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APPROXIMATE PROPERTIES OF PRINCIPAL 

SOLUTIONS OF VOLTERRA-TYPE INTEGRODIFFERENTIAL 

EQUATIONS WITH INFINITE AFTEREFFECT 

Y. A. RYABOV 

(Received February 8, 1994) 

Summary. The integrodifferential system with aftereffect ("heredity" or "prehistory") 

dx/ dt = Ax + e J R(t,s)x(s,e)ds, 

is considered; here e is a positive small parameter, A is a constant nxn matrix, R(t,s) is 
the kernel of this system exponentially decreasing in norm as t - t oo. It is proved, if matrix 
A and kernel R(t,s) satisfy some restrictions and e does not exceed some bound €*, then 
the n-dimensional set of the so-called principal two-sided solutions x(t,e) approximates in 
asymptotic sense the infinite-dimensional set of solutions x(t, e) corresponding a sufficiently 
wide class of initial functions. For t growing to infinity an estimate of the difference between 
x(t,e) and x(t,e) is obtained. 
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AMS classification: 34K25 

1. INTRODUCTION 

We have considered in [1]~[3] problems concerning the existence and the methods 
of construction of a certain class of two-sided solutions of a system 

/ R(t,s)x(s,t (1) dx/dt = Ax + e R(t,s)x(s,e)ds, 

where A is a constant nxn matrix, £ is a small (positive) parameter, the integral 
on the right-hand side is the Riemann integral, R(t, s) is a matrix called the kernel 
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of this system, continuous in t, s for - c o < s < t < oo and satisfying the inequality 

(2) | | i ? ( M ) I U c e - ^ - s V ( t - s ) 1 - a , 

where c, 7, a are positive constants and 0 < a < 1. In [3] these solutions were called 

principal two-sided (or for simplicity principal). According to [1]~[3] these solutions 

(denoted by x(t,s)) 

1) exist, if e does not exceed some bound s , ; 

2) are defined uniquely on the entire axis t for every given initial vector x\t=t0 = x0\ 

3) belong to a set of continuous vector functions 

tf, = M . - ) : | | V ( O I | e * < o o , t < 0 } , 

where q is a positive number in the left neighbourhood of 7; 

4) satisfy a system of ordinary differential equations 

(3) dx/dt = Dx, 

where D = D(t, e) is a n x n matrix with D(t, e) -> A as e -> 0; 

5) tend to the corresponding solutions of the degenerate system 

(4) da;0 /dt = ^ x ° 

as e -> 0; 

6) possess characteristic exponents for t -¥ 00 and t -t - 0 0 tending to the char­

acteristic exponents of the corresponding solutions x°(t) as e —• 0. 

Principal solutions of system (1) form n-dimensional set. They constitute a com­

paratively narrow class within the infinite-dimensional set of solutions x(t, e) of sys­

tem (1) depending on different initial functions ip(t) given on the left semiaxis t. 

These functions describe the so-called "prehistory" or "heredity" corresponding to 

the given one-sided solution x(t, e) for t > 0 and define in general the behaviour of 

this solution. Systems of form (1) are therefore often called the hereditary systems 

or the systems with prehistory. 

Principal solutions of such systems (existing, as a rule, if e does not exceed some 

bound) do not depend on initial functions, i.e. do not depend on "prehistory" and 

are deprived, so to say, of heredity signs. A question arises, if the class of principal 

solutions is representative, i.e. if the behaviour of principal solutions reflects the 

properties of the infinite-dimensional set of the other solutions of system (1). The 

analysis allows us to give in a certain sense a positive answer to this question, if the 

parameter e does not exceed some bound (in general smaller than the bound securing 
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the existence of principal solutions). Namely, principal solutions allow us for such 

£ to approximate sufficiently well the other solutions being determined by initial 

functions of a wide class, and also to describe a series of asymptotical properties of 

these solutions. Below we carry out a proof for the cases, when the initial functions 

are piecewise continuous and bounded as t -»• - c o and the kernel R(t, s) satisfies a 

simpler (in comparison to (2)) and more restrictive estimate 

(5) \\R(t,s)\\ ^ c e - ^ - ' l , t-s^O. 

2. CONDITIONS FOR EXISTENCE OF PRINCIPAL SOLUTIONS AND THEIR ESTIMATE 

A necessary condition for the existence of principal solutions of system (1) is, as 

follows from [l]-[3], the following restriction on the eigenvalues Ai , . . . , A„ of matrix A: 

(6) minReAj > - 7 . 

Hence, the following inequality holds for the matrix eAt: 

(7) He '̂ll ^ m e - " f , t <, 0, 

where m, n are positive constants satisfying the conditions m >. 1, fi < 7. Using 

one of the methods of construction of the principal solution with an initial vector 

(for the sake of simplicity we put t0 = 0 ) 

x\t=o = x0 

we will construct this solution with the help of successive approximations 

Xl(t), x2(t,e), x3(t,£), ... 

defined as solutions of the following systems of ordinary differential equations: 

dxi/dt = Axi, 

(8) dxk+1/dt = Axk+1 +£ J R(t,s)xk(s,e)ds, 

k = 1 ,2 ,3 , . . . 

with initial values 

(9) Sllt-0 =I2 | (=0 = • " =xQ. 
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We obtain 

Xl(t) = eAtx0, 

(10) x2(t,e) = e f eA(t-e) f R(e,s)Xl(s)dsd8 + eAtx0, 
Jo J-oo 

x3(t,e) = e / eA(t-e) / R(8,s)x2(s,e)dsd6 + eAtx0, 
Jo J-oo 

etc. 

We can also consider x\,x2,x3,... as successive approximations to solution of the 

following integral system: 

(11) x(t,e)=e f eA(t~e) j R(6,s)X(s,e) dsdd + eAtx0, 

which we interprete as an operator system 

(12) x = eLx + eAtx0, 

where L is the operator corresponding to the integral on the right-hand side of (11). 

The operator L has been analysed in [3] in the case of the estimate (2) for R(t, s). 

The following estimate for e securing uniform convergence of the sequence (10) and 

at the same time the existence of principal solutions of system (1) has been obtained: 

a « ( 7 - M ) a + 1 

* c m r ( a ) ( l + a ) 1 + « ' 

where T(a) is Euler's Gamma-function.1 In the case of the simpler estimate (5) for 

R(t, s), i.e. when a = 1, we have for e the estimate 

(13) ,<e, = ^ - . 

As we have mentioned above, every principal solution x(t,e) belongs to the class 

Uq, hence it satisfies for t ^ 0 the estimate 

(14) ||f ( t , e ) K W e " * , 

where TV, q are some positive constants and, if e is sufficiently small, then it is 

possible according to results in [3] to put a constant q sufficiently near to constant 

\x characterising exp(—At). Here we will derive more a concrete estimate for x(t,e). 

1 There is a misprint in (33) of paper [3]: (7 + fi) instead of (7 — 11). 
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The principal solution x(t,e) corresponding to an initial vector x\t=o = xo can be 

written in the form 

(15) x(t,e) = X(t,e)x0, 

where X(t,e) is the principal fundamental two-sided (or, for the sake of simplic­

ity, principal) matrix of system (1) normalised for t = 0. This matrix satisfies 

the equation coinciding with (1) or (11), if we substitute X for x. For the sequence 

Xi(t), X2(t,e),... we obtain formulae coinciding with (10) if we substitute X\, X2, • • • 

for x\,x2,... and put x0 = 1. These approximations converge (at least if the con­

dition (13) is satisied) to the principal fundamental matrix X(t,e). The following 

theorem is true. 

T h e o r e m 1. If parameter e satisfies condition (13), then the principal funda­

mental matrix X(t,e) of system (1) normalised for t = 0 satisfies for t ^ 0 the 

estimate 

(16) \\X(t,e)\\^me^, 

where 

(17) Qi=-^-iJ-A\l 
(7 - ЏÏ' 

and m, 7, c are the constants in the estimates (5), (7) for matrices R(t, s), exp(At). 

P r o o f . Consider the scalar integro-differential equation 

(18) du/d í = -џu — mcє / e l ( t s)u(s,є)ås. 

We will seek its principal solution under the initial condition u\t=o = m with the 

help of the following successive approximation: 

ui(t) = me"*1, 

(19) u2(t,s) = mce I e-"(t-e) f e ^ " 5 ' u1(s)dsd9 + m e - " ' , 

fo fe 
uk+l(t,e) = mce I e " ^ - 9 ' / e " ^ " 8 ' uk(s,s)dsdd + me-"', 

* - . 2 , 3 , 4 , . . . 
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The equation (18) and the approximations (19) represent respectively the particu­

lar cases of system (1) and approximations (10). Therefore, the results proved in [3] 

allow to conclude that the sequence ui,u2,U3,... converges to the principal solution 

u(t,e) of equation (18) provided parameter e satisfies the estimate (13). 

The comparison of (19) and (10) shows owing to estimates (5), (7) that approxi­

mations (19) are majorizing for t ^ 0 with respect to the sequence 

H^WII, ||X2(t,£)||, ... 

Hence, we obtain the inequality 

(20) \\X(t,e)\\^u(t,e), t^O. 

At the same time, we can obtain the principal solution u(t,e) of Eq. (18) directly 

(see [1], [2]) in the form 

(21) u(t,e) = m e 9 ' , 

where m is the initial value of u(t, s) for ( = 0 and q = q(e) is the root of the algebraic 

equation 

namely, the root tending to — fx as e —• 0. 

The equation (22) has two roots; the first root q\ is expressed by (17) and the 

second equals 

- 7 ~ | 

The root q2 tends to - 7 as e -> 0. Therefore, just the root q\ corresponds to the 

principal solution u(t,e). Thus, the inequality (20) may be reduced to the inequality 

(16). Theorem is proved. • 
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3. A S Y M P T O T I C PROPERTIES OF PRINCIPAL SOLUTIONS 

Let us be given a so called one-sided solution x(t,e) of system (1) with an initial 

function ip(t) on the left semiaxis t, which is piecewise continuous, bounded as t -> 

- c o and satisfies the estimate 

(24) IMOIIO, t^O, 

where 6 is a fixed constant. 

Let x(t,e) be a principal solution of system (1) with an arbitrary initial vector x0. 

We can write such a solution in the form 

(25) x(t,e) = X(t,e)x0, 

where X(t,e) is the principal fundamental matrix of system (1) normalised for t = 0. 

Consider the difference 

(26) y = x - x 

and the corresponding equation for this difference: 

(27) dy/dt = Ay + e R(t,s)y(s,e)ds + eF1(t,e)x0 + eF2(t), 
Jo 

where the matrix Fi(t,e) and the vector F2(t) are expressed by formulae 

(28) F1(t,e)= f R(t,s)X(s,e)ds, 

(*) = / (29) F2(t)= I R(t,sMs)ds, 

and the vector x0 is arbitrary. 

Since the initial function <p(t) is given and the fundamental matrix X(t,e) is the 

same for all principal solutions of system (1), we can treat functions Ei and F2 

as known. Thus the system (27) is a linear nonhomogeneous Volterra-type system 

without aftereffect. It is known [4] that such a system has a unique solution for every 

initial vector given for t = 0. Our principal solution (25) of system (1) depends 

on an arbitrary (for the moment) vector x0. Taking it in view, we will seek the 
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solution y{t,e) tending to zero as t -> oo with the help of the following successive 
approximations considered for t ^ 0: 

(30) Vi{t,e)=eJ eA^-^[F1{e,e)x0 + F2{6)]dd, 

(31) yk+1{t,e) = ej e^'"9) J R{0,s)yk(s,e)dsd0 + yi(t,e), 

fc = l ,2 ,3 , . . . 

If the sequence yi,y%,... converges (uniformly in t), then its limit represents a solu­
tion of system (27) for t > 0. 

For the purpose of constructing the majorizing sequence with respect to the se­
quence !/i,y2,... we will derive some estimates. Namely, in accordance with (5), 
(16), (24), (25) and (28), (29) we have the estimates 

|F i (* ,e) |< j f \\R{t,s)\\-\\X{s,s)\\ds^mcJ e - ^ - s > e « s d s 

(32) = Mie-*, 

IIE2(t)|| < f \\R{t, 3)|| • M«)ll ds < cj Je-^*-) ds 

(33) = Mae"* 

where t ^ 0 and 

(34) Mi = - 2 £ _ , M 2 = - . 

7 + 9i 7 
The following estimates are also needed: 

(35) I iV<*-e>Fi(0,e)d0|UmMi J°° *-*<-%-* M = ™ 
1-1* 

(36) Í\M*-O)F2(0)JUmMa r e-ř<w»e- 1 ,dí----le-i*. 
Lo A 7 - I* 

We write every member of the sequence (30), (31) in the form of a sum (separating 
an arbitrary vector xo). 

(37) Vi = YjXo+V), 1,2,3,..., 
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where Yj is a matrix, yj is a vector. The sequence ylty2,... can be considered as a 

linear combination of two sequences {Yj} and {yj} defined by the formulae 

(38) 

(39) 

Yi(t,e)=e í e~<|-*>í.(#,e)dt»1 

Yk+i(t,e) = e í e^-" ' í R(9,s)Yk(s,e)dsd9+ Y1(t,e), 

ý1(t,e) = ej\A(t-^F2(6)de, 

yk+1(t,e) = ej e*<'-ff> j R(9,s)yk(s,e)dsd9 + y1(t), 

fe = l , 2 , 3 , . . . 

For Yi(t,e) and yi ( t ,e) we have in accordance with (35), (36) the estimates 

(40) llYi(M)H =S eMie-*, ||j3i(*,e)|| < ett#r+t 

where 

(41) M i = , M 2 = . 
y - v 7 - / i 

The sequences {y,} and {£•,} have the same structure, therefore we will analyse 

only the first of them. For this purpose we construct the scalar sequence 

vi(*,e) = Kie-T, 

(42) vk+1(t,e) = mcs e-"<f-fl> / e-^
e-^vk(s,e)dsd9 + vi(t,e), 

k = 1 ,2 ,3 , . . . , 

where Ki = eAfi. 

This sequence is majorizing with respect to the sequence Yj(t,e) in accordance 

with the estimates (40), (5), (7). We will show that the following lemma for the 

sequence {vj(t,e)} is true. 

L e m m a . If a positive parameter e satisfies the estimate (13), then the sequence 

(42) converges to the function 

(43) Vt(t,s)=K1^ULevt, 
9 i + 7 
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where constants qi and q2 are expressed by (17), (23), and this function for t ^ 0 is 

a solution of the equation 

Гe-^-Цs.í (44) Av/dt = -(w-emc I e-l(t~s)v(s,e) - (7 - n)K1e-~t. 

P r o o f . Consider on the right t semiaxis a class of continuous functions de­

creasing as t -4 00 not slower than exp(gt), where the negative number q satisfies 

the inequality - 7 < q < -/i. For every function ip(t) of this class we will take the 

quantity 

max\ip(t)e-'t\ 

as its norm ||t/>||«; thus 

(45) U(t,e)\\q = m a x | ^ ( t , £ ) e - ' t | ^ TV, 

where AT is a constant. 

The sequence (42) represents the successive approximations to the solution of the 

integral equation 

,00 , 8 

(46) v(t,s)=mce e-*(*-<>) I e-i(»-')v^e)dsdg + KxeT~l 

or (in operator form ) 

(47) v - Lv + Kie-^, 

where L is the integral operator corresponding to the integral on the right-hand side 

of (46). For the norm \\Lv\\q we obtain 

\\Lv(t,e)\\q-n?Bx\Lv(t,e)e->t\ 

. i" e-„(t-e) i e-f(o-^)ei'v(s^)e-^ dsde . e-"t\ 

e"t i—e-yt \ p-it 
[7 + 9 \-q-ft 7 - / » 

\\v(t,-)\\q. 

\\v(t,e) 

" (l + Q)(-1-ny 

Thus 

(48) \\v(t,e)\\q<ee\\v(t,e)\\q, 
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where 

(49) Q = 
(l + q)(-q- џ)' 

The relation SQ = 1 represents an algebraic equation in 3, and this equation 

coincides with the equation (22). Its roots 31(e), 32(e) are defined by the formulae 

(17), (23), and 

- 7 < 32(e) < 31(e) < -n 

and 31(e) -> -fj,, 32(e) -> - 7 as e —> 0. 

Further analysis of this equation shows that the inequality EQ < 1 holds for all 

values of q in the interval (32,91), provided e satisfies the estimate (13). Thus this 

estimate provides a contraction of operator L and the convergence of sequence (42) to 

a solution v,(t,e) of the integral equation (46). After differentiating (46) we come to 

the conclusion that the function v„(t,e) also satisfies the integrodifferential equation 

(44). 

It would be possible to estimate the function v„(t,e) with the help of expressions 

(42) for its successive approximations. However, we can obtain a more accurate 

estimate after defining v»(t,e) directly as a finite solution of equation (44). The 

equations of such form (linear nonhomogeneous) are solvable in finite form (see [4]). 

Namely, the general solution of the equation (44) can be written in the form 

(50) v(t,e,C) = Cv°(t,e)+v(t,£), 

where v° (t, e) is the solution of the corresponding homogeneous equation (for K = 0) 

with the initial value v\t=o = 1, C is an arbitrary constant and 

(51) v(t,s) = -(y-n)Ki J v°(t-s,e)e-'<sds. 
Jo 

The function v°(t,e) has the form 

v°(t,e) = C e ' 1 ' + C2e? 2 t , 

where the constants 31, 32 are the above mentioned roots of the algebraic equation 

(22) and d , C2 are some constants depending on 7, 31, 32 . As a result of some 

calculations we obtain 

(52) v(t,e,C) = C \2±SLent _ l±3Le^} + Kll^JL (e«. _ &*) . 
L9i - 92 9i " 92 J 3i " 32 V 
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It is necessary now to choose such a constant C that we could obtain from (52) 

just the solution v,(t,e). 

It is seen from formulae (42) that all approximations Vk+i (t, e), k = 1 ,2 ,3 , . . . have 

the form 

(Pk(t,e) + K1)e-~>t, 

where Pk(t,s) are polynomials in t of degree k tending to zero as e -> 0. Therefore 

all Vk+i (t, e) tend to zero as t -> oo and possess the same characteristic exponent 

—7. Their limit vt (t, e) tends also to zero as t -+ 00 and its characteristic exponent 

is the nearer to - 7 , the smaller e is. 

Since q\(e) -» — n and q2(e) -» - 7 as e -> 0, we obtain the required solution 

v,(t,e) of equation (44) from the general solution (52) choosing the constant C just 

so that all members with the exponent exp(git) vanish. We put 

7 - j U 
o = o» = xvi 

Then we obtain 

(53) C = C» = Kx 

7 + 9i 

(54) v,(t,s) = v(t,e,Ct)=K1-t-JLe«2t, 

The lemma is proved. • 

This lemma testifies to the convergence of the sequence (38) on the right semiaxis 

t to a matrix function Y,(t,e), and also to the validity of the estimation 

(55) HK^H^XZiie^, 

if e satisfies (13). 

The same analysis may be carried out for the sequence (39). We obtain the same 

result with regard to the convergence of this sequence to the vector function y*(t,e), 

and derive the same estimate for t ^ 0: 

(56) | | j j ,( t i e) | |<tf2:!Lz£e««, 
7 + 9i 

where K2 = eM2. We can rewrite these estimates with the help of the expressions 

(34), (41) for Mi, M2,~MX, ~M2, and we obtain 

(57) l |y»(t ,£)llo ?
 m 

(58) ||0.(<,e)ll<e 

(7 + 9i) 
mbc 

' 7 ( 7 + 9i) 
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Let us return now to the solution y(t,e) of system (27) and to the sequence (30), 

(31) used for finding this solution. According to (37) we can consider the sequence 

(30), (31) as a linear combination of the sequences (38) and (39). The results obtained 

above with regard to these sequences lead us to the conclusion that the sequence (30), 

(31) converges, if e satisfies (13), to a solution y,(t,e) and this solution can be written 

in the form 

(59) y,(t,e) = Y,(t,£)x0 + y,(t,e), 

where the matrix Y,(t,e) and the vector y,(t,e) satisfy the estimates (57), (58) and 

x0 is an arbitrary (at the moment) vector. 

We can now prove the following theorem. 

T h e o r e m 2. Let us be given a one-sided solution x(t,e) of system (1) with an 

initial function <p(t) satisfying for t ^ 0 the estimate (24). Then, if e satisfies the 

estimate (13) and, additionally, the inequality 

(so) r £ ? £ ^< 1 ' 
(7 + 9i)2 

where the constants 7, m, c, qi are defined by (5), (7), (17), then there exists such 

a principal solution x.(t,e) of system (1) that 

(61) \\x,(t,e)-x(t,e)\\^sMe''2t, 

where the constant q2 is expressed by (23) and M is a constant depending on 7, m, 

c, (ft and aiso on the constant b of inequality (24). 

R e m a r k The inequality (60) may be written with the help of the algebraic 

equation (22) in the form 

(62) rn(±-u1<it 

where 

u = [ 1 -

L + u 

4emc \ 

( 7 - M ) 2 / ' 

P r o o f . The function y.(t,e) expressed by (59) is equal to the difference (26) 

between the principal solution x(t,e) with the initial vector x\t=o = x0 and the one­

sided solution x(t,e) with the initial function ip(t). Up to now we have considered 
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the vector x0 as arbitrary. But, if we put in (59) t = 0, then this relation turns into 

a system of linear algebraic equations in matrix form with respect to the vector xo'-

(63) *0-v(0)=y.(0,e>o + f7.(0,e). 

The condition (60) provides the estimate 

l|y.(o,-)n < i. 

Hence, the inverse matrix 

[E-Y^e)]-1 

exists, where E is the unit matrix, and the equation (63) has the following solution 

for x0: 

(64) xo=xo = [E-Yt{0,e)]-l[<p{0)+yt{0,s)]. 

Just this initial vector corresponds to the principal solution x*{t,e), for which the 

difference 

x,{t,e) - x{t,e), 

denoted by yt{t, e), satisfies the estimate resulting from (57)-(59). Namely, we obtain 

for t ^ 0 the inequality 

(65) \\x*0{t,c) - x{t,s)\\ < ~ L [ - - J - - I W I I + £ ] e '2 i , 

where \\xg\\ may be estimated according to (64). This inequality corresponds to (61). 

Theorem is proved. • 

E x a m p l e . Consider as an illustration the scalar equation 

(66) x = e f e"l{t-s)x{s,e)ds. 

Its principal solution under the initial conditions x | . = 0 = xo,it=o — ^o equals (see 

[1], [2]) 

(67) x{t,e,x0,Xo) = C1e
Xit + C2e

x*t, 

where 

(68) C - X° - ^2X° C — X° - ^lX° 

Ai — A2 A2 — Ai 



and Ai(e), A2(e) are the roots of the algebraic equation 

^ A2 = TTA' 

tending to zero as e -¥ 0. This solution exists provided (see [1], [2]) 

(70) e < ^ 7
3 . 

Consider the one-sided solution x(t,e) corresponding to the initial function 

(71) ¥>(t)=0, « < 0 , <p(0) = ao, 0(0) = oi. 

This solution satisfies a Volterra-type equation without aftereffect 

(72) x = e J e-^t-s)x(s,e)ds 
Jo 

and the initial conditions 

x\t=o = oo, x\t=o = Ol. 

We obtain this solution in the finite form: 

(73) x(t,E,a0,ai) = c i [ e X l t - m i e A 3 t ] + c2 [eAjt - m2eA3t] , 

where constants ci, c2 are expressed by a0, a\ and constants mi , m2 are equal to 

7 + A3 7 + A3 
шi = 

7 + Ai' 7 + A 2 ' 

where A3 = A3(e) is the third root of equation (69). The roots Ai, A2, A3 of this 

equation satisfy the inequalities 

2 2 1 

- 7 < A 3 < - - 7 , - g 7 < A 2 < 0 , 0 < A i < - 7 

for all e restricted by the condition (70), and 7 3 -4 - 7 as e -¥ 0. For the function 

y(t,e,x0,x0) = x(t,e,x0,x0) - x(t,e,a0,ai) 

we have the integrodifferential equation 

ft y0 
(74) y = e j e"7'4"8' y(s,e)ds + e j e"T(t-s> x(s,e,x0,x0)ds, 
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where x(s,s,x0,x0) is expressed by (67). Its solution with a characteristic exponent 

for t -* oo tending to —7 as e -+ 0 is following: 

(75) y„(t,e,x0,x0) = T = I , \ + 
A§ L7 + A1 7 + A2 

where Ci , C2 are expressed by (68). We have considered up to now initial values x0, 

x0 and at the same time constants C2 , C2 as arbitrary. However, if we put t = 0, 

then we obtain the relations 

!/*|t=o = x\t=o - x\t=o, y,\t=o = *|t=o - i\t=o 

(76) 

These relations represent a linear algebraic system for Ci and C 2 . The calculations 

show that the determinant of this system does not equal zero, if 0 < e < ^ 7 3 . Just 

then we can express C_, C2 and also x 0 , i 0 with the help of (68) in terms of a0 , a_. 

Thus we shall find the initial values for the principal solution 

x(t,e,xo,xQ) 

approximating the one-sided solution (73) according to Theorem 2. 

If e = ^ 7 3 , then the above mentioned determinant is equal to zero and it is not 

possible to find the required Ci , C2 for arbitrary a0 , a i . Thus, the principal solutions 

of Eq. (66) possess the asymptotic properties in the sense of Theorem 2 for the same 

range of values of e, where these solutions exist. The additional restriction on s 

corresponding to inequality (60) is not needed. Nevertheless, there are also cases of 

other kind, when additional restriction on £ is essential, i.e. the principal solutions 

do not possess the just mentioned asymptotic properties for all values of e securing 

the existence of these solutions. For exemple, in the case of the equation 

x + 2x = e e~l{t~e)x(s,e)ds, 7 = 0.5 

the following result can be obtained (we omit calculations): the principal solutions 
exist if £ < 2.25, but possess the above mentioned asymptotic properties if s < 
_ + -__ 
3 ^ 108' 
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Conclus ion . The results obtained testify to the fact that the infinite dimensional 

set of one-sided solutions x(t,e) of system (1) corresponding to piecewise continuous 

and bounded for t -»• oo initial functions is equivalent in asymptotical sense to the 

finite-dimensional set of principal solutions x(t,e) of this system, if the parameter 

e does not exceed a certain bound and the matrix A and the kernel R(t, s) satisfy 

some conditions. Every solution x(t, e) approaches sufficiently quickly some principal 

solution x(t, e) as t grows and thus is well approximated by this solution beginning 

from some moment t. Hence, such asymptotic properties as stability, boundedness, 

oscillation are inherent to one-sided solutions, if these properties are valid for the 

principal solutions. However, the latter solutions constitute a finite-dimensional set 

and satisfy some system of ordinary differential equations of the form (3). Thus 

some essential structural features of the set of solutions of system (1) (finite dimen­

sionality, boundedness etc.) remain in asymptotical sense or completely the same 

as is typical for the solutions of a system without aftereffect, and these features do 

not depend on prehistory, heredity. If equations (1.1) describe a dynamical system, 

then we propose the following interpretation of the principal solutions. Namely, we 

assume that principal solutions describe the natural behaviour of this system cor­

responding to its inherent relations and properties. Prehistory not corresponding 

to such natural behaviour leads to perturbations of such behaviour but only for a 

short time. Thereafter the influence of prehistory is fading and the dynamical system 

returns to its natural evolution described just by the principal solutions. 

However, we want to underline that if the parameter e exceeds the bound securing 

the validity of the above mentioned asymptotic properties of principal solutions, then 

prehistory or heredity has full influence upon the properties of the solutions on the 

right t semiaxis. Therefore it is of practical importance to determine this bound of 

values of e in the cases of given concrete equations. 

R e m a r k . An analogous theorem can be also proved in the case of a more 

complicated estimate (2) for the kernel R(t,s), and of a set of one-sided solutions 

corresponding to initial functions <p(t) restricted for ( ^ 0 by the inequality 

M t ) l | O l k ( 0 ) | | e - < » , t<0, 0 < / 3 < 7 . 

It may be expected that the similar results concerning the existence of principal 

solutions and their asymptotic properties are to some degree valid in the case of 

system (1) with a variable matrix P(t) (instead of a constant matrix A), if all solution 

of the homogeneous equation 

dx/dt = P(t)x 

are exponentially bounded. 
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