J' -* Afn(C) wi// fee called 
a logarithmic prolongation of A along the increasing function v, if 

(i) A is locally absolutely continuous on J'; 

(ii) the continuous part of the composed function A o v is equal to the continuous 

part of A; 

(iii) if te J is such a point that v(t—) < v(t) then A is linear on the interval 
[v(t-)> v(t)] and 

(8) I-exp[A(v(t-))-A(v(t))] = A-A(t); 

(iv) if teJ is such a point that v(t) < v(t + ) then A is linear on the interval 
[v(t)9 v(t+)] and 

(9) exp [A(v(t+)) - A(v(t))] - I = A+ A(t) . 

b) The matrix-valued function B: J' -> Mn(C) is the derivative of a logarithmic 
prolongation of A along v, if B is locally Leebesgue integrable and the function 

A(s) = §s
v(ao) B(o) do- satisfies the conditions (i) —(iv). 

Remark, (i) The logarithmic prolongation is in general not unique, because the 
matrices A(v(t—)) — A(v(t)), A(v(t+)) — A(v(t)) given by the relations (8), (9) are 
not determined uniquely. 

(ii) Since the logarithmic prolongation A is locally absolutely continuous, evidently 
it has a derivative 

B(s) = — A(s) a.e. on J' . 
ds 

1.4. Proposition. If a matrix-valued function A has a logarithmic prolongation 
along v, then the condition (3) is satisfied. 

Proof. If v(t-) < v(t) then the matrix I - A~ A(t) = exp [A(v(t-)) - A(v(t))] 
is evidently regular. If v(t—) = v(t) then the function A is continuous at t due to (5), 
hence A" A(t) = 0. Similarly the regularity of matrices I + A+ A(t) can be verified. 

Before investigating the existence of a logarithmic prolongation, the idea of the 
prolongation will be enlightened by the following theorem: 

1.5. Theorem. Let A be a logarithmic prolongation of A along v and let B be 
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its derivative a.e.. Assume that [a, b\ c J. The vector-valued function x is a solu­
tion of the generalized linear differential equation 

(10) dx = d[A(tj\ x 

on [a, b\, if and only if there is a solution y of the ordinary linear differential 
equation 

(11) ^ = B(s)y 
ds 

on v[(a), v(b)\ such that x(t) = y(v(t))for every t e [a, b\. 

The essential part of the proof is contained in the following lemma: 

1.6. Lemma. Let two functions x: [a, b\ -» Cn, y: [v(a), v(b)\ -> Cn be given 
such that 

(i) x(t) = y(v(t)) for every t e [a, b\; 
(ii) the function x has bounded variation on [a, b\; 
(iii) if t e (a, b\ is such that v(t—) < v(t) then y is a solution of (11) on 

M'-MO]; 
(iv) if t e [a, b) is such that v(t) < v(t+) then y is a solution of (11) on 

[v(t),v(t+)l 
Then the equality 

(12) K^^ *»)-&% #>)*>)*> 
holds for all a g 11 < t2 g b. 

Proof. First let us recall that 

(13) f-d[i(s)],-(s) = ^B(s)Ks)ds 

provided at least one of the integrals exists; 
— see [F]. Let us denote 

(14) C7=A(v(t-))-A(v(t)), 

Ct = A(v(t+)) - A(v(t)) for teJ. 

Since the function A is linear on the intervals [v(t-), f(f)], \v(t), v(t+)~\, it has there 
the form 

(15) A(s) - A(v(t)) + ^ t - 5 C" for S6[t>(t-),t;(t)] and 
A~ v(t) 

A(s) = A(v(t)) + S-=^c; for se[v(t),v(t+)-]. 
A+v(t) 
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Since B(s) = (d/ds) A a.e. on J', we have 

(16) B ( , ) _ . _ _ J - _ c; for se(t>(t-),t>(f)), teJ, 
A v(t) 

B(s) = —^—-Ct for se(v(t),v(t+)), teJ. 
A+ v(t) 

From the assumptions (iii), (iv) of Lemma 1.6 it follows that y has the form 

(17) y(s) = exp T ^ - s C~ 1 x(t) = exp L_(S) - A(v(t))] x(t) on 

[v(t-),v(t)], and 

(18) j<_) = |exp [ 1 = ^ Cf
+ J x(0 = exp [,_(_) - A(v(t))] x(t) on 

[»(0. "('+)]• 
Using (8), (9), (15), (17) and (18), we get the equalities 

J3?-, _[__(.)] j<-) = J5?_, B(s) Xs) ds = y(v(t)) - y(v(t-)) = 

- KKO) - ^ P [c r ] KKO) = 
= {l-exP[A(v(t-))-A(v(t))]}y(v(t)) = 

= A " _4(.) x(r) for t e (a, fc] ; 

J&+> d[^(s)] j<,) = J5I*) B(s) ,<,) ds = K^+) ) - KKO) -

= exp[C+]X0)~KK0) = 
= {cxp[A(v(t+))-A(v(t))]-I}y(v(t)) = 

= A+A(t)x(t) for .6 [a, ft). 

Since the functions A and x have bounded variations on [a, 6], by Corollary 1.23 
in [SI] the integral \\\ d[_4(_)] *(*) exists. 

Proposition 4 in [F] which is concerned with a discontinuous increasing substitu­
tion in the integral implies that the integral JJ[fJj d[_4"(s)] y(s) exists and we get the, 
equality 

Kd[A(t)]x(t) = S'ld[A°(t)]x(t)+ £ .4-_i(0*(0 + 
t l < t £ t 2 

+ i / . ^ O ^ O - M ^ - t f W ] *(-)) + 
. i _ _ f < * 2 

+ I J3?-> «-[-*(-)] .K«) + I J3o+) <-[<-"(-)] * ' ) -
* l < . _ _ - 2 « l _ _ - < - 2 

= JS.) <-[-*«] M • 
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By (13) the integral JJ{Jj} B(s) y(s) ds exists and we have 

J3S B(S) K.) ds = J$J aw.)] Ks) = ft dwo] x(0. 
Proof of Theorem 1.5. (i) Assume that y is a solution of the equation (11) on 

[v(a), v(b)] and that the equality x(t) = y(v(t)) holds for t e [a, b]. Then y is abso­
lutely continuous on [v(a), v(b)] and consequently, x has bounded variation on 
[a, &]. By Lemma 1.6 the equality 

x(.2) - *(..) = y«t 2 ) ) - y(v(tl)) = J#J> B(») y(s) ds = 

-.ftdM0]*(0 
holds for all ft, f2

 e [fl> b]; this means that x is a solution of (10) on [a, b]. 
(ii) Assume that the function x is a solution of (10) on [a, b]. Then x has bounded 

variation on [a, b]. Let us define a function y: [v(a), v(b)] —> C such that 

>>(T) = *(*) if t = v(t) , t e [a, b] ; 

if t e (a, b] is a point such that v(t-) < v(t) then y has the form (17) on [v(t-), v(t)); 
if t e [a, b) is such that v(t) < v(t+) then y has the form (18) on (v(t), v(t+)]. 

From (16), (17), (18) it follows that y is a solution of (11) on every interval of the 
form [v(t-),v(t+)]. 

Let «i,-?2 e [i;(fl), »(&)] a n d *i < '2 be given such that st e [v(tt-), v(tt+)], 
i == 1, 2. Lemma 1.6 yields 

y(s2) - ybi) = [y(si) - yM'2))] + IX'2) - *(*i)] -

- W*) - MO)] = J&> B(s) y(s) *s + 
+ ft dj>(0] *(0 - & o *(*) X ' ) * = Jgfa) B(5) y(s) ds + 

+ J5S *(*) * ) d 5 - fto *(') y(*) ds = ft B(s) y(s)ds . 

Consequently, y is a solution of (11) on [v(a), v(b)]. 

.1.7. Theorem. Assume that the matrix valued function A: J -> M„(C) and fhe 
increasing function v satisfy (2), (3) and (5). Then Jhere exisfs a logarithmic 
prolongation of A along the function v. 

Proof. It is well-known that if M is an n x n matrix such that [|M[| < 1 then the 
series 

ln(/ + M ) = - £ v ; M w 

n = l n 

is convergent and the equality exp (In (/ + M)) -= / + M holds. We have an evident 
estimate 

(19) flln (/ + M)|| <i £ i flMfl" = - In (1 - flMfl). 
n = l n 
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It is easy to find out that the function cp(x) = — In (1 — x) is convex and con­
sequently, 

<p(x) = <p(0) + -^--? [<p(i) - <p(0y] = 2 In 2. x for every x e [0, i ] . 

From (19) we get the estimate 

(20) if \M\ = 1 then Jin (/ + Af)|| g 2 In l\M\ . 

If t e J is such that \A~ A(t)\ < 1, let us define C~ = In (/ - A~ A(t)); 

if \A+ A(t)\ < 1 , let us define C+ = In (J + A+ A(t)) . 

It is proved e.g. in [K], Th. 6.1.1 that also in the case \A~ A(t)\ = 1 or f|̂ + A(t)\\ = 

_̂  1 there are such matrices C~ or C+ that exp C~ = I — A~ A(t) or exp C+ = 
= / + A+ A(t)9 respectively. Let us mention that these matrices are in general 
complex, even if A is a real matrix - valued function. 

By (20) we obtain the estimate: 

if \A~A(t)\Si then \C;\ = 2 In 2\A~ A(t)\ ; 

if \A+A(t)\=i then [|C+fl = 2 In 2|)A+ A(f)|| . 

Since A is of bounded variation and for every compact interval [a9 b] c J the 
set {te(a9 &]; ||A" A(t)\ = i} u {te[a9 b); \A+ A(t)\ = £} is finite, the above 
estimate implies that 

(21) the series £ C~ and £ ^t a r e absolutely convergent for every 
fe(a,b] feCfl.b) 

compact subinterval [a, b~] c J. 

Let us define -41VT) = A[c(r) if % e [v(t—)9 v(t+)]9 t e J. If xl9 T2 e J are such points 
that v(t~) ^ t1 ^ T2 ^ ^ + ) for some t€/, then 

(22) flAt(T2) - ^.(rOl = fl-4c(t) - ^(t)fl = 0 g T2 - T. . 

If there are such points tl9 f2 e J that tt < t2 and v(tt—) ^ Tf ^ t>(t,-+) for 
i = 1, 2, then 

(23) flA,(T2) - _4.(T.)|| = \A'(tt) - A<(h)l = 

= \Ac(t2-) - Ac(tl+)\ S v(t2-) - v(tl+) $ T 2 - T , . 

From (22), (23) it follows that the function Ax is lipschitzian on J', consequently it 
is locally absolutely continuous and has a derivative 

(24) — Ax(s) = B,(s) a.e. on / ' . 
ds 
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Let us define 

(25) B2(s) = 0 if s = v(t) , t e J ; 

if t e J is a point such that t?(f —) < v(t) then 

B2(s) = -C~\A~ v(t) for 5 e [>(/-)- t>(f)) ; 

if t e J is a point such that v(t) < v(t+) then 

B2(s) = C+1A + v(t) for s G (»(l), r(t+)] . 

Finally, let us define B(s) = Bx(s) + B2(s) for 5 e J\ 
To find out if the function B2 is locally integrable, it is sufficient to estimate the 

integral J^j l-̂ OOII ds, because evidently B2 is a measurable function. For every 
[A, fc] e J we have the identity 

J»j |-»a(»)l ds = £ J3*>_, |Ba(-)| ds + £ $.,+ ) |B2W| ds -
a<t<;b a<.t<b 

- I |cr|+ I ICI-
a < t ^ l > a ^ t < b 

The last two series are convergent by (21). Hence the function B2 is locally integrable 
over J' and we can define 

A2(s) = $s
v{ao)B2(a)d<i, A(s) = Ax(s) + A2(s) for seJf. 

Let us prove that A is a logarithmic prolongation of .4 along v. The condition (i) 
of Definition 1.3 is evidently satisfied. The function 

A2 o v has for t = a0 the form A2(v(t)) = $£> B2(a) da = 

= Z ^t
)-)52((7)dt7+ X J^+>52(a)d(T = 

a o < T ^ t a 0 <;T<t 

= E e; + Z Ct
+ , hence A(v(t)) = ^ ( O ) + ^(«<0) = 

a o < T ^ f a o ^ T < f 

= Ac(t) + £ C; + £ Ct
+ for f e J , f = a0 . Similarly 

ao <. T <. f a o < T ^ t 

yf(«(t)) = Ac(t) - £ C7 - £ C,+ for . e J , t < a0 . 
f < T ^ a o f <. T < ao 

We can see that the continuos part of A ° v is equal to /<c. 
The conditions (iii), (iv) of Definition 1.3 are obviously satisfied, because 

exp [A(v(t-)) - A(v(t))] = exp [A2(v(t-)) - A2(v(t))] = 

= exp #;,-> B2(a) d<x = exp Ct" = / - A~ A(t) , 

similarly 

exp [A(v(t+)) - A(v(t))] = I + A+A(t). 
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2. ORDINARY LINEAR DIFFERENTIAL EQUATION WITH A SUBSTITUTION 

2.1. Definition. Assume that a matrix valued function B: J' -• M„(C), a vector 
valued function g: J' -> Cn and an increasing function v: J -> J' are given. 

We say that an n-vector valued function x is a solution of the ordinary dif­
ferential equation with a substitution 

(26) x(t) = y(v(t)); £ = B(s) y + g(s) 
ds 

on an interval [a, b] c J, if there is a solution y of 

(27) ^ = B(s)y + g(s) 
ds 

on the interval [v(a), v(b)] such that the equality x(t) = y(v(t)) holds for every 
te[a, &]. 

Using this definition, we can re-formulate Theorem 1.5 in the following form: 

2.2. Corollary. Let a matrix-valued function B be the derivative a.e. of a loga­
rithmic prolongation of A along v. 

An n-vector valued function x is a solution of the equation (10) on [a, b] if and 
only if it is a solution of 

(27)' x(t) = y(v(t)) ; ^ = B(s) y 
ds 

on [a, b]. 
The aim of this section is to prove an analogous theorem for the equations (l) and 

(26) and then to obtain some results concerning the equation (1). 

2.3. Lemma. Let the matrix valued function A be a logarithmic prolongation 
of A along v. Let a vector valued function f: J -+ Cn be given such that 

(28) \f(t2) - f(tx)\ = v(t2) - v(h) for every tu t2eJ, tt < t2 . 

Let us define a function g: J' -*• Cn as follows: 
The function f\ defined byft(s) = fc(t)for s e [v(t—), v(t+)~], te J, is lipschtzian, 

which can be verified similarly as in (22), (23). Hence it has a derivative gx(s) = 
= (dlds)f1(s) a.e. on J'. Let us define 

(29) g2(s) = 0 if s = v(t), teJ; 

^W = T ^ eXP W5) - ^ H ) ] A' f(t) if A v(t) 

se[v(t-),v(t)), teJ; 
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A KO 
Se(t>(f),l>(f+)], t e J . 

Further, let us define g(s) = gx(s) + gi(s) for s e J'. 
Then the function g is locally integrable over J'. 

Proof. The function gt is locally integrable, because f1 is absolutely continuous. 

The function g2 is obviously measurable. If [a, ft] c J is a compact interval, then 

^

y(b) rv(t) /•»(- + ) 

M»)l d* = E M-) | ds + I M-) | ds = 
v(a) fl<' = b Jt;( f - ) fl='<bJt;(f) 

1 ii rv(r) ii 

" E T̂ TS exp[4s)-i(^-)]dsJ-/(0 
/-V.Hn

A pWIIJ-(»-) II 

+ 
.4-|Ҳí)>0 

1 II г , y < ř + 

Һ £ — — 
a = f<b A + *>(0 Jt>(f) 

exp [̂ (s) - Á(v(t+)) ds A+ f(t)\\ 5i 

= I I Г 0 ыplҖs)-Ä(v(t-))]dsi + £ 
в < ř = Ь J t?(ř-) a = i < b 

.d + t>(f)>0 v ' ,d + t>(t)>0 

ŕv(t + ) 
exp [Á(; 

J ľ ( ř - ) 
'») 

A(v(t+))]ds\\. 

In the last inequality the assumption (28) was used. Using the notation (14) we obtain 
that the last expression is equal to 

v iir0 r»-»(*-),-.-!,, 
Z exp - — 7 T C> d s 

.<;ff*0ILU-) L -i 40 J 
£ exp ——7ve« 

• '&<>V J '<*> L d * ) -1 

d - г ( f ) > 0 

ds й 

A+v(t)>0 

й -- ГW^^iic гi~ld s + 

.-в<,MьJ»(»-) L <* 40 J Л-«(J)>0 

* П Ч ^ 1*11*-
-*«<», Jкo L -i 40 J 

+ 
á + »(Г)>0 

,ì\c, - 1 
= х .4-40.1+ Е .4-40.^—^+ Е .4+40л + 

с- г = о с*-+о и " с е

+ = о 

+ I -.МО • 
а<;Г<Ь 
С е + * 0 

346 



The assumption (i) of Definition 1.3 implies that A is bounded on [v(a), v(b)] by 
a constant c > 0. Then |Cf" || <; 2c, |Cf

+1 ^ 2c for every t e [a, b]. 
Let us find such K > 1 that (ex — l)/x ^ K for every x e (0, 2c]; then the last 

expression can be estimated by 

£ -4" v(t)K + Z A+ v(f)K -S K[v(b) ~ <<0] • 

It means that g2 1s integrable over an arbitrary interval [v(a), v(b)] c Jf. Con­
sequently, g is locally integrable over J'. 

2.4. Theorem. Assume that the matrix valued function B is a derivative of 
a logarithmic prolongation of A along v. Let a vector valued function f be given 
such that (28) holds. If we define a function g as described in Lemma 2.3, then the 
equations (l) and (26) have the same solutions. 

Remark. If it is assumed that the functions A and fin (1) are locally of bounded 
variation, then it is possible to find such an increasing function v that both (5) and 
(28) hold; for instance 

v(t) = t + var 0̂ A + var£0f for teJ, t ^ aQ , 

v(t) = t - var?° A - var?0/ for teJ, t < aQ . 

The proof of Theorem 2.4 is very similar to the proof of Theorem 1.5. In fact, 
Theorem 1.5 is a special case of Theorem 2.4 and was formulated and proved 
separately only for better understanding. First, let us prove a lemma: 

2.5. Lemma. Assume that [a, b] c J. Let vector valued functions x: [a, b] -> Cn 

and y: [v(a), v(b)] -> Cn be given such that 
(i) x(t) = y(v(t))for te[a,b]; 
(ii) the function x has bounded variation on [a, b]; 

(iii) if te(a, b] is such a point that v(t~) < v(t) then y is a solution of (21) on 
[v(t-),v(t)]; 

(iv) if t e [a, b) is such a point that v(t) < v(t+) then y is a solution of (27) on 
[v(t),v(t+)]. 

Then Ĵ  d[A(t)] x(t) + f(t2) - f(tt) = J™ [B(s) y(s) + a(s)] d* for every a < 
<tt<t2<b. 

Proof. Denote A(s) = JJ(8o) B(a) da, f(s) = J*(1Io) g(a) da for s e J'. If we define 
matrices C,~, ct

+ by (14), then B has the form (16) on the intervals (v(t—), v(t)), 
v(t),v(t+)), and 

<KS) = 1^T\ exP P T-^T } C'"l J ~ M for s e M'-)' «<0) where 

A "(0 L A v(t) J 
t e J and v(t—) < v(t), and 

^) = ^ ) e X p [ £ 7 4 r ) c + ] J + / ( 0 f°r "W0.t<r+)] 
where teJ, v(t) < v(t+). 
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Since B is constant on intervals of the form (v(t—), v(t)), (v(t), v(t+)) and y is 
a solution of (27) on these intervals, we can easily compute that 

(30) y(s) = exp [A(s) - A(v(t))] x(t) + [s - v(t)] g(s) for 

se[v(t-)9v(t)), te (a, b] and s e(v(t),v(t+)], te[a9b). 

If t e (a9 b]9 v(t - ) < i?(f) then 

$>-> [B(s)y(s) + g(s)] ds = y(v(t)) - y(v(t-)) -

= x(t) - exp [A(v(t~) - A(v(t))] x(t) - [v(t-) - v(t)] g(v(t-)) = 

= A-A(t)x(t) + A-f(t); 

if t e [a, b), v(t) < v(t+) then 

$,'>+) [.*(-) y(s) + g(s)] ds = y(v(t+)) - y(v(t)) = 

= exp [A(v(t+)) - A(v(t))] x(t) + [v(t+) - v(t)] g(v(t+)) - x(t) = 

= A+A(t)x(t) + A + / ( f ) . 

Using Proposition 4 in [F] about increasing substitution in the integral, we get 
the equality 

ft d[A(tj\ x(t) + f(t2) - f(h) = ft D[A(t) x(r) + /(*)] = 

= ft D[A<(t)x(r) +r(t)] +t ^[A- A(t)x(t) + A~ f(t)] + 

+ij:<[A+A(t)x(t) + A + f(t)]l2 

= )]>D[(A,vy(t)y(v(r)) + (fovy(t)-] + 

+tJ<tJ%)-)»tf(°)y(°)+m + 
+ '1 J0%

+>D[4s)^)+/(s)] = 
tl<:t<t2 

= J™ D[A(s) y(<r) + /(s)] = £ « [B(s) j<,) + *(.)] ds . 

The proof of Theorem 2.4 is very similar to the proof of Theorem 1.5 and is omitted. 

2.6. Theorems 1.7 and 2.4 give us a tool for deriving various results about gener­
alized linear differential equations from the well-known properties of ordinary linear 
differential equations. 

If for an equation (1) the assumption (2) holds but the assumption (3) is not 
satisfied, we can make use of the fact that the points t at which the matrices I — A" 
A(i)or I + A+ A(t) are not regular are isolated. Hence the interval of definition 
can be divided into subintervals at which (3) holds and our theory can be used. 

Immediately we get some basic theorems. For instance, we know that for s0 -= v(t0) 
the initial value problem 

(31) ^ = B(s)y + g(s); y(s0) = x0 

ds 
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has a unique maximal solution x// and this maximal solution is defined on / ' . Then, 
evidently, also the initial value problem 

(32) x(t) = y(v(t)); - ^ = B(s) y + g(s) ; x(t0) = x0 
ds 

has a unique maximal solution <p(t) = $(v(t)) on J. According to Theorem 2.4 the 
same holds for the initial value problem 

(33) dx = d[A(t)] x + df; x(*0) = x0 . 

2.7. As an example, an explicit formula for solutions of (1) will be found provided 
n = 1, under the assumptions (2), (3). 

For given functions A,f let us find such an increasing function t; that (5), (28) 
hold. Let us find a logarithmic prolongation A of A along v by Theorem 1.7; further, 
let us define the function g by Lemma 2.3 and denote f(s) = J*(ao) g(a) da, s e J. 
Finally, let us denote A(t) = A(v(t)), t e J. 

Since every maximal solution of (11) has the form 

y(s) = exp [A(s) - A(s0)] y(s0) , s e J', 

the equation with a substitution (27)' as well as the equation (10) have maximal 
solutions x(t) = exp [A(v(t)) — A(v(t0))] x(f0), te J, i.e. 

x(t) = exp [A(t) - A(t0)] x(t0), teJ . 

The variation-of-constants formula yields the maximal solutions of (27): 

y(s) = exp [A(s) - A(v(t0)] y(v(t0)) + 

+ &>o) exP \A(s) - A°J1 0(°) d(T -
hence every maximal solution of (1) has for n = 1 the form 

x(t) = exp [A(v(t)) - il(i<r0))] x(t0) + 

+ J™ exp [A(v(t)) - i(<x)] g(<r) d<r = 

= exp [A(t) - A(t0)] x(t0) + 

+ JJ0 exp [A(v(t)) - i «T) ) ] d(fo v)c (T) + 

t0<x£t 

. _ i _ e x p [ i ( c r ) - ^ ( P ( T - ) ) A~ f(x) + 
4 I>(T) 

+ I f£+>exp[^(0)-A>)]-
r o <. t < t 

1 exp [,*(<-) - A(v(x+)] J + / (T) = 
J+t>(т) 

= exP ГДÍ) -1((0)] *(ř0) + я. «p iдo - ад d/e(т) + 
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+ £jxp [A(t) - _*(--)] A~/(T) + 

+ E_exp[40-^+)]^ + f(r) 

provided t0 < t; if t0 > t we put E = - Z etc-
f 0 < T ^ t t < T < ^ 0 

Now, let us express the value exp [AT(f) — -^(T)] 1n a more detailed form: For 
T, t € J, T < t we have 

*(«) - i"(t) = ^ ( f ) ) - A(V(T)) = /*c(0 - ^ ) + 

+ S -*(<<-+)) - Mm - S M*--)) - -W-))]; 
t £ s < f K s S l 

hence 
exp [A(t) - I(T)\ = exp [A'(t) - A'(T)\ [7 exp [A(v(s+)) - -i(t{*))] . 

. nc-pWK--))-^-))!-1- t<5<' 
T < S ^ t 

= exp [A'(t) - A'(T)\ n (1 + A+ A(s)) [ ] (1 - A' A(s))~' . 
X<;S<t t<S<;t 

2.8. In [FS] a Sturm-Liouville theorem was proved for a system 

dx = ydP, 

dy = x djR . 

The method used there is in fact the same as described in this paper. 

2.9. The well-known variation-of-constants formula yields the maximal solutions 
of (27) in the form 

y(s) = W(s, s0) y(s0) + & W(s9 a) g(a) da ; s, s0 e J' 

where W(s, s0) is the fundamental matrix of the equation (11). 
Theorem 1.5 implies that U(t, t0) = W(v(t), v(t0)); t0,ts J is the fundamental 

matrix of the equation (10). By Theorem 2.4 the maximal solutions of (l) are of 
the form 

x(t) = y(v(t)) = W(v(t), v(t0)) y(v(t0)) + J™ W(v(t), a) g(a) da = 

= U(t, t0) x(t0) + $,<>> W(v(t),a) df(a) . 

Proposition 4 in [F] about substitution in the integral yields 

x(t) = U(t, t0) x(t0) + f'0 W(v(t), v(r)) d(fo v)' (T) + 

+ S Hf-)W(<*)^)9^)Ao+ X lZVW(v(t),o)g(o)do = 
t0<&<:t t0<;&<t 

- u(t, t0) x(t0) + j;» u(t, T) df(x) + z w(X0> <»-)) • 
t0<»^t 

• ft?-, W(v(9„), o) g(o) do + tJ9<W(v(t), v(9+)). 

.%i?>W(v(K),o)g(o)do='0~* ' 
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= U(t,t0)x(t0) + l'toU(t,T)df<(T)+ Y. U(t,9). 
to<&<;t 

. £»_, exp [A(v(9_)) - A(a)] . —L- exp [A(a) - A(v(9-))] 
A v(9) 

. A' f(9) da + £ tl(t- 9+) • j$>+) ^ P [A(v9+)) - __(_•)] . 

• T T 1 ^ e x p ^ " A«9+))] A + f(9) d<7 = 

A v{#) 
= U(t,t0)x(t0) + S't0U(t,T)dr(T) + 
+ E ^('.»-)-i3:)->—L~A-f(9)da + 

t0<&<:t A v(#) 

+ E U(t,9 + ) ^ )
+ >- i - J + /(9)d<r = 

t0_id<f _a i?(#) 

= U(t, t0) x(t0) + [f'0 U(t, T) df(T) - £ U(t, 9)A~f(9) -
f o < d ^ f 

- £ UM)j+/($)]+ £ U(.,s-)_r/(s) + 
fo__#<f fo<S^f 

+ £ U(f,.+)/l +/(_•). 
(o_S<( 

Hence we get the following formulae for the maximal solutions of (1): 

(34) x(t) = U(t, t0) x(t0) + f;0 U(t, t) dT(r) + 

+ £ U(t,9-)A~f(9)+ £ U(.-,S+)J + /(9) = 
10 < S ^ t f 0 ^ S < t 

= U(*, *•„)*(*„) + j;0U(f ,T)d/(T)-

- E [UM)~UM-)]/r/(3) + 
t o < d ^ t 

+ £ [U(t,9+)-U(t,9)]A + f(9) for * 0 , f e J , <0 _J t. 
(o_9<( 

Similarly, for f < t0 it can be proved that 

(35) x(f) = U(t, t0) x(t0) + f'0 U(t, T) d/c(T) -

- £ V(t,S-)A-f(S)- £ UM+)_. + /(3) = 
f<d^f0 t<;,9.<t0 

= U(.-,<0)x(f0) + f;oU(f,T)d/(T) + 

+ £ [u(t,9)-U(t,9-)]A-f(9)-
t<9<:t0 

~ E [U(t,S+)-U(f,3)].d + /(S). 
f g d < f 0 
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3. VARIATIONAL STABILITY 

We will be concerned with the generalized linear differential equation 

(36) dx = d[A(t)] x 

where A is a real n x n-matrix valued function which is defined on the interval 
J = [0, oo). Throughout this section we assume that (2), (3) hold. 

3.1. Following [S2], we will say that 
(i) the solution x0 s 0 of (36) is variationally stable if for every e > 0 there exists 

S > 0 such that if x: [f0, f j -• Rn
9 0 ̂  t0 < t1 < oo, is a function of bounded 

variation with 

\\x(t0)\ < 5 and varj* {x(t) - ft, d[A(s)] x(s)} < d , 

then \x(t)\ < e for t e [t09 fA]; 
(ii) the solution x0 = 0 of (36) is variationally attracting if there exists S0 > 0 

and for every e*> 0 there exist T > 0 and y > 0 such that if x: [t0, fx] -* ffi", 0 ̂  
2 £ f 0 < f 1 < o o , isa function of bounded variation and 

||x(*0)| < <50 and var^ [x(f) - J{0 d[A(s)] x(s)] < y , 

then |x(f)|| < e for all t e [t0, t^ n [t0 + T, oo); 
(iii) the zero solution x0 = 0 is variationally-asymptotically stable if it is varia­

tionally stable and variationally attracting. 
The aim of this section is to find some sufficient conditions for the equation (36) 

to have the zero solution variationally stable or variationally-asymptotically stable. 

3.2. Let us define 

A0(t) = A(t)~ £ z T A ( T ) - X A+A(T) for *e[0,oo). 
0 < T ^ f O g t < f 

\\A-A(T)\\Z1 \\A*Aix)\\^l 

The function A0 has the same continuous part as A, further A ~ A0(T) = A" A(T) 
provided \\A~ A(T)\ < 1 and A" A0(T) = 0 provided ||A" ,4(T)|| ^ 1, similarly for 
A+

 A0(T). The set {T G [0, oo); [|A~ A(T)\\ = 1 or \A+
 A(T)\ = 1} consists of isolated 

points in [0, oo). Again we will denote -4(0-) = <40(0—) = A(0). 
Let an arbitrary increasing function v:[09 oo) -> [0, oo) be given such that the 

conditions (5) and 

(37) v(0) = 0 , lim v(t) = oo 
f-*oo 

hold. Let us define a logarithmic prolongation A0 of A0 along v in the same way 
as in the proof of Theorem 1.7, B0(s) = (d/ds) Af0(s) a.e. on [0, oo). 

Since \A~ A0(T)\ < 1 and \A+
 A0(T)\ < 1 for every T G [ 0 , OO), the matrices 

Cf~ = ln(J - A~ A0(t))9 C+ = In(7 + A+ A0(t)) are real; consequently, A0 and B0 

are real matrix valued functions. 
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3.3. Lemma, (i) Let us define 

(38) fi(s) = 0 if s = v(t) for some t e [0, oo) ; 

if t e (0, oo) , v(t-) < v(t) then 

/i(s) = - rln| |exp[^0(s)--_l0(i;(r--))]| for s e [v(t-)9 v(t)) ; 
ds 

if t e [0, oo) , v(t) < v(t+) then 

M(s) = ± In ||exp [A0(s) - A0(v(t))] exp [A0(v(t)) - 4,W*-))]I /or 
ds 

- eK*). »( '+)]• 
Then 
(39) {:g!>/i(s)ds = ln[)(/ + J + A o 0 ) ) ( / - / l - > l o ( 0 ) - 1 | | /or t e [0, oo) 

and the function JLL is locally integrable over [0, oo); 
(ii) for every 9 > 0 the infinite product 

n Kz + ^MOHI-^wri 
o<t<s 

is convergent. 

Proof, (i) We have 

J#-> Ms) ds = # . - ) lt(s) ds + J3o+) Ms) ds = 

- D n | « p [ ^ o ( - ) - - * o W . - ) ) ] | K ? - ) + 

+ [In |exp [A0(s) - A0(v(t))] . exp [^o(«<0) - AMl-WHSX* = 

= In |exp [A0(v(t+)) - A0(v(t))] (exp [A0(v(t-)) - -WO)])"1! = 

= lnl( / + J + A ( / ) ) ( / - J - A o ( 0 ) - 1 . 
Since _̂ 0 is linear on the intervals [v(t—), v(f)] and [i?(f),#(*+)], the function \i 

is evidently measurable over [0, oo) and integrable over each interval of the form 
[v(t-),v(t+)]. 

For every a > 0 there is 9 ^ 0 such that cr e [^(9~), t?(9+)]. We have 

(40) M s ) d s = £ J..('
+Ms)ds + tf<9_) /i(s)ds = 

O ^ t ^ 

= £ ln | ( / + ^ + A o ( 0 ) ( / - / l - / l o ( t ) r i | | + I . ( . - )Ms)ds. 
0 < f < d 

For the integrability of /x over [0, a\ it is sufficient to prove that the series above is 
absolutely convergent. 

The set K = {t e (0, 9]; || J " A0(t)|| > £} u {f G [0, 9); ||A+ A0(r)|| > ±} is finite. 
From the implication 

if C 6 Mn(C) , ||C|| ^ | then |ln ||/ + C|| | £ 2 In 2||C|| 
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we obtain: 
if t e [0, 9)\K then |ln \\(I + A + A0(t))(I - A~ A0(t))~11| | = 

= |ln p + (A0(t+) - A0(t-))(I - A' A0(t))-^ | g 

;g 2 . In 2 . \\A0(t+) - A0(t-)l .\\f(A- A0(t))»l Z 

й 2 . ln 2 . |A0( í+) ~ Л o ( Ч 

и = 0 

1 

1- |4-^(0 | -
^AAa2.lA0(t+)-A0(t-)l. 

Since X0 has bounded variation over [0, 9], the series in (39) is absolutely convergent, 
(ii) We have 

I 1(1 + A+A(t))(l - A'A(t))->\\ = 
0<t<» 

= exp {In £ 1(7 + A+ A(t))(l - A~ ,4(f))-»)| = 
0 < f < » 

= exp { £ In ||(/ + A+ A0(t))(l - A~ 4,(0)" 1 + 
o < t < a 

|M + Ar ) l l<land | |J -A (OlI< l 

+ £ lnj(l + A+A(t))(l-A-A(t))-il 
0 < f < d 

|l.d + A(OH^lor||J-A(f)||^l 

In the last expression the first series is convergent by virtue of part (i) and the second 
series consists of a finite number of nonzero values. 

3.4. Lemma. Assume that there is a locally integrable function A: [0, co) -* R 
such that X is zero on every interval of the form [v(t—), v(t)) or v(t), v(t+J\ and 

(41) if s = v(t) for some *e[0, oo) then (B0(s), y, y) = X{s) ||y(|2 

for every y eRn 

(the scalar product of vectors B0(s) y and y). Let us define \i by (38), Q(S) = X(s) + 
+ fx(s) for s e [0, oo). 

/ / W(s9 s0) is the fundamental matrix of 

(42) ^ = B0(s)y 
ds 

then 
(43) J W(v(t2 -), v(t, +))! g exp J#;-> Q(S) ds for every 0 ^ ( , < ! 2 . 

Proof. Let y be a solution of (42) on [0, oo), denote n(s) = |y(s)|2 for s e [0, oo). 
The relations y(s) = exp [A0(s) - A0(v(t-))] y(v(t-)) for se[v(t-),v(t)] and 

y(s) = exp [A0(s) - A0(v(t))) y(v(t)) for s e (v(t), v(t+)~\ yield 

(44) n(v(t+)) = flexp [A0(v(t+)) - A0(v(t))] exp [A0(v(t)) -

- A0(v(t-)y] y(v(t-))j> < fexp [A0(v(t+)) - A>(t))] . 
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. exp iA0(v(t)) - M*(t-))W \Mt-))V -
= e x p [ 2 j ^ ! ^ ( f f ) d < r ] ^ ( t - ) ) for .e [0 ,oo) . 

Using the notation z(s) = (d/ds) z(s), we have 

*(-) = 1 0(5), j<«)) = 2(y(s), y(s)) = 2(B0(S) y(s),•&)) . 
ds 

The assumption (41) implies 

(45) rj(s) ^ 2 A(s) >/(s) if s = v(t) , * + [0, oo) . 

Let us denote 

(46) {(s) = fi(s) - 2 Q(S) rj(s) for s e [0, oo) . 

(45) implies that if s = v(t) then £(s) = ^(s) — 2 A(s) ;»/(s) ^ 0. Let us denote 

(47) M = {SE [v(tt+), v(t2-)] ; s = v(t) for some t} . 
Then 
(48) ( t ;( t1+),t<*2-))\M= U [v(t-),v(t))u(vt),v(t+)]. 

te{tut2) 

From (46) it follows that the function rj is a solution of the ordinary differential 
equation 

r\ = 2 Q(S) rj + £(s) 

on [0, oo); the variation-of-constants formula yields 

(49) r1(v(t2-)) = exp[2$:{r+)Q(a)do-]n(v(t1+)) + 
+ J^;>exP[2j.^->e(<T)d<r]^(s)d,. 

By (47), (48) we have 

(50) J*'?-> exp [2 j?'--> <?(*) d<r] £(-) ds = 

= JMexp[2j:<'->e(<T)d<T]|(s)ds + 

+ I exp[2j^+-)>e(5)ds]J»a!>exp[2j»<'+>e(<7)d<r]^)dS. 

The integral over the set M is evidently nonpositive because £(s) ^ 0 for seM. 
If we prove that J ^ exp [2 0 ( t _ ) e((x) dcr] £(s) ds ^ 0 for every t e (tu t2) then 

the left-hand side of (50) will be nonpositive and from (49) we will get the inequality 

(51) n(v(h-)) ?k exp [2 J*?; , g(a) da] //(»(.!+)) . 

Since Q(S) = ju,(s) a.e. on [u(.> —), u(f+)], we have 

J^!>exp[2r+>e(<T)da]£|(5)d5 = 
= j:<;+)> exp [2 Jf+> <?(,) da] (r,(s) - 2 e(s) „(,)) ds = 

= J:<;+> i (exp [e Jf+> «(») d«r] ^ ) } ds = 
ds 

= ,(„(*+)) - exp [2 J^t> /x(tr) d<r] „(<. - ) ) . 

The last expression is nonpositive due to (44). Hence (51) holds. 
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Since [|y(s)||2 = rj(s), the inequality (51) implies that 

(52) \Mh-))\ = exp U$M Q(o) da] |j<«<*. +)) | 
for every maximal solution y of (42). 

By the definition of the norm of a matrix, there is a vector z e Rn such that Jzfl g 1 
and lW(v(t2-)), t>('i+)H = | |^(^2~) 5 ^Oi+))i- T he function y(s) = 
= W(s, v(ti +)) z is a solution of (42), hence (52) implies that 

\W(v(t2-),v(h+))\ = |H{t{*a-),t<'i+))-| = 

- \y(v(t2-))\ = exp [J3Jj;> <,(,) d<r] | z | = exp [ft*-} «(«-) d<r] . 

3.5. Theorem. Assume that there is a continuous function a: [0, oo) -> W wjf/i 
locally bounded variation such that 

(53) ([>4c(f2) - ^(f-.)] x, x) = [<x(t2) - a(^)] fx||2 for every xeRn, 

0 ?z ti ^ t2 < co . 

Let us denote 

(53y ; fs(h,«.) = i(i - j - 4 . 2 )r i i . n w +A+ A(mi - *~ m-'i • 
f i < f < f 2 

.\l + A*A(tl)l, 0£t1^t2<oo. 
Then the fundamental matrix U(t, t0) of (10) satisfies the estimate 

(54) ||U(f, *0>H = exP MO _ a('o)] K*> *o) . 0 :£ f0 = f < co . 

Proof. Let us define functions A1 and J5t as in the proof of Theorem 1.7. We may 
assume that the increasing function v is chosen so that 

|a(r2) - a(fx)| = v(t2) - v(tt), 0 = *x =" f2 < oo . 

Let us define a^s) = a(f) if s e [v(t—), !>(*+)], * 6 [0, oo). The function ax is 
lipschitzian and has a derivative A(s) = a^s) a.e. on [0, oo). Evidently at(s) = 
= B^s) = 0 if s e [v(t~), v(t)) u (v(f), v(t+)] for some f e [0, oo). 

From (53) we get the inequality 

([A^-A&M^x)* 
= M ^ ) - a^sO] ||x||2 for ,0 = s, < s2 , x e r . 

Consequently, 

(55) ( B ^ s ^ x ^ ^ H x l l 2 

a.e. on [0, oo). If s e [0, oo) is such a point that (55) does not hold, let us re-define 
A(s) = IjB^s)!. Then (55) holds for every s e [0, oo). Let A0 be a logarithmic pro­
longation of A0 along v, B0(s) = (d/ds) A0(s). 

Let us define /x by (38) and g(s) = A(s) + /x(s), s e [0, oo). Since B0(s) = Bx(s) 
provided s = v(t), the assumption (41) of Lemma 3.4 is fulfilled. 

Theorem 1.5 implies that U(t2 — , tl +) = W(v(t2—), v(tl+)) provided the interval 
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(tl912) includes no point t at which \A A(t)\ _£ 1 or |_d + A(t)§ _> 1, because at this 
interval the equation (10) and 

dx = d[A0(t)]x 

have the same solutions. By Lemmas 3.3 and 3.4 we have 

(56) p(t2-,h+)l £ exp ££;,<?{») <-*-

= exp []*»;;> X(a) da + j*'j;> n(a) da] = 

= expQ^;>A(«r)d f f+ £ $;_>,.(<r)d<-] = 
ti<t<t2 

= exp {C*i(«K*a—)) - «iM'i+))] + 

+ £ ln||(J + d M ' ) ) ( I - ^ ( O r f l } = 
f ! < f < f 2 

= exp[«(,2) - «(.,)] n IKI + ^A(t))(l - A- A(t))^ 
f l < f < f 2 

provided JA" _4(f)f < 1 and fA+ A(t)l < 1 

for every f e(tl9t2). 

Assume that 0 _g t0 < t < oo. There are points *0 < tt < t2 < ... tk =-= f such 
that §A~A(T)§<1 and JZ_ + _4(T) | < 1 for every t e ^ . , , / , ) , f = 1, 2,.. . , fc. 
Then 

UU(*, *0)|| = flU(^, *•„-) u(tk-, tk_1+) u(tk.l+, / , _ , ) . 

.U( .-„_1-> t„_2+). . .U(f1- ,<o+)U0o+,ro) | | < 
к 

E 
i = l 

fltf('-.»--)l-Ш«Ф [«('.) -«(j,-i)] 

. n iKI + ^ ^ ^ í I - ^ - ^ o r i } -
ř , _ . 1 < ř < f f 

• ni^+^-)fl-fl^Oo+>to)ii. 
І = l 

By [STV], Th. 11,2.-0 we have U(f, t-) = (/-_)" .4(0)-\ U(t+, t) = / + A+ A(t); 
hence U(t + , t-) = U(t + , t) U(t, t-) = (/ + A+ A(t))(I - A~ A®)-1. 

We can continue: 

|u(»,f.)___|(---i-40)-1. 

.niexpKo-a^.o]. n IKI + ^^W)^-^-^))"1!!}. 
i = l f . - l < f < f i 

. n IKI + ̂  A(t,))(l - A- Aiu))'l\ .\\I + A+ A(t0)l = 
i = l . , 

= exp [<x(t) - a(*0)] p(t, t0). 
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3.6. Theorem. Assume that (53) and (53)' hold. If there is K > 0 such that 

(57) exp [<x(t) - a(t0)] p(t, t0) ^ K for every 0 ^ t0 ^ t < oo , 

then the zero solution o/(10) is variationally stable. 
Proof. By Theorem 3.4 we have the estimate \U(t, t0)\ <; K for 0 <; t0 ^ t. 

In [S2] it is proved that the solution of the equation (10) is variationally stable if 
and only if the fundamental matrix U(t, t0) is bounded for 0 <1 t0 S t. The proof is 
based on the variation-of-constants formula (34). 

3.7. Theorem. Assume that (53), (53)' and (57) hold. Assume that (58) for every 
e > 0 there is T > 0 such that 

exp [a(*) - <x(toy] p(t, t0) < e whenever 0 S t0 < t, t - t0 ^ T. 

Then the zero solution of (10) is variationally asymptotically stable. 
Proof. By [S2], Prop. 3 the zero solution of (10) is variationally attracting if 

and only if there exists d0 > 0 and for any e > 0 there exist T > 0 and y > 0 such 
that if [f0, fx] <z [0, oo), var[^/ < y and if x is a solution of (1) on [f0, f j , ||x(f0)|| < 
< S0, then fx(f)| < e for all t e [t0, tj n [t0 -f T, oo). 

Let us find K > 0 such that (57) holds; then \\U(t, t0)l ^K for every 0 g f0 ^ f. 
Let 50 > 0 be arbitrary; let e > 0 be given. By (58) there is T > 0 such that 

if t - t0 ^ T then exp [a(f) - a(f0)] p(t, t0) < ej2S0 . 

Denote y -= e/2K. If varj0/ < 7 and if x is a solution of (l) on \t0, t^\, \x(t0)\ < S0, 
then by the variation-of-constants formula (34) we have for te [t0, r j , t }> t0 + T: 

lx(t)l = IU(t,t0)x(t0) + PtoU(t,T)dr(r)+ £ U(t99-)A~f(9) + 
to<&£t 

+ 1 U(t,9+)A + f(9)\\ £ p(t,t0).lx(t0)l + 

+ sup lU(f ,r)lvar;0 / c+ sup | |U(f,9-)l- £ ^ " / ( 3 ) 1 + 

+ sup \U(t.B+)\. £ | J + /(*)|S. 
fo^*<f fo^»<-

^ exp [a(t) - a(r0)] p(t, t0) S0 + K var^/ < e . 

We have proved that the zero solution of (10) is variationally attracting. By the 
previous theorem it is variationally stable; hence the zero solution of (10) is varia-
tionally-asymptotically stable. 
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Souhrn 

SUBSTITUTČNÍ METODA PRO ZOBECNĚNÉ LINEÁRNÍ 
DIFERENCIÁLNÍ ROVNICE 

DANA FRAŇKOVÁ 

Zobecněnou lineární diferenciální rovnici 

áx -= d[A(t)] x + df, 

kde A, feBV^iJ) a matice I— A" A(t), I+ Á+ A{t) jsou regulované, lze transformovat 
na obyčejnou lineární diferenciální rovnici 

dy 
-f = B(s)y + g(s) 
ds 

pomocí pojmu logaritmického protažení podél rostoucí funkce. Tato metoda umožňuje odvodit 
různé výsledky o zobecněných LDR ze známých vlastností obyčejných LDR. Jako příklad je 
vyšetřována variační stabilita zobecněné LDR. 
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