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DERIVATIVES
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Dedicated to the memory of Jan Marik

Abstract. Let f: H .C R.— R be 'k times differentiable in both the usual (iterative)
and Peano.senses. 'We investigate when the usual derivatives-and the corresponding Peano
derivatives are different and the nature of the set where they-are different.
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1. INTRODUCTION

Professor Jan Maiik, whose death in January.of 1994 ended an outstanding career,
made significant contributions to several areas of mathematics including extensions
of differentiable functions.- (See [3].). For his enormous contributions to analysis and
for-our genuine affection for him, we dedicate this paper. to his memory.

This paper is motivated by-the following question.: Assume that H C R:is perfect
and for a function f: H — R both the kth ordinary derivative, £, and the kth
Peano derivative, fi, exist at-all:points of H. How large can the set Ej of those
points z in H be where ) () and fi () are different?

For-k = 1 the ordinary and Peano derivatives are the ‘same. It follows from
Theorem 2 of:this-paper that for a‘given perfect set ‘H . the set E»is:countable.
Theorem 3 implies that if, in addition, we assume that the third ordinary and Peano

*This author was supported by Grants FKFP B-07/1997 and Hungarian National Foun-
dation for Scientific Research-Grant No. . 'T. 016094
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derivatives exist on H, then E, is scattered. On-the other hand Example 2 shows
that for n > 3, B, = H-is also possible for some perfect sets H.

In our Theorems for higher values of & we must impose coincidence assumptions
about Jower order Peano derivatives of the ordinary derivatives of f in order to
obtain results. Actually the non-coincidence sets we consider are non-coincidence
sets of “exact order” k, while the non-coincidence set Ex considered in the original
question is of “order” less or equal k.- (We give more explanation of this heuristic
background in a remark following Theorem 6.)

In Section 4 the concept of y-gap porosity is introduced. In Theorem 5 it is proved
that if the set H is y,-gap porous at the points &, € H, then'thereis a k> 2 times
ordinary. and. Peano differentiable function ‘such ‘that:z, ‘€ E; for all n.-Theorem 6
shows that y-gap porosity, in a certain sense, is-also a necessary condition.

2.- DEFINITIONS ANDOTHER PRELIMINARIES

Throughout this paper H will denote a perfect subset of R, k will be a fixed
element of N, i and j will denote nonnegative integers and f: H — R. The usual
or-iterative kth derivative of £ will be denoted by f(¥). For example if z € H; then

f(z) = lim ﬁ%{:&l Next the corresponding Peano derivative is defined.
Yoz Y-z
yEH

Definition 1. TLet f: B C'R — Rlet k'€ N andlet z € B. Then f is k times
Peano differentiable at 2 means that there are numbers f;(x) for j =1,2,... k and
there is a function £: B.— R such that ‘lim e(y) =0, and for each y € B

P
yeB

=~ fi(z) ;
)= @)+ T ) - "
i=1 B

If « is an isolated point of B, then the numbers fi(z), f2(x), -, fx(z) are com-
pletely arbitrary. Otherwise they are unique if they exist. Examining the above sum
it is obvious that setting f(z) = fo(z) will be useful as will f(z) = fO(z). The
reader unfamiliar with the notion of Peano derivatives is directed to [4]. The major
conditions imposed on the sets studied in this paper are motivated by the work done
in [1].-The specific theorem is as follows. (See page 395 -of [1].)

Theorem 1. Let H-C R be closed, let .k €Nand let f: H — R be k times
differentiable.in both the usual sense and in the Peano sense on H. Suppose for each
i,7°€ NU{0} with i+ j < k we have that fU) is j times Peano differentjable on H
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and that (f(f))], = fl+d) on H, Then there is a function F:' R — R which is k times
Peano differentiable.on R such that F; = f; on H for'each j = 0,1,2,..., k.

Simply stated, the purpose of this paper is to ‘investigate the equality ( f(f))i =
) where f is.defined on a nowhere dense-set, H. If H is aninterval, then the
existence of £(9 implies the existence of f; and the equality F&) = f;. Consequently
the equality under study holds. However for a nowhere dense set it is possible for
fi(2) and F®)(z) to both exist but to be different.

Since the hypotheses of Theorem 1 are used often in this paper, we introduce the
following useful notation. Let.

PD(H) ={f: H— R; [ is k times differentiable in both the usual sense

and in the Peano sense}
and
NPD&(H) ={f € PD(H); i+j < kand z € H imply (9) (2) exists}.

From Theorem 2 it follows that if the condition (. f“))j = U+ holds on H for all
i+7 < k; with the exception i = 0, j =k, and k is even, then the set fi # f{F)
is countable.” If we-have the additional information-that f € PDiyy(H), then in
Theorem 3 we show that the previous exceptional set is scattered. However, for odd
ks in Example 2 it is shown that there are non-empty perfect sets, H- and functions,
f which satisfy the assumptions of Theorem 2 and f{¥) o f, everywhere on H.

3..NON-COINCIDENCE SETS

‘We begin with a very simple but illustrative example.

Example 1. Let P = {pi,p2,.:.} be a countable set in R with no isolated
points, let {kn} be a sequence in N with k, > 2 for each n € N and let {on} be'a
sequence in-R. Then there is a function f: P — R which is infinitely differentiable
in the usual sense and in the Peano sense on P-such that f*) = 0.on P for all k €N
and for each n € Nwe have fi(pn) = 0.if k % ko while fx, (py) = an-

o
Let f(p1) =0 and set.g:(z) = f(m) + ﬁ(w =p)*. Let @) = —00 and by = +00.
1!
Let n € N withn 22 and suppose forj-=1,2,...,n-1, f(p;) has been defined and
o
set 95 (2) = f(v;)+ -k—]'(x ~ p;)*i, Also suppose that for j =1,2,..,n~ 1 numbers
aj;bj & P have been selected so that p; € (aj,b;) and for i =1,2,...,, (j — 1) either
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(a5,0;)N.(a5,0:) = 9, or (aj,b;) C (ai,b;) and in the latter case; ie., p; € (a:,bs),
lgi(z) —g; ()| < exp(— - ! ) To define f(pn), let jn = max{j € {1,2,...,n~1};
Pu € (a7,b5)}. (Since (ar,by) = (=00,00), Jn Is defined) Set f(pn) = g5, (ps) and

then let gn(2) = f(pn) + %(x — pn)¥n. To define a, ‘and b, first select a closed

n
subinterval I'of (a;,b;,) with p, in its interior. Let 4 < j, with pp € (as,b:). By

1
!w-pil)

for-z € (aj,,b;,). It follows that there is an & > 0 such that for all i < j, with

the induction hypotheses, (aj,, b;,) C (@i, bi)-and |g:(2) = g5, (2)] < exp(—

P € (ai,b;) and for all 'z € 1 we have'e < exp(— ) —9:(z) = g5, (x)].

Iz = pi
Because each g; is continuous and since gn(Pn) = g5, (Pn) = 0, it is not difficult to
see that there are a,, by, &P with p. € (an,bn) C I such that

1
i) — o e d |gn(z) —g; <&
193, (2) = 92(0)] < exp (=7 ) and [0a(&) ~ 5. @) < &
To complete the induction step we need only consider the case i < n with p, € {(a:,b;).
By definition ¢ K j,. If 4 = jn, then for £ € (an,bn) we have (g, (z) — g(z)| <

1
exp(A‘————n——). If i< jn, then
|z = pj|

19¢(@) = 9n(2)] < l93(2) = 95, ()| +195 () — g (2)]
<l9i(®) - g5 (@)| + &
< 10s(@) = 93, @) + exp( - ———)  [gu(2) = g5, (@)
e = psl
To show that the function f has the desired properties, fix i € N and let n.e¢ N
with n > 4.and p, € (a;,b;). Then j, > 1 and by. definition f(p,) =gj.(Ps). Thus

1 (®n) = g:(pn)l =195, (Pn) — 9:(pn)] < exp(—l,j—)-
= Pl
By the definition of g; and since k; 2 2, this estimate proves that f(p;) = fi(p;) =0
(and hence that f*) = 0'on P) and that fi(p:) = 0 if k'# k; while fu,(p:) = i O
The next example shows that for some perfect sets H for any integer larger than 2
the.corresponding usual and Peano derivatives may exist and be different everywhere
on H. -

Example 2. There is a perfect set H and, for each m € N with m >3, a
function f € NPD(H) for all k'€ N such:that for-all k € N with k 2> 2 we have
F%¥) =0 on H and fi, = 0 on H except for k =m while f, = m! on H.
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Remark 1. If m is odd then in the above Example we have f' = f; = 0.on H
which implies that (f(); = 7{+4) holds except for i = 0 and j =m. ~When m is
even (f9); = fUH) is always satisfied when 12 2,if i = 0, or 1 it is satisfied for all
J's. with the exception of j = m — i.

Set, €y =1 and for each n € Nlet £, = 107" “In fact, any sequence satisfying the
following three properties can be chosen for our construction.
(1) £n1 =26, > 10, 5 holds forn =2,3,.

o
(ii) Form, no € N,/ m >3 letting an, = 2 ot o =0 30 gm we have
nematl n=ngd1

lim Z;;‘_lam, =0foralineN.

miforn=2,3,..

(iii

Observe that the ¢,’s we chose satisfy properties:(1)-(iii).

Set Jo1=[0,1], 711 = [0, 1), and Iy 5 = [1 = £1,1). Suppose I,'; = [a, ] has been
defined for n € N'and for j € N, = {1,2,...,2"}. Then Lni19;-1 = [a a+Cn+1]
and Iny12j = (b= fngs,b] defines Loy j for j- € NppioLet H = ﬂ U I

each z € H and for each n € N let Jn z be that integerin Ny 'such that x e L. For
each n € N and for each j € N, let pn j(®) = an (@ = @n,j) + B ; where a,,; is the
left endpoint of I, ; and the constants &, ; and.3, ; will be defined later depending
on whether m is odd or even in a way that they will satisfy

(1) lanil < 77 and |8y, S0,

For z.€ Hiset f(z) = E Prji
Note that for 2,y € {O 1]
@ Priny ) 7 Prgn o (2) Z Prjuy 4) = Do (0) - 0nj (y — @)

Forx,y € H with 2 # y let no(2,¥) = min{n € N; . > # jny}. Consequently, for
z,y € H with = # y (denoting no(z,y) by ne) from (2) it-follows that

f(y) e né in,jm,,(y) =P ()

n<ng

Y-z

Thus ‘using (1) we have |pn ., , (@) '< 267, . Since |y =] > lny1'= 2lny > np-1/2
by (i) and-(ii) it follows that the second term above tendsto 0.as y — z (The term

n =.1np must be dealt with separately, but clearly it is no more than 88"”}1 which
tends to 0 because m > 3.) and hence f'(z) = 3" anj, .-
nen
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Similarly for z,y € H with 2 # y

F) = flx) = fi )y —2) = (y =)™
=< 37 P, @) = pn,j,.,x(y)) =z

n2ne

= (pno,ju.,.y(y) = Prpings () = (U — m)"‘) F37 Py W) = P (y)

n>no
=T(z,y)+5(z,y).

Since |y = x| > €ny—1 ™ 2n,, and 1o = no(%,y) = 0o as'y —+ z, conditions (i) and

(ii) imply. that hm 1] yﬁ—r—l,% =0foralln>m.

. 0 if j:is odd
First let m be odd.  Then put an; = 0 and B,; = g Let
£ i §is even.
z,y € Hwithz #y. Iz <y, thenz el o and y € Iy, 25 Thus T(z,y) =
Gy = (.~ @)™ Since bng—1 — 2ny < Y T < €yyyy by condition (iii)

0<ln (Y= <y = (bpyoy =267 = (2, 4 1= (1= 25—"—”—)”‘]

Ny =1

£n -
<o i-(1-me2)] <o (meaTh)
Lny=1
= 2171[;::’_';"‘1
So by condition (i) for n > m
g (2,9)—1
i TED iy g2l
vzt fy gl ot holz )1

Iy <, then y € Inooj-1 and @ € L o; Thus, since m is odd, T(z,y) =
—€n_y + (z—y)™. Now as above

0> (z—y)" B N Sl (A L= 200)™ = Oy

and hence |T(z,y)| <71 = {€no—1 = 26,,)™. S0.by the same ‘argument as above,

T
lim I——SJ——M =0 forn >m.
v |y —gln
0 if jis odd
Now, let m be even. Then put Bn,j = 0 and ap,j = 771 i s even.

If ¢ <y, then & € Ing2j~1 and ¥ €. I, ;. Thus
T2, )] = L (ym gy ) = U= B < 0 ey = (Y = 2) M <O = (y— )™
ng=1 0w o
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X . N . T(,
and proceeding as in the first part of the previous case yields = lim "——4—%'- =0.If
y=rah Y
y <@, then y € Ing »; 7 and 2 € Tn, 25, Thus since m is even,

IT(@, 9] =1 = 6r2h 0 = no gy )= W= D = 00T @no s —9) = (=907
g1 =260 — £ 4|

=1 (g1 — 200)™

. e
and proceeding -as in ‘the second part of the first case yields lim llwv(-yTll =0
o= |y =
Therefore in all cases if n > m, then

i W) = @)~y =0)f @)~y - )™

y=a (y—z)*

0.

Consequently if m is odd and mn 2 3, then f'(z) = 0 (because each an; =0) forall
2 € H-and hence f*¥) = 0 on'H for-all k > 1. Moreover f;(z) = 0 if j % m while
fm{z)=mlforallze H.

On the other hand if m >4 is even, then in' = m 1 2 3is odd and letting
By = anj we have f'(z) = 30 B ; that'is, our earlier argument for odd m’s
Gy

shows that ()'(z) = f#(z). = 0for all = € H and hence f¥5+D(z) = 0 for all
k21, Therefore f"(: 0 on H and hence £ =0 on H for all k 2 2. Moreover,
as above, f;(x) = 0:if j 5 m while f,,(z) = m! and we also have (f');(z) = 0if
j#m—1, while (f)m_1(z) =(m—1)! forall x € H.

The preceding example shows in. particular that for'n > 3 the nth ordinary and
the nth Peano derivatives can both exist and. be different -everywhere on H for some
perfect sets, ‘. The case n-= 2 proves to be quite different ‘as the next theorem
demonstrates. For example it shows that the second ordinary and the second Peano
derivatives can differ only on a countable set,

Theorem 2. Let H C R be perfect, let:k € N with k > 2 and let f € PDy(H).
Suppose 0.< i <’k with -k —1i even and put

E;={veH; ifi'+j <korifi+j
(f("'))j,(a;) exists and = [0 (z) and

()i # £ (D))

tand 1" > i, then

Then E; is countable.



Proof. Forrational numbers a and 8 -with o > 3 and for n € N let

Bt ={oe H; (1), (@) = f99 (@) for i+ < b,
(f(i'))k_z,('r) = W(z) fori <i <k,
f(”) =B .
(3, MW SR P et
I - ;0 oy <sgop -l
fory € H,ly -~z <% and fP)>a>8> (f(i))k_i(x)}.

The theorem will beproved if it can be shown that E""“'f is an isolated set. - So
suppose to the contrary that = is.a non-isolated point of E:f . Let e > 0 and select
Y€ E:f with |y — x| < L such that for i < i’ < k

A (1) () X .
—(-v—j%(x—(y — :v)"[ <ely— zik”‘ .

® 9w - 5

=0

Since both 'z and y belong to E,) ‘o

AL (F9) ()
@ |79 - E( -] <o ).,y g
=
and
) [79@) - ]2:;( J) By v < sttt
Foruw € H-put

o) = sy - 3 10 9y -2y = 1) - i)

=0
where his a polynomial of degree no more than k. Then ¢()(2) = 0for j = 0,1;...,k

and for 0< ' <k

kil
¢ = fw) = 3 f;&(u oy
=0 =

Using the assumptions in the definition of &, ’f and (3) for < 4" < k we have

() 19 < ely = 2=,
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Again using the definition of £ 5 and (4) we infer

FB) = (19),

M |+ T e | < By g

Since. h is a polynomial of degree no more than k, by (5) we have

5 (g9) ) + (1Y), ) -

sl = ot > @ #4005 - o
k=i (i} : :
- -5 DB, w|

j=0
(using (6) and that (g(i))j(y) =g (y) for 1< § <k =1)

_ @), ) :
> fD =9y~ "*—(g( )k'is,y =yt

k—im1

ki
x
—ey bo ‘ LA i PR

=1
(g 9), @)

> |- 090 - L ] bl -y

Since (¢), () = (f), () = ¥ (2), we obtain

Sl = ol el = eyl

: FOY ) = f B »
> ,—g(“)(y) ey - )k_(;;(li)i)lm( )(:v ) N

D(k

Using (7). we have

e @), () = £®) ,
by ettt > oy - LS00 e,

Adding the two preceding inequalities together, canceling and keeping in mind that
k=i is-even we obtain

©®) (o=@ telk =Dk >2fD@) = (5D, ) - (D), (@)=
On the other hand v € Ef implies

FfB(@) >a> B> (f9), . (z) and B> (F9),_():
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Hence 4 > 2(a~f) and this contradicts (8) when  is small. Thus E,”l“f is countable.

In a similar fashion the set resulting from E° £ by reversing the inequality between
a and 3 in the definition is also clearly countab!e, This observation concludes the
proof. 0

The next.theorem shows that if ¢ =0 the set defined in Theorem 2, besides being
countable, is.scattered when f is k + 1 times differentiable in both senses.
Theorem 3. Let k € N be even and let f € PDyy1(H). Set
={e€H; ifi+j<korifi+j=kand0<i, then(f?) (z) exists and
= () and fi(e) # FP ().
Then E.is nowhere dense in each § # F C-H. with F-perfect.

Proof.. By Theorem 2, E is countable. Let § # F C H be perfect. Suppose
there is an interval [, such that FNI; # @ and FN E'is dense in [; N F. Since fi41
is a Baire one function,” there is an interval I C I;-and an M € (0, 00) such that
I, N.F # §and | fr4a (x)] < M for each z € I, N F. By the Baire Category Theorem
there is a 6 >0 such that

Kg:{xelgﬂF;yéHand |z —y} < 0 implies

A41 N X
O ﬁ%)(y —a)
jmo 0

< |7J — I!k+1}

is of the second category in.Jo N F. Also there is an interval I3 C Iy with L0 F:# 0
such that K is ‘of the second category in every subportion of I3 F. Since F'N E is
dense in I3 N 'F, we may select « € I3 N F N E. Let. € > 0. Fory € E, y sufficiently
close to =

© 7o) - Z Litz) <ely—aff
=0
and for'0 <i <k
T = : :
(10 19w Z~— — | <ely ~af

Since.y € E, (10) may be rewritten as

1y

+i)
9y) - Z (x ——(y— L)7I<:1y
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As in the proof of Theorem 2 for v € H let
Laer i ;
0w =) - =D ap.
j=0 77

Then ¢\ () = 0.for .= 0,1,...,k. Since z € E, (9) implies for y € E sufficiently
close.to «

)
(12 o) + LD I o) gy
Moreover for 0 <4 <k
: (#44)
) = 19 Ef 2@y

=0

So (11) and the assumption that z € E.imply |¢®(y)| < ely~z|*~% Also |g®)(y)| =
|F®) () — f B (z)] <& for y sufficiently close to = since f*+1)(z) exists. Because
9:— f is a polynomial of degree at most k, for y.€ I(s sufficiently close to z we have

1 Z” )(“ - ='f(x> Jzof Wy <o - plin.
Thus by (12)
o=yl > Eg W -
;’&;@(I—y)k‘—{g(yHMﬁM@"y)k‘
2iwliz—ylk~a\x—'y|k"elx'"?/]ka:%%
- @

Dividing by |z — y|*, using that y can be chosen arbitrarily close to z and that € was
arbitrary we obtain an inequality which contradicts fi(z) 7% f¥(x). ]
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4." A POROSITY CONDITION

In this section we introduce a condition on the set H sufficient for the existence
of a function in NPD,(H) for which f) = ) fails to hold on a dense subset. of H.
We show.that in some sense the condition is necessary,

Definition 2. Let H C'R, let 0.< y:<-1:and let 2 € H..Then H-is y-gap porous
at 2 .means there exist sequences @y < a2 < o<l <l < x <L <be <0<
by < by such that [azer1, aoep] N H =0, [baey2, baesa | NV H =1, for £€ NU{0}

Yz — azein ] € lagess — azesils  Alb2err — 2] lbarss = baegal

and
5 [boe = baes1]”
im et

lazery —age] 0
P e , =
=00 [boper — bapga|

£m00 (242 — fgeg1]

The first condition asserts that [aze+1,a2¢42) is at least a fixed ‘portion of the
interval [aze+1, z] while the second condition can be shown to be equivalent to.stating
that the length of {a2s, a2¢4.1] divided by the length of [a2¢, 2] tends to 0. Analogous
statement can be made concerning the sequence {b;}: These remarks are expressed
in a very useful way in the following proposition.

Proposition 4. Let H C R be perfect, let 0 < < 1.and let x .€ H. The set
‘H is y-gap. porous. at x if-and only if-for-each £ >0 there is-a § > 0 such that if
Y15 Y2°€ H with |y; — z| < § and eithery; < yo <% orz < y2 < y1, then we have
=il S e -

e 22 Y 0T — K
le—wnl 9|

>3

The proof of the proposition is standard ‘and hence is omitted.

Theorem 5. Let H be a.perfect set, let:k € N with k > 2 and for eachn € N
let.z, € H. Suppose for each n € N there is‘a'y, € (0,1) such thai H is v,-gap
porous at x,,. Then there.is-an f € NPDy(H) such that for each n.€ N we have
F® (x,) # filza). In addition, for all n'we can also insist that i + j <k implies
(F)(@n) = O+ (2,) and 0. < i < k implies (fD)_;(zn) = F*) (2,).

Before proving this theorem we remark that given ay € (0,1) it is easy to construct
a perfect set ‘H and a dense subset {z,;;n € N} of H such that H isy-porous at
each z,. Then Theorem 5 provides a function, f; which is.in NPDx(H).: Since
{zn; n € N} is not scattered, by Theorem 3 f cannot belong to PDy1(H).
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Proof. Foreachn € Nlet ane 7 2n, buy >y 2, such that for each ¢ € N we
have

YnlTon = Gn2e41] S lan2ess = angesi],

I
Yolbn2ert = Tl < lbnzess = buiaeral

and

lim |an,2eq1 = @n 2e|

foroo [angers —ngeir]

o bjae = ba2e]
Hm oo T2
200 {by 2041 = bnyoetn)

Further ‘assume, as we may, that |2, = an,| <1 and |byy ~ 2.l < 1 for:each
ne N, For€.e NU{0}set Tone = [anaes1, tnzesa)s Tome = [bnera, bu2esal,
Jaino = (=00, 0n1)s Jomo = (bn1,00) and for £ €N set, Junp = (an2r Gnizes1) and
Tbme = (bn2e41,bn,2e). Since H is vu-gap porous.at z,, for £ € NU{0}, Ton eNH =0,
lyne NH =0, valtn = anpe1] € Momel, Ynlbn2ess = Zn| < |2y nye), and

lim [amel [ Jome] -
2500 Hamel el T

* .
For each n € N let a, = g—"— Then 57 3:\—‘ <.oo. Fix'n € N. ~We define
i ngN Y
f{n): R — R as follows, First put :f(n)(z,) = 0. For £:€ N U {0} the function f(n)
is-constant on Jo ne and on Jy e and is linear on T, ¢ and on Iy ¢.-In addition
F(n)(@n2e42) = F (M) (@n2041) = @n ((@n2esn = 2n)E — (an 2241 = Tn)F)

and

F()(bnzet1) = F(0)(bp,2642) = 0n ((Bn2ess = @n)% = (b aerz = £a)).

Finally assume that f(n) is continuous at .. Hence f(n)is continuous everywhere.
Since |zn ~ an2e+1] S o ne /1 and since by 261 = Zal Ky nel/ s

[F(n){an2e12) = F(m){(@naes1)] € OnlEa = ap2em | < g%fla,n,c!k
x
and
[F()(bn2es1) = £(1) (bn2012)] < Onlbnszers = 2al® < -‘f;—ﬂ:—ub,n,uk.
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Let'z,y € U (JantUanz) with 2°< y. Let h =y — 7 and let {L; =

£ENU{0
[eidi)y i€ N} deuote the set of mtervals Lo ne-and Ibn,e contained in (z, y) where
hi R by
N.CN. Put h; = |Li. Then Z h <1 and since 0 £ 5 S <1 implies 0.< " < o
2

we have Z ( ) < 1; that is, E h¥ < hb. Because f(n) is continuous at z, and

constant on each Jan,e and on each Jon,es
(13) 1£(m)(y) — f)(=)] < (y 2

Since H C U (Jajn,e U Jb ne), the above inequality holds for z,y.€ H.
£eNU{0}
For.z:€ H put f(x) =3 f(n)(z). Since f(n).is constant on Js »¢ and on Jy n ¢
neN

and since |z, —an1| < Land |b, 1 —2,] <1, from (13) it follows that |/ (n)(z)] < —

for-all z € H. Hence the sum defining .f converges for all z € H.

Let @ € H\{zn; n € N}. Then for each n € N there is an €, € N U {0} such
that @€ Jom e, U-dynp, . Let Ny € N. Since f(n) is. constant on -J, » ¢ and on
Jyn.e, there is an open interval U such that'z € U and f(n) is constant on U for
n-€41,2,...,No.— 1}, Then for y € U by (13) we have

> (fo@) ~ fmw)| < 3 Ty sl

72Ny n2No

) = 1) =

Since -y a~:— < 0, by-definition it follows that 'f is-k times Peano differentiable
nEN.Tn
at-z and that f;(z) =0 for all 1-< 7 < k. ‘In particular since k> 2, we have

f(2) = filz) = 0.

To-complete the proof it suffices to show that for each n '€ N, f is k times Peano
differentiable at z, with f;(z) = 0 for'1 €j < k'and fi(z.) = a,k! because then
f"'=0.0on H and hence f® =0 on H while fi(2,) = ank! # 0. First we show that
for-each n € Nif f(n) is k times Peano differentiable at ., then so is f and indeed
with the same Peano derivatives. To this end fix ng € N and choose Ny > ng. Then
there is an open interval U such that 2., € U and f(n) is constant on U for all
n < No — 1 with n'# ng. Then fory e U

F) = Fne) = F(n0)(v) = Fmo)(Tno) + D° (F(M)(y) = f(n)(ny)).
y nzNy

Thus
1F@) = F(@ne) = (Fr0)(0) ~ Flno) @) € 37 L2y~ g, ¥,

ST T
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Therefore f'(xn,) = f'(no)(2n,) and for'1 <j <k wehave fi(2a,) = 1 (n0)(@ny)
whenever the right-hand side exists.

Finally it ‘will be shown that for each n € N, f(n) is & times Peano differentiable
at @n, with f(n);(z,) = 0for 1 < j < kand f(n)(zn) =ank!: Now fix n € N.and
let ¢ >0. Because 0.< 7, < 1,'there is: K€ N such that {1 —7,)’ < e and there
exists £p-€ N such that > £, implies

[anel < Hamelfe-and [Jynel < Lol

Let < o, with z-€ H so close to z, that if 2. € Jone, then £ > £, Set
t = |@, — an20+1/; the distance between z,, and the right endpoint of Ja,, ¢- Since
Veine] < Hampl§ < £, weconclude that t < |z, — 2| € ool +8 < Maneliz +
t<t(L+£). Since |z, = an2e1| < ool /n, we have

|Tn = Gnpese] = 1@n = Gn 2001 = (@n 2042 = n 20 41)| <t =t = (1= 72t
Moreover

|20 = Gnerpa] S (L= A) 20 = Gnzegs] < (4= |20 = @naega] < (L—7m)%
and in general

[0 = nager i) S Q=) t <et.

In the interval (anopi1,0n (04 k)) there are K intervals [on e namely Lo e,
Loty Taimesi=1s Since ol < Hapnel e forall £= 041 00420000
K-~ 1, and since for these same values of £ we-have |I, (| < t, it follows that
|Ja,n,el < 7t and consequently

L4K-1 :
S Mamid < (B ~Dft <zt
=01
The function f(n) changes by aa((an,2e42 = T0)5 = (an2e41 = Z)") 00 Ly =
[@n, 2641, @n,2042), Jater it will also be useful to keep in mind that the sign of this
N £ K1
change equals that of (=1}t From [zn — @n2(e+10] <etand 300 |Jonel <et
ST
it is easy to sce that {Recall that t = |zn — an2e+1l)

ant® > ("1)k+1(f(")(an,2(l’+K)) — f(n)(an2e+1))

LKy
= (=DM St anaers) = F)@n2eer)
L=
K-
= (DR o (0naesy — 20) = (@n2042 = 20)5) > 0 (1= 26)0)%.
=gt
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TFrom (13) and from the continuity of f(n) it follows that
a o
ff(")(an,z(zl—u{)) - f(")(xn)[ < *%1%,2(!’44() *In‘sk < *‘:‘Ektk'
In T
Since f(n) is constant on Ja,n,e, we have f(n)(z) = f(n)(an2¢+1); hence
anth 4 T2tk S (L1 ) (@) = F(n)(ma) > an(l — 26005 = Smehik,
In In
Using the above inequality, t < &, — 2| < {1+ £)t, and the fact that the above

argument is valid for any £ > 0-one can easily verify that

F0)(@) — f(n)(z,)

T =3 Qn 88T > Ty, T.< Tn, and € H.
(z —zq)

A similar argument is valid when z.>"z,. This implies :f;(n)(z,) = 0 for 0
J-<'k and fi(n)(@n) = ank! # 0. Therefore for each no € N. we have f'(zn,)
F(no)(@ny) = 0, fiany) = Fino)an,) = 0.for' 1 < j < k, and fi(zno)
Fe(10) (o) = Cnokl # 0= F) (2.

/N

i

a

Theorem 6. Let H be a non empty.perfect set and let f-€ NPD(H). Assume
that f; = ) on H for all 2 < j <k — 1 and let

E={veH; ifi+j<k orifi+j=4kandi>0, then
(D), = 9 (@) and fi(@) # [9(@)}.

Suppose E is dense in H . Then there is a (non empty) portion I'NH of H such that
for each z € I M E. there'is ary €(0,1) such that H is y-gap porous.at z.

The above theorem seems to be too restrictive, but if £ is not dense in H, then we
can.still obtain some information about its size. It is clear that the union of dense
in itself sets is dense in itself.. Let Eo denote a maximal dense in itself subset of E
and Hy be the closure of Ep. - Then:E\ Hy is a scattered set, and.our theorem is
applicable to Hp. Here we also point out that the assumptions in the definition of the
set E are not unnatural either. If fi(z) # f%¥)(z) and & & E, then thereis a k' <k
and <4 <k such that for g = f{?) the point 2 belongs to a set of non-coincidence,
E'; which is.defined analogously to E by using g and k', This means that one should
think of E as an “exact” non-coincidence set of order k.

Theorems. 5 and 6 imply that E, can be dense in: H if and only if the set of gap
porosity points is dense’in H. Furthermore the set {f(® #f;} can be densein H
for some. f.€ NPDy(H) if and only if the set of gap porosity points of H-is dense in
H.
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Proof. ' By Baire Category Theorem there is.a portion 1.0 H, a g, >0, 'an
M' €(0,00) and a set F C 1N H dense in 1 N H such that for each z € 1N H we
have |fx(z)| < M’ and for each z €-F and each y € H with [y — 2| < &

S HE)
) |10 - 3 By o] < ly it
F=0 7
Let p e I'NE. As in the proof of Theorem 2 for = € H we let
b oopld) :
o0 = 10 -5 =Py,
=0 -

Then ¢ (p). = g;(p) = Ofor:all 5 = 0,1,k =1, g¥(p) =0 and gr(p) =
Fi(®) — FF)(p) # 0. In general for each y € H we have gx(y) = fr(y) = F®(p) and
hence g, (y)] € M2+ f®(p)| = M for all.y € I'n H. Moreover since g — fis.a
polynomial of degree no more than k, for «,y € H

k k
9;(x) ; filz) ;
9ly) =Yy ) = fy) = Y ey — o)
j=or 1 im0 1
Thus by (14) for z € Fand y € H with jy — 2] < &

) o) =3 &4 -y

i=0

<ly—el*.

lg ()} w21 4 ; .
Let A = (m) and set 7 = 55 We will now show that H is 7-gap

porous at p using Proposition 4,

Let e > 0. By hypothesis, g;(z) = ¢t3) () for each z € H.and 1 < j < k and since
PER it j<korifi+tj=Fkandi>0 then (¢1) (p) = {9 (p). Thus there
isa 0 < 81 < do such that y € H, |y~ p| < & and 1.< ¢ < k imply

Aol D) ! ;
Jgi(y) - ‘L;.,ﬂ(pl(y —p)| <ey-pff
G0 -

gx( R i . 5
where ¢; = —'7@7@(171) . Since gD (p) = 0, for j = 0,1,...,k and |y — Pl <6,
we-obtain
(16) lg:w)l < sly —plE
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Since g;(p) = 0.for j = 0,1,...,k — 1, there is a 0 < 0y < dy such that y € H and
ly —p| < 62 implies

(17 1y(y) = gi}%(y —p*| <erly —pl

e(1 =)k gi(p)]
T+ Q= hyze
y <« < p. (The argument for p <z <y is similar.) In addition assume that € F.
By (15), (16) and (17)

where ¢ = Let 2,y € H with |p — y| < 6. Further suppose

|28y - ) ~ (2~ ]
< |28, g y)|+l9 v - 9@ +|o@) - 2Pz - pt

<euly ol + o) - Zg’ )¢z

=0

}j'g’ iy~ op 4 eulo — pl*
!

i k=3,

£jlz = p| -z M

<sk(p—y)"+iy—w|’“+§ sile —pl Ay — i ‘.I ly | +~—kl|y—:t[k+5k(p—:r)k<
=1 7t .

Since

k
Y -p @ -p)

i=1

k
=9~y
Jazl

[y—=p)f = (@-pfl=ly-q

k
120 ) > -y -ip 2y
(18) =

kel Nk
<€k(@wy)k+(p_w)k)+2;53(p 1)j!](1 y) (M+l“)(®“y)k
i=

zmy

Suppose e < E¥ < y. Since p-y =p-ztr-y <p-z+yp-y), 1-7)p-y) <
(p—2). Sofor]_12 k=1

G- <o -E- 9 -
(19) ‘ <ele—yE-9ie - o (;%)H
= 80l )i - 0y,

398



Also

'VI:; k! (e —p)
(p—o) o (p~a)E? )

et (BT 0o

+e- () () w-a
<Ol gy gyt BBy g

=120l ey g

(-9 + -2+ (

Summing inequality (19) multiplied by 1/jfor'j =1,2, ..,k — 1, and adding to it
the above estimate contradicts inequality (18). Thus 2= <. or ;—:S > 7."Since F°
is dense in I N H, we may assume that z € 1N H. So by Proposition 4 'the set H is
7=gap porous at p. (]
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