
Mathematica Bohemica

Bohdan Zelinka
Median properties of graphs with small diameters

Mathematica Bohemica, Vol. 120 (1995), No. 3, 319–323

Persistent URL: http://dml.cz/dmlcz/126008

Terms of use:
© Institute of Mathematics AS CR, 1995

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/126008
http://dml.cz


120(1995) MATHEMATICA BOHEMICA No. 3, 319-323 

MEDIAN PROPERTIES OF GRAPHS WITH SMALL DIAMETERS 
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Summary. Two numerical invariants A(G) and T(G) of a graph, related to the i 
of median, are studied. 
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In [1] the numerical invariants A(G) and T(G) of a finite undirected graph were 

studied. Here we will study them in the case of graphs whose diameter is at most 2. 

Let G be a finite connected undirected graph without loops and multiple edges. If 

v is a vertex of G, then the valence AQ(V) of v in G is the sum of distances between 

v and all other vertices of G. The minimum of AQ(V) taken over all vertices v of G 

is denoted by A(G). Every vertex m of G for which A G (m) = A(G) holds is called 

a median of G. 

A pairing P in G is a partition of the vertex set V(G) of G into disjoint pairs, 

leaving at most one vertex unpaired (when n = |V(G) | is odd). The symbol TQ(P) 

denotes the sum of distances between two vertices belonging to the same pair of P. 

The maximum of Ta(P) taken over all pairings P in G is denoted by T(G). 

In [1] it is proved that for a tree G always A(G) = T(G) and for a graph G in 

general T(G) ^ A(G) ^ 2r (G) . In this paper we will consider finite graphs with a 

diameter at most 2. The number of vertices of a graph will be denoted by n. By 

0 we denote the edge independence number f3(G) of the complement G of G. The 

maximum degree of a vertex in G will be denoted by D to avoid the confusion with 

the symbol A defined above. 

We start with three lemmas. 
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L e m m a 1. Let G be graph with n vertices and with the diameter at most 2, let 

D be the maximum degree of a vertex ofG. Then 

A(G) = 2n - D - 2 

and medians ofG are exactly aii vertices of degree D. 

P r o o f . Let v be a vertex of G of degree r. Then there are r vertices having 

distance 1 and n — r - 1 vertices having distance 2 from v. Thus AQ(V) = r + 2(n — 

r — 1) = 2n — r — 2. This value attains its minimum if r is maximum, i.e. if r = D. 

This implies the assertion. D 

L e m m a 2. Let G be a graph with n vertices and with the diameter at most 2, 

Jet /3 be the edge independence number of its complement G. Then, 

T(G)=[±n\+p. 

P r o o f . Let P be a pairing of G in which exactly b pairs are nonadjacent; in 

G these pairs form an independent set of edges and thus 6 ^ / 3 . These pairs have 

distance 2, while the remaining [ |n j — 6 pairs have distance 1. Thus TQ(P) = 

2b + \\n\ — b = [ | n j + b. This value attains its maximum if b is maximum, i.e. if 

b = 0. D 

L e m m a 3. Let G be a graph with n vertices and with the diameter at most 2, let 

D be the maximum degree of a vertex in G, let /3 be the edge independence number 

of its complement G. If /3 ^ 1, then D^n-20. 

P r o o f . There exists a set of /3 independent edges in G; let M be the set of 

end vertices of these edges. The set V(G) - M induces a complete subgraph of G; 

otherwise there would be at least 0 + 1 independent edges in G, which is not possible. 

Each vertex of V(G) - M has degree n — 2/3 - 1 in this complete subgraph. As G is 

connected and M ^ 0, there exists at least one edge joining a vertex of V(G) - M 

with a vertex of M; then this vertex of V(G) — M has degree at least n — 2/3 in G 

and thus D ^ n - 2/3. D 

Now we shall characterize the graphs (among graphs with a diameter at most 2) 

for which the extremal cases A(G) = T(G) and A(G) = 2r(G) occur. 

T h e o r e m 1. Let G be a graph with n ^ 3 vertices and with the diameter at 

most 2. Then A(G) = 2r (G) if and only ifn is odd and G is a complete graph with 

n vertices. 

320 



P r o o f . Let A(G) = 2r (G) . According to Lemmas 1 and 2 this means 2n-D-

2 = 2 ( [ | n J + 0). If n is even, this implies D + 2/3 = n - 2. If D < n - 2, then G is 

not a complete graph. The complement G contains at least one edge and thus /3 > 1. 

According to Lemma 3 then £> + 20 ^ n, which is a contradiction. If D = n - 1 , then 

G is a complete graph and A(G) = n - 1, T(G) = | n , therefore A(G) ^ 2r (G) . If n 

is odd, then D + 2/3 = n - 1. If D < n - 2, then again /3 ^ 1 and £> + 2/3 ^ n, which 

is a contradiction. Therefore the only possibility is D = n - 1 and n odd. Then G is 

a complete graph with n vertices, A(G) = n - 1, T(G) = | ( n — 1) and the assertion 

is true. D 

Now for every n ^ 3 we define a graph Hn and its spanning tree Tn. If n is odd, 

then the vertices of Hn are Ui, Vi for i = 1, . . . , | ( n - 1) and w. For each i = 1, . . . , 

\{n — 1) the pair {u,,t>,} is non-adjacent. All other pairs of different vertices are 

adjacent. The tree Tn is the star with the center w which is a spanning tree of Hn. 

If n is even, then the vertices of Hn are uit i>; for i = 1, 2, . . . , \n. For each 

i = 2, . . . , \n the pair {u;,i>i} is non-adjacent. All other pairs of different vertices 

are adjacent. The tree Tn is the star with the center uj which is a spanning tree 

of Hn. 

For n even we also define another spanning tree T* of Hn. The tree T* has the 

: u\Ui, uiVi for i = 2, . . . , | n and the edge vtv2. 

T h e o r e m 2. Let G be a graph with n ^ 3 vertices and with the diameter at 

most 2. Then A(G) = T(G) if and only ifG is isomorphic to a spanning subgraph of 

Hn which contains the spanning tree Tn in the case ofn odd and the spanning tree 

Tn or T* in the case ofn even. 

P r o o f . Let A(G) = T(G). According to Lemmas 1 and 2 this is 2n - D - 2 = 

[\n\ + /3. If n is even, this implies D + / 3 = § n - 2 . If D = n - 1, then /3 = | n - 1. 

There exists a set B of \n - 1 independent edges in G. Further, there exists a vertex 

u\ of degree n — 1 in G, i.e. adjacent to all other vertices of G. Evidently it is incident 

with no edge of B in G. The other vertex which is incident with no edge of B will be 

denoted by t>i. The edges of B will be denoted by e, for » = 2, . . . , \n and the end 

vertices of each e, will be denoted by u;, Vi. Hence Uj, Vi are non-adjacent in G for 

i = 2, . . . , \n and G is a spanning subgraph of Hn. As vi has degree n — 1, the tree 

Tn is a spanning tree of G. If D = n - 2, then /3 = \n. There exists a set B of \n 

independent edges in G. We will denote them by e; for i = 1, . . . , \n and the end 

vertices of each e; will be denoted by Ui, vi. There exists a vertex of degree n - 2; 

without loss of generality let it be m . As G is connected and vi is not adjacent to 

ui, it is adjacent to some other vertex; without loss of generality let it be adjacent 
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to D2- We see that G is a spanning subgraph of Hn and Tn is its spanning tree. The 

inequality D < n - 2 would imply p > \n, which is impossible. 

Now let n be odd. Then D+ P = \(n - 1). U Z> = n - 1, then /? = §(n - 1). 

There exists a set 2? of 5 (n — 1) independent edges in G. We denote them by e ; for 

»' = 1, . . . , | ( n — 1) and the end vertices of each e,- will be denoted by ui, i>,-. There 

exists a vertex of degree n — 1; it is incident with no edge of B in G and thus it is the 

remaining vertex w. Again G is a spanning subgraph of Hn and Tn is its spanning 

tree. The inequality D < n — 1 would imply 0 > \(n — 1), which is impossible. 

Now let G be a spanning subgraph of Hn and let Tn be its spanning tree. If n 

is odd, then G contains \(n - 1) independent edges UiVi and thus /? = \(n — 1); 

it cannot be greater. Further, Tn contains a vertex w of degree n - 1 and so does 

G; we have D = n — 1. This implies A(G) = T(G). If n is even, then G contains 

| n — 1 independent edges u;u, for i = 2, . . . , | n . As i>i has degreen — 1, no edge 

of G is incident with it and therefore \n independent edges in G cannot exist and 

/3(G) = \n — 1. The tree Tn contains a vertex v\ of degree n — 1. So does G; we 

have D = n - 1. This implies A(G) = T(G). 

Finally, let n be even, let G be a spanning subgraph of Hn and suppose that Tn is 

a spanning tree of G, while Tn is not. Then u\, Vi are non-adjacent in G. The graph 

G contains | n independent edges u,v< for i = 1, . . . , | n and thus /3 = | n . No vertex 

has degree greater than n - 2 in G. The tree Tn contains a vertex v\ of degree n — 2 

and so does G; we have D = n - 2. This implies A(G) = T(G). D 

In [1] the authors suggest the problem to characterize the graphs G for which the 

ratio between A(G) and T(G) is equal to a given number a such that 1 <. a <. 2. 

We will not solve this problem; we will only state an existence theorem. 

By Kn we denote the complete graph with n vertices and by Kn its complement, 

i.e., the graph with n vertices and no edges. The Zykov sum Gi © G2 of two disjoint 

graphs G\, G2 is the graph obtained by joining each vertex of Gi with each vertex 

of G2 by an edge. A saturated vertex of a graph is a vertex which is adjacent to all 

the others. 

First we prove a lemma. 

L e m m a 4. Let n be a positive integer such that n>.Z, let b be an integer such 

that 0 < b < | ( n — 1). Then there exists a graph G with n vertices, with a saturated 

vertex and such that /3(G) = 6. 

P r o o f . For b = 0 this graph is Kn. For 0 < b <. \(n - 1) it is the Zykov sum 

Kn-2b © i?26 or Kn-2b-\ © K~2b+i • D 

Now we prove a theorem. 
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T h e o r e m 3. Let a be a rational number, 1 ^ a ^ 2. Then there exists a graph 

G with a saturated vertex and such that A(G)/r(G) = a. 

P r o o f . As a is rational, it can be expressed as p/q, where p, q are positive 
integers. From various possibilities of this expression we choose one such that p ^ 2 
and in the case of a = 1 we choose p = q to be even. We put n = p + 1. In the case 
of p odd we put b = q - \{j>+ 1), in the case of p even we put b = q - | p . According 
to Lemma 4 there exists a graph G with n vertices, with a saturated vertex and such 
that 13(G) = b, which implies T(G) = [ | n j +b = q. As G has a saturated vertex, 
A(G) = n - 1 = p. This implies the assertion. • 
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