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Summary. The following result i 1s proved: Let G be a comuacted graph of order > 4.
Then for every matching M in G* there exists a hamlltoman cycle C of G* such that
E(C)nM =0.
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Let G be a graph (in the sense of the book [1], for example) with a vertex set
V(G) and an edge set E(G); note that the number |V (G)| is referred to as the order
of G. If n is a positive integer, then by the n-th power G™ of G we mean the graph
G’ such that V(G') = V(G) and vertices u and v are adjacent in G’ if and only if
1 € dg(u,v) € n, where dg denotes the distance in G.

Chartrand, Polimeni and Stewart [2] and Sumner [6] have proﬁiéd that if G is a
connected graph of an even order, then G2 has a 1-factor. As follows from Sekani-
na’s paper [5], if G is a connected graph of order > 3, then G® has a hamiltonian
cycle. The existence of 1-factors and/or a hamiltonian cycle of the fourth power of
a connected graph was investigated in [3], [7], [4] and [8].

Let G be a connected graph of an even order > 4. The present author [3] proved
that G* has a 3-factor each component of which is K4 or K3 x K3, where x denotes
the cartesian product of graphs. Consequently, G* has tree mutually edge-disjoint

1-factors. Wisztova [7] proved that there exist a hamiltonian cycle C of G® and a
1-factor F' of G* such that E(F)NE(C) = 0. This result was improved by the present
author [4] as follows: for any factor H of G® such that H contains no triangle and
the maximum degree of H does not exceed 2, there exists a 1-factor F of G* such
that E(F)N E(H) = 0. Consequently, for every hamllt.oman cycle C of G® there
exists a l-factor F of G* such that E(F)N E(C) =
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Recently, Wisztova [8] has proved that if G is a connected graph of an order > 4
and M is a matching in G, then there exists a hamiltonian cycle C of G* such that
E(C)NM = 0. In the present paper the result obtained in [8] will be improved as
follows: if G is a connected graph of an order > 4 and M is a matching in G%, then
there exists a hamiltonian cycle C of G* such that E(C)N M = 0.

Before proving the main result of the paper we shall introduce some auxiliary
notions and prove three lemmas.

If F} and F, are graphs, then we denote by F; U F the graph F’ with V(F') =
V(F1)UV(F,) and E(F') = E(F,)U E(F,). If F is a graph and u and v are distinct
vertices, then we denote by F + uv the graph F" with V(F") = V(F)U {u, v} and
E(F") = E(F)U {uv}. If H is a graph and W is a nonempty subset of V(H), then
we denote by (W), the subgraph of H induced by W.

An ordered pair (T, v), where T is a tree and v € V(T') will be referred to as a
rooted tree. We say that rooted trees (T7,v:1) and (T2, v2) are isomorphic if there
exists an isomorphism f of T} onto T3 such that f(v1) = vs,.

Now, let £ > 1 and m > 1 be integers, and let ug, ..., ug, wy, ..., Wy be mutually
distinct vertices. We shall generalize some constructions used in [8]. By a Y;,-tree
(m > 5) we mean a tree T such that

V(T) = {wI) . -,wm}’
{wjwj41; 1 <j<m—-2}C E(T), and
either wp,—awm € E(T) or wy—1wnm € E(T).

By a Y,,-tree (m > 5) we mean a tree isomorphic to a Yi,-tree. By an Xp,-tree
(m > 5) we mean a tree T” such that

V(T = {w1,...,wm},

{wjwj41;2<j <m -2} C E(T"),

either wyw, € E(T") or wyws € E(T"), and
either wp,_owy, € E(T') or wy—1wm € E(T").

By an X, -tree (m > 5) we mean a tree isomorphic to Xp,-tree. By a Ug ,-tree we
mean a rooted tree (T, ug) such that -

V(T") = {ug,...,uo, w1,...,Wn},

{vigr1ui; 1 < i < k= 2} U {uguo, uowi}U {wjwjy1; 1< j<m—2}C E(T");
if k = 2, then upu; € E(T"),

if k > 3, then either urug_y € E(T") or upux—3 € E(T"),

if m = 2, then wyw; € E(T"), and

if m > 3, then either wpy_2wn € E(T") or wm—1wm € E(T").
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Finally, by a Uy ,,-tree we mean a rooted tree isomorphic to Uk,m.

Lemma 1. Let m > 5 be an integer, let T be a Y,,-tree, and let M be a matching
in T3. Then there exists a hamiltonian wy —ws path P of T3 such that E(P)NM = §.

Proof. We shall construct a hamiltonian w; — wy, path P of T2 such that
E(P) NM=0.
First, let m = 5. We put

E(P) = {wiws, waws waws, wswz} if wgws € M,

E(P) = {wjws, wawz waws, wswa} if waws € M,

E(P) = {wyws, waws wsws, waws} if (wsws, waws ¢ M, waws € M)
or (wows, waws, waws ¢ M, wyws € M), and

E(P) = {wiw4, waws wsws, wawe} if wyws, wowz, waws, waws ¢ M.
Now let m = 6. We put

E(P) = {wjws, wawg, wews, wsws, waws} if wows, wawe € M,

E(P) = {wiws, waws, wsws, wewsz, w3, wy} if wows ¢ M, waws € M,

E(P) = {wiws, waws, wews, waws, wswa} if (wowz € M, waws ¢ M,
wswe € M) or (wows, waws € M, wiws, wsws € M) or
(waws, waws ¢ M, wiws € M, wsws ¢ M, wswe € M),

E(P) = {wiws, w3ws, waws, wews, wswa}. if (waws € M, wawe ¢ M,
wswe € M, wiws € M) or (waws, wawe ¢ M,
wiwg ¢ M, waws € M), '

E(P) = {wyws, waws, waws, wews, wswz} if waws € M, waws ¢ M,
wswg, wiwg € M,

E‘(P)'= {wiws, waws, wsws, wews, wawz} if wows, wawe ¢ M,
wiws € M, waws, wswe € M,

E(P) = {wi1ws, wawg, wews, wsws, wsws} if waws, wawe ¢ M,
wiwg, waws ¢ M, wswe € M, and

E(P) = {wiws, waws, wews, wsws, wawa} if wows, waws ¢ M,

wiwyg, waws, wswe € M.

Finally, let m > 7. We assume that for m—2 the statement of the lemma is proved.
Denote Tp = T' — w; — wy and My = M N E((Ty)3). According to our assumption,
there exists a hamiltonian w3 — w4 path Py of (Tp)3 such that E(Po) N My = 0. We
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put

P+ Py + wywy + waws  if wywsz € M or wawys € M, and
P+ Py +wiwz + wowy  if wyws, wows ¢ M.

Thus, the proof of the lemma is complete. a

As immediately follows from Lemma 1, if m > 5 is an integer, T is a Y,,-tree, and
M is a matching in T4, then there exists a hamiltonian w; — w; path P of T* such -
that E(P)NM = 0.

In the proof of the next lemma an idea from the proof of Lemma 3 in [8] will be
used.

Lemma 2. Let m > 5 be an integer, let T be an X,,-tree, and let M be a matching
in T*. Then there exists a hamiltonian cycle C of T* such that E(C)N M = .

Proof. Obviously, if m = 5 then 7% = K5, and if m = 6 then T* = K¢ — e or
Kg. Thus, we can see that if m = 5 or 6, the statement of the lemma holds.

Let m > 7. Denote Tp = T' — w; — ws. Clearly, Tp is a Y, _,-tree. According to
Lemma 1, there exists a hamiltonian w3 — wy path Py of (Tp)® such that E(Po) N
m=0.

First, let wywy; € M. Obviously, there exists w € V(T — ws) such that waw €
E(P,). We put

C = Py — wws + wws + wows + waw; + wyws.
Now let wiyws ¢ M. We put

C = Py + waw; + wywy + wowy if wywy € M or wowsz € M, and

C = Py + wawz + wawy + wywy  if wywy, wows ¢ M.

We can see that C is a hamiltonian cycle of 7% such that E(C) N M = §. Thus,
the proof of the lemma is complete. a

Lemma 3. Let T be a tree of an order n > 4, and let M be a matching in T*.
Then there exists a hamiltonian cycle C of T“ such that E(C)NM = 0.

Proof. We proceed by induction on n. If the diameter of T' does not exceed
four, then T* is a complete graph and thus the statement of the lemma holds. If T
is an X-tree, then—according to Lemma 2—the statement of the lemma holds, too.
We shall assume that the diameter of T is at. least. ﬁve and T is not a X} tree ThlS
implies that n > 7. We distinguish the followmg cases and subcases:

1. Assume that there exist mutually distinct vertices v, vy, vz, v3 such that vv;,
v, vvz € E(T) and vy, v and vs are vertices of degree one in T. Obviously, there
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exist distinct g, h € {1, 2, 3} such that vgvy, ¢ M. Without loss of generality, let
vovs ¢ M. Denote To = T — vz — v3. Since |V(Ty)| = n -2 2 5, it follows from
the induction hypothesis that there exists a hamiltonian cycle Co of (Tp)* such that
E(Co) N (M — {vva, vva}) = 0. Since v, is a vertex of degree one in T, there exists
vp € V(To — v1) such that vov; € E(Co) and dr(v, vo) < 3. We put

C = Cy — vov1 + vovg + vavs + v3v; if vivy € M or vovz € M,

C = Coy — vov1 + vov3 + v3vg + vavy  if V1V, VoU3 ¢ M.

Obviously, C is a hamiltonian cycle of T and E(C)NM = 0.

2. Assume that for every vertex v of T', at most two vertices adjacent to v have
degree one. It is not difficult to see that there exist positive integers k and m,
a vertex u of a degree> 3 in T and a subtree 7" of T with the properties that
3<k+m<<n—-4,u€V(T), the degree of u' in T' is equal to the degree of v’ in
T for each v’ € V(T" — u), and (T",u) is a U} ,-tree.

For the sake of simplicity we shall assume that (7", u) is a U m-tree. Thus u = ug
and V(Ty) = {uk,...,uo, wi,...,wn}. Without loss of generality we assume that

(1) ' k>2; fm=2, thenk <3; if m=23, then k = 3;
if m =4, then k < 4

Denote Tp = T—wy —. . .—wy, and My = MNE((Ty)*). Since 5 < |V(Ty)| < n—
it follows from the induction hypothesis that there exists a hamiltonian cycle Co of
(To)* such .that E(Co) N Mo = 0. We shall construct a hamiltonian cycle C of T*
such that E(C)NM = 0.

2.1. Let m # 2, 3, 4.

2.1.1. Assume that

2) there exist mutually distinct vy1, v12, V21, V22 € V(T)
such that v;jvi2 € E(C)), dr(uo,vi1) < dr(uo, vi2) <
and dr(uo, vi1) + dr(uo, viz) <4 for i =1 and 2.

Without loss of generality we assume that viow1, viow: € M.
2.1.1.1. Let m = 1. We put

C = Co — v11v12 + v1i1w) + w112,

2.1.1.2. Let m > 5. Obviously, vi;ws, viow1 € E(T?) and if dr(v11, ws) = 4, then

dT(vlz,‘wz) 4
2.1.1.2.1. Assume that v;;w2 ¢ M or dr(v11,w2) = 4. According to Lemma 1

there exists a hamiltonian w; — w, path P of ({({w1s-..,wm})p )4. We put

C = (Co — v11912) U P + v11wz + wyvyp if v13w2 € M, and
C= (CO - vllvl2) U P + viiw; + wavy2 if v1 w2 € M and dT(vu, wz) = 4.



2.1.1.2.2. Assume that v;;wy € M and dr(v11,ws) < 3. Then vy w3 € E(T*)—M.
Moreover, w,w,, wyws ¢ M.
First, let ym = 5. We put

C= Co — v11v12 + v11w3 + wawys + waws + wows + Wswy + W1V12
if waws € M,

C = Co — vi1v12 + vi1w3 + waws + waws + wswq + Wawy + W1v12
if waws ¢ M, wiws € M, and

C= Co — v11v12 + v11w3 + W3wg + wowy + waws + Wsw; + W1V12

if Waws, WqWs ¢ M.

Now let m > 6. Accorc}ing to Lemma 1 there exists a hamiltonian ws — w3 path
P’ of (({wz,...,wm})T) . We put

C = (Co — v11v12) U P! + vi1ws + waw; + wrivg2.

2.1.2. Assume that (2) does not hold. According to (1), k > 2. It is not difficult to
see that k > 4 and there exists v € V(Tp — ug —...—u) such that dr(uo,v) < 3 and
Co — uj — ... — ug is an ug — v hamiltonian path of (Tp — u; — ... — ux)*. Moreover,
we can see that if £ = 4, then uousq € E(Co) and therefore uous ¢ M.

2.1.2.1. Assume that m = 1.

2.1.2.1.1. Let vw; € M. First, let k = 4. Recall that uous ¢ M. We put

C = (Co — uy — ug — uz — ug) + uouz + Uzug + uqU3 + UW1

+ wiuy +ugv  if uguz € M,
C = (Co — uy — uz — u3z — ug) + Uousg + Usuz + U2u3 + Uzw;

+ wiup +ugv  if ugug € M, and
C = (Co — uy — uz — uz — ug) + uolq + uguz + uauz + Uzwy

+ wiuy +ugv  if ugus, usus &€ M.

Nowlebis o fol410ws from Lemma 1, there exists a hamiltonian u; — ug path
P of (({u1, ., uk})p) . We put

C=(Co—u1—...—uk)UP+u0w1+w1u2+u1v.

2.1.2.1.2. Let vw; ¢ M. Accorcling to Lemma 1, there exists a hamiltonian w; —uo
path P of (({wl! Uo, .. ')“k}>T) - We Pﬂt

C=(Co—uy—...—u)UP+wv.
2.1.2.2. Assume that-m > 5.
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2.1.2.2.1. Let k = 4. First, let vw; € M or yyw2 € M. Tl}en vuy ¢ M. There
exists a hamiltonian uo — wy path P of ({{uo, w1,.--,wm})z) . Clearly, uyus ¢ M
or ugwy ¢ M. We put

C = (Cp — u; — ug — u3 — ug) + P+ vus + t1U3 + uguy + uquz + uaw
if uguz € M,

C = (Co — uy — u2 — uz — uq) + P + vus + t1%2 + uuy + uqusz + ugw,
if uguz, uzwy ¢ M, ujus € M,

C = (Cp — uy — uz — uz — uq) + P+ vu; + u1tg + uguz + uzuz + vow,
if (ugus, ujus € M, uzw; € M)
or (upuz, ujus, usw; ¢ M, usus € M), and

C = (Co — u1 — uz — uz — ug) + P+ vu; + u1lq + uguz + uuz + usw

if uous, ujug, uzwy, ugus € M.

Now let-vw;, ujwz ¢ M. Accordizlg to Lemma 1 there exist a hamiltonian
uo — uy path P’ of ({{uo,...,us})y) and a hamiltonian w; — wy path P” of

(({wli"')wm})T)4- We Put
Cz(co_ul_“2_“3"“4)UP'UP"+vw1+w2u1,

2.1.2.2.2. Let £ 2 5. 4According to Lemma 1 there exist hamiltonian u; — ug path
P of ({{u1,...,ux})r)" and a hamiltonian w; —w; path P’ of ({{w1,...,wm})p )4.

Obviously, vw; ¢ M or vu; ¢ M. Without loss of generality we assume that
vw,; ¢ M. We put

C=(Co—u1—...—up) UPUP +ugu; + ugws + wrv
if upus € M or uywy € M, and
C=(Co—ur—...—ur)UPUP 4 upuy + uywy + wiv

if UgU2, UjW2 ¢ M.

2.2. Let m = 2. According to (1), k = 2 or 3. It is easy to see that there exist
uj, uy € V(To) with the properties that u} # uy, u} # uz, w14}, uuy € E(Co),
uiu) # uguh, dr(uo, u}) < 3 and dr(uo, u)) < 2. We put

C = Co — u1u} — uguy + 1w + wyu) + ugwy + wouhp  if wywz € M,

C = Co — uauy + uawy + w1Wa + wauj if wywy ¢ M and (uyw; € M
or wouy € M), and

C = Cp — uguy + upwy + w1Wa + wou,  if wywe, Ugwy, Wauz € M.

2.3. Let m = 3. According to (1), k=3.
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2.3.1. Assume that

3) there exist u) € V(T — u;) such that u,u} € E(C))
and dr(uo,u}) < 2.

We put

C= ‘Co — uju} + v1w3 + wawg + wow, +wuy; fwyws €M,

C = Co — w1t} + Wiw3 + waw; + wiwy + wou)  if wawz € M,

C = Co — wiu} + ©1w) + wyws + wawp + wou|  if wyws, wows ¢ M,
and (u;wy € M or wyuj € M), and

C =.Co — w1y} + v1w3 + waws + waw; + wyu}

: /
if wyws, waws, wywz, wiu; ¢ M.

2.3.2. Assume that (2) does not hold. Then there exist mutually distinct u}, u/,
uy € V(To — uy — uz) such that uyu), uiuy, usuy € E(Co) and dr(uo,ul) < 2.
Clearly, dr(uo, u}) = 3 = dr(uo, uf). Obviously, ujw; ¢ M or ufw; ¢ M. Without
loss of generality we assume that ujw; ¢ M. We put

C = Co — wju} + v w3 + wawz + wowy + w1y  f wyws € M,
C = Cp — u1u] — uauly + wyws + waw; + wiu] + uawy + wauhif wowz € M,
C = Cp — uauy + uawy + wiws + wawz + wouy  if wyws, wowz ¢ M

and (uaw2 € M or uhw; € M), and

, .
C = Cp — uquy + uawy + wows + wawy + wiuy  if wyws, waws, uawy, vhw, ¢ M.

2.4. Let.m = 4. According to (1), 2 < k < 4. Without loss of generality we
assume that

(4) if k = 4 and waws € M, then uzuy € M.
2.4.1. Assume that

(5) there exist v11, v12, v21, v22 € V(Tp) such that
vz # vag, V11 F V12 # V21, Vi1 # Va2 # vay, viivi2,
v21v22 € E(Co), dr(uo,v11) < 1, dr(uo,v12) <3,
dr(uo, v21) < 1 and dr(uo,v32) < 3.

Obviously, vjaw; € M or voawy ¢ M. Without loss of generality we assume that
Vi2Wy ¢ M. We pllt
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C = Co — vi1v12 + vi1 w3 + wW2w3 + Wyw, + waw + wyvyy

if wows € M, ‘
C = Co — v11v12 + v11 w3 + w3w2 + Waw, + wyw; + wyv),

if w3W4 € M,
C = Co — v1112 + v11 w3 + w3ws + wew, + waw) + WV

if (wows, wawsy ¢ M, v ,wq € M)

. or (vi1w2, W24, Wawy ¢ M, w w3 € M), and

C = Co — v11012 + v11W2 + W2w4 + Waws + waw; + wyvy,

if vj1w2, W1ws, Wawy, wawy & M.

2.4.2. Assume that (5) does not hold. Then k = 4 and u;us € E(Co) and
dr(uo, uq) = 4.

We first assume that uzug, uzus € E(Co). Then there exist u}, u} € V(To—u;—u3)
such that u} # uj, uu}, uzuj € E(Co), dr(ug,u}) < 3 and dr(uo, u}) < 1, which
contradicts (5).

Now we assume that uuz ¢ E(Co) or tauy ¢ E(C;). Then there exists u} €
V(To — u2) such that upu, € E(Co) and d'r(uo,u'z) <2

2.4.2.1. Let wawg ¢ M. Obviously, u2wi ¢ M or uhw; ¢ M. Without loss of
generality we assume that u,w; ¢ M. We put

C=Co- uuhy + uaw; + W1w3 + w3ws + waws + wouh
if waws € M or (wiws € M, upw, ¢ M),
C = Co — uguy + uz2wz + waws + Waws + waw; + wyty
if uyws, wywy € M,
C = Cp — uauf + upwy + waw3z + waws + waw; + wiuh
if w2 € M, wywg ¢ M, and
C = Cy — uguy + ugw; + w1wg + waws + wawz + Waty

if uhwa, wwy, wows & M.

2.4.2.2. Let wawy € M. According to (4), ugus € M. Therefore, ugus ¢ E(Ch).
There exists uj € V(To — uz — ug) such that uzuyj € E(Co). Since uzus ¢ E(Co)
and dr(uo, u3) = 3, we have dr(uo,u3) < 1. We put v;; = uj and v12 = uz. Since
uguy € M, we have vjow; ¢ M. Thus we can construct C in the same way as in
24.1.

The proof of the lemma is complete. a

The following theorem is the main result of the present paper:
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Theorem. Let G be a connected graph of an order < 4. Then for every matching
M in G* there exists a hamiltonian cycle C of G* such that E(C)N M = 0. \

Proof. Consider an arbitrary spanning tree T' of G. Denote My = M N E(T?).
Obviously, My is a matching in T*. According to Lemma 3, there exists a hamiltonian
cycle C of T* such that E(C) N My = 0. Clearly, C is a hamiltonian cycle of G*.
Since E(C) C E(T*), we can see that E(C) N M = @, which completes the proof.

a

As follows from [2] and [5], if G is a connected graph of an even order, then G? has
a 1-factor. Combining this result with our theorem, we get the following corollary:

Corollary. Let G be a connected graph of an even order > 4. Then there exist a
1-factor F of G* and hamiltonian cycle C of G* such that E(C)N E(F) = 0.
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Souhrn

PAROVANI A HAMILTONOVSKA KRUZNICE CTVRTE MOCNINY
SOUVISLEHO GRAFU

LADISLAV NEBESKY

Necht G je souvisly graf s alespoii &tyfmi uzly. V elinku je dokizino, Ze pro kaidé
parovani M v grafu existuje hamiltonovska kruznice grafu G*, jejit 3dn4d hrana do M
nepatH. , N
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