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THE NON-COINCIDENCE OF ORDINARY AND PEANO 

DERIVATIVES 

ZOLTAN BUCZOLICH*, Budapest, CLIFFORD E. WEIL, East Lansing 

(Received September 23, 1997) 

Dedicated to the memory of Jan Mafik 

Abstract. Let / : fi C R -» R be fc times differentiable in both the usual (iterative) 
and Peano senses. We investigate when the usual derivatives and the corresponding Peano 
derivatives are different and the nature of the set where they are different. 
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1. INTRODUCTION 

Professor Jan Mafik, whose death in January of 1994 ended an outstanding career, 
made significant contributions to several areas of mathematics including extensions 
of differentiable functions. (See [3].) For his enormous contributions to analysis and 
for our genuine affection for him, we dedicate this paper to his memory. 

This paper is motivated by the following question. Assume that H C R is perfect 
and for a function / : .ff —> R both the kth ordinary derivative, /(* ' , and the fcth 
Peano derivative, fk, exist at all points of H. How large can the set Ek of those 
points x in H be where f(k)(x) and fk(x) are different? 

For k = 1 the ordinary and Peano derivatives are the same. It follows from 
Theorem 2 of this paper that for a given perfect set H the set Ei is countable. 
Theorem 3 implies that if, in addition, we assume that the third ordinary and Peano 
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derivatives exist on H, then E2 is scattered. On the other hand Example 2 shows 
that for n > 3, En = H is also possible for some perfect sets H. 

In our Theorems for higher values of k we must impose coincidence assumptions 
about lower order Peano derivatives of the ordinary derivatives of / in order to 
obtain results. Actually the non-coincidence sets we consider are non-coincidence 
sets of "exact order" k, while the non-coincidence set Ek considered in the original 
question is of "order" less or equal k. (We give more explanation of this heuristic 
background in a remark following Theorem 6.) 

In Section 4 the concept of 7-gap porosity is introduced. In Theorem 5 it is proved 
that if the set H is 7„-gap porous at the points xn 6 H, then there is a fc > 2 times 
ordinary and Peano differentiable function such that xn e Ek for all n. Theorem 6 
shows that 7-gap porosity, in a certain sense, is also a necessary condition. 

2. DEFINITIONS AND OTHER PRELIMINARIES 

Throughout this paper H will denote a perfect subset of R, k will be a fixed 
element of N, i and j will denote nounegative integers and / : H -> R. The usual 
or iterative fcth derivative of / will be denoted by /(*). For example if x € H, then 

f'(x) = lim . Next the corresponding Peano derivative is defined. 
</->* y - x 
yen 

Deanit ion 1. Let / : B C R -> R let k € N and let x € B. Then / is k times 
Peano differentiable at x means that there are numbers fj(x) for j = 1,2,... k and 
there is a function e: B -» R such that lim e(y) = 0, and for each y e B 

f(y) = m + J2~^(y *)'' + e(y)(y - x)k. 
j=l •>• 

If x is an isolated point of B, then the numbers fi(x), {2(1),... ,fk(x) are com­
pletely arbitrary. Otherwise they are unique if they exist. Examining the above sum 
it is obvious that setting f(x) = fo(x) will be useful as will f(x) = /(°)(x). The 
reader unfamiliar with the notion of Peano derivatives is directed to [4], The major 
conditions imposed on the sets studied in this paper are motivated by the work done 
in [1]. The specific theorem is as follows. (See page 395 of [1].) 

Theorem 1. Let H C R be closed, let k € N and let f: H -» R be k times 
differentiable in both the usual sense and in the Peano sense on H. Suppose for each 
i,j e ^ U {0} with i + j ^ k we have that /(') is j times Peano differentiable on H 



and that (/(*>). = f(i+i) on H. Then there is a function F: U ~> M which is k times 
Pernio differentiable on R such that Fj = fj on H for each j = 0 ,1 ,2 , . . . , k. 

Simply stated, the purpose of this paper is to investigate the equality ( / ( , ) ) . = 
/(»+J) where / is defined on a nowhere dense set, H. If / / is an interval, then the 
existence of /W implies the existence of / ; and the equality / ( , ) = /,. Consequently 
the equality under study holds. However for a nowhere dense set it is possible for 
fk(x) and /(*)(») to both exist but to be different. 

Since the hypotheses of Theorem 1 are used often in this paper, we introduce the 
following useful notation. Let 

PDk(H) = {/: H -+ R; / is k times differentiable in both the usual sense 

and in the Peano sense} 

NPDi(iJ) = {/ € ?Dk(H);i + j s$ k and xeH imply (/ ( i )) ,(z) exists}. 

From Theorem 2 it follows that if the condition ( / ( i ) ) . = /(«+^') holds on H for all 
i + j < k, with the exception i = 0, j = k, and k is even, then the set fk i= /(fc) 

is countable. If we have the additional information that / S PDfe^i(if), then in 
Theorem 3 we show that the previous exceptional set is scattered. However, for odd 
fc's in Example 2 it is shown that there are non-empty perfect sets, H and functions, 
/ which satisfy the assumptions of Theorem 2 and / '* ' jt fk everywhere on H. 

3. NON-COINCIDENCE SETS 

We begin with a very simple but illustrative example. 

E x a m p l e 1. Let P = {pi,P2,---} be a countable set in R with no isolated 
points, let {kn} be a sequence in N with kn ^ 2 for each n G N and let {ctn} be a 
sequence in R. Then there is a function / : P -+ R which is infinitely differentiable 
in the usual sense and in the Peano sense on P such that /(fc) = 0 on P for all k e N 
and for each n e N we have fk(pn) = 0 if k •£ kn while fk„(pn) = ctn. 

Let f(pi) = 0 and set g\(x) = f(p\) + ~r~s(
x ~Pi)kl• Let ax = — oo and b% = +oo. 

Letn 6 N withn ^ 2 and suppose for j = 1,2,., . , n - l , f(pj) has been defined and 

set Si(x) = f(pj) + ~^(x- Pj)kj. Also suppose that for j = 1,2,. . . ,n - 1 numbers 

a., bj $ P have been selected so that pj £ (oj,bj) and for i = 1 , 2 , . . . , ( / - 1) either 
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(aj,bj) n (at,bi) = 0, or (aj,bj) C (a,-,h) and in the latter case; i.e., Pj e (a;,fc,), 

|S«(^) -gj(x)\< e x p ( - — ) . To define f(pn), let j n = max{j e {1,2 , . . . , n-1}; 
v \x-pi\J 

p n 6 (a,-, &,•)}• (Since (ai,&i) = (-00,00), j n is defined.) Set f(pn) = 9j„(pn) and 

then let gn(x) = f(pn) H "(a; - p„)k" • To define a„ and 6n first select a closed 
kn\ 

subinterval I of (aju,bjn) with pn in its interior. Let i < j n with pn G (a.,6,). By 

the induction hypotheses, (o,-„,t>,„) C (a,,&.) and |s,-(i) - Oj„(:i')| < exp(~T—3—r) 

for x G (aj„,6j„). It follows that there is an e > 0 such that for all i < j n with 

pn G (at,bi) and for all x € 7 we have <? =g exp(— ) - \gdx) - a,„(a')|. 
V | a ; - p i | / 

Because each gj is continuous and since gn(pn) - </j„(pn) = 0, it is not difficult to 
see that there are an,bn £ P with p„ £ (an, 6„) C / such that 

\9j„ (x) - 9n(x)\ < exp(—— —-) and \gn(x) - <?.,-„ (.T)| < e. 

To complete the induction step we need only consider the case i < n with pn G (a,-, 6,). 
By definition i < / n . If 2 = j n , then for s G (a„,6„) we have Iftjjz) — g(x)\ < 

eXp 1 _ . ). If j < ?'„, then 
V |z-p*J/ 

!».(*) - <?n(*)| < \9i(x) - 9i„(x)\ + \9u(x) - gn(x)\ 

<\9i(x)-gj„(x)\+e 

< \9i(x) - gjn(x)\ + e x p ( - ~ — — \ - \9i(x) - gjn(x)\. 
\X ~ Pjn I 

To show that the function / has the desired properties, fix i G N and let n e N 
with n > i and pn G (a;, &,). Then i„ ^ i and by definition /(pn) = gjn (pn). Thus 

l/(P») -ft(P»)l = l*,.(Pn) -Si(Pn)| < e x p ( - ~ - ^ ) . 

By the definition of ft and since ki > 2, this estimate proves that / '(p.) = /i(Pi) = 0 
(and hence that fm = 0 on P) and that fk(pi) = 0 if k / fcj while /jt,(p.) = _;. • 

The next example shows that for some perfect sets H for any integer larger than 2 
the corresponding usual and Peano derivatives may exist and be different everywhere 
on i J . 

E x a m p l e 2. There is a perfect set H and, for each m e N with m > 3, a 
function / € NPDfc(i7) for all k G N such that for all k G N with k >- 2 we have 
/(*) = 0 on if and fk = 0onH except for k = m while fm = m\ on H. 



R e m a r k 1. If m is odd then in the above Example we have f' = f1=0 on H 
which implies that (/''')_; = /(*+J) holds except for i = 0 and j = m. When m is 
even (/'*')•; = /'i+:>> is always satisfied when i >. 2, if i = 0, or 1 it is satisfied for all 
j's with the exception of j = m — i. 

Set £0 = 1 and for each n 6 N let £n = 10 -"". In fact, any sequence satisfying the 
following three properties can be chosen for our construction. 

(i) £„_! - 2£n > | f n _ i holds for n = 2 ,3 , . . . . 

(ii) For m, n0 € N, m >. 3 letting crno = __ C-Y 5= <?"„„ = X. C - i w e h a v e 

n - n 0 + l n=n 0 +l 
lim Co™-i°"n0 = 0 for all n € N. 
I 

(iii) _-_- < £nZ\ for n = 2 ,3 , . . . . 
" n - l 

Observe that the £n's we chose satisfy properties (i)-(iii). 
Set Jo.i = [0,1], -_,i = [0, £i\, and / i ,2 = [ 1 - 4 , 1 ] . Suppose /„,_,- = [a, b] has been 

defined for n G N and for j 6 iV„ = {1 ,2 , . . . ,2"} . Then /n+i,2j~i = [a,a + C+i] 
2" 

and In+i,2j = [̂  - ^n+i,6] defines In+i,j for j e JVn+1. Let i_ = f| y J,,..,-. For 
net. i = i 

each i . I. and for each n 6 M let _/„,_. be that integer in Nn such that x 6 /-,_••• For 
each n . N and for each j € _Vn let pn,j(x) = an,_/(- — o„,_f) + /?„,_; where _„,_,- is the 
left endpoint of _„,_; and the constants a-__. and ._„,_,• will be defined later depending 
on whether m is odd or even in a way that they will satisfy 

(1) K . I < C-_ a°d l/3-jl *_ C i -

For _ 6 i_ set /(a.) = _£_ p„,_,-„ _(_). 
„eN 

Note that for _, 3/ G [0,1] 

(2) Pn,i„.„ (j/) - Pn j - ._ ( - ) = Pn,__,„ (_/) - P„,_,„.: (_/) + On, , ; , , (_/ - _ ) . 

For x,y € H with x 5- y let n0(x,_/) = min{n G M; j n , x ^ j n , y } . Consequently, for 
x,y e H with x 7- 2/ (denoting no.-SJ/) by no) from (2) it follows that 

/ ( , ) - /(a-') v - +._____ 
y-x £-^ " _ / - x 

Thus using (1) we have |pnj„,_ (_)| «. 2C- i - Since |y - x\ > _-„__. - 2£no > 4»0--i/2 
by (i) and (ii) it follows that the second term above tends to 0 as y —> x (The term 
n = n0 must be dealt with separately, but clearly it is no more than &£n~\ which 
tends to 0 because m > 3.) and hence / ' (_) = ____ _-„__,-,_ _,. 

n€M 
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Similarly for x, y € H with x _- y 

/(.) - m - /'(-)(v - -) - (»- -r 
= ( __. -'»•-»•» ( ^ - P">i»-» ( - ) ) ~ ( y ~ x ') '" 

= (pno,j..0 . .(y) -->_„,.-,.„._(y) - (y - ~ ) m ) + ^ p„,.-„,_(y) -?„,_•„,_ (y) 

_=r(_,j/) + 5(_,i/). 

Since |y - ar| > £„0_i — 2.no, and no = no (~,y) -+ oo as y -+ z, conditions (i) and 
(ii) imply that lim r~d: = 0 for all n> m. 

( 0 if _f is odd 
First let m be odd. Then put aniJ- = 0 and /?„,_• = < Let 

{ C-i if jf is even. 
_,_/ e i- with x # y. If _ < y, then _ e __0,2j-i and y 6 -„_,2.-- Thus T(x,y) = 
Co-i — (y ~ x)m• Since £no_i - 2lm < y — ~ < £„0-i, by condition (hi) 

o < C„-! - (y - x)m < C - i - ^».-i - 2 C ) r o = C - i [i - (i - 2~-~-~~)m] 

< C _ _ x [ i - ( i - « . . 2 - ^ - ) ] < C 

= 2mC,tT~1. 

So by condition (i) for n > m 

, - j__d._ ,_ r _ £ _ - _ _ . _ 
»-+x+ |y - _|" --+*+ C0(x,„)-i 

If y < _, then y g -no,2.-i and _ e -n0i2j. Thus, since m is odd, T(x,y) = 
-C0_i + (~ - y)m- Now as above 

0 > (_ - y)m - C - i > ( C - i ' 2 C ) m - C,~i 

and hence \T(x,y)\ < C0-i ~ ( C - i - 2-n0)
m. So by the same argument as above, 

\T(x,y)\ lim •,' = 0 for n > m. 
_,->__ \y -x\

n 

{ 0 if j is odd 

„ m - l _ • • C-i lf - 1S even-

If _ < y, then _ £ /„0,2_-i a»d - e--n0,-.. Thus 

|T(_,y)| = |Q_?i(y-a-„.0 ._)-(y--)m | < I C - - ^ - ^ " ^ ™ 1 < C - i - ( - - - O m 
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and proceeding as in the first part of the previous case yields lira '—r- ~ 0 If 
»-n!+ \y - x\n 

y < x, then y G In0,2j~i and x E Ina,2j- Thus since m is even, 

\T(x,y)\ = \ - CA(V - o».J-.1) .J-(l/ - ^)ml = IC„-\(an„,i„„.t - y) - (x - y)m\ 

<\(£n0-l-2tnJm-eZ-l\ 
= C - l - (^n„-l - 2C„)m 

and proceeding as in the second part of the first case yields lim -—-^— = 0. 
»->*- \y-x\n 

Therefore in all cases if n > m, then 

lim /fa) ~ / W - ( ^ - * ) / ' W - f a - * ) " * = 0 
v^x (y - x)n 

Consequently if m is odd and m > 3, then f(x) = 0 (because each an,j = 0) for all 
x e H and hence / '* ' = 0 on if for all fc >- 1. Moreover /j(:r) = 0 if j ^ m while 
/m(:r) = m! for all xeH. 

On the other hand if m > 4 is even, then m' = m - 1 > 3 is odd and letting 
/?' - = o „ j we have f(x) = Y, fl'nj ', that is, our earlier argument for odd m's 

n6N 

shows that (f')'(x) = f2\x) = 0 for all x <E H and hence / ( fc+1)(x) = 0 for all 
k >- 1. Therefore /"(a;) = 0 on if and hence /(fc) = 0 on H for all fc J: 2. Moreover, 
as above, /j(.'f) = 0 if j 7- m while fm(x) = m! and we also have (f)j(x) = 0 if 
j ?£ m - 1, while (/ ')m-i(z) = (m - 1)! for all xeH. 

The preceding example shows in particular that for n >• 3 the nth ordinary and 
the nth Peano derivatives can both exist and be different everywhere on H for some 
perfect sets, H. The case n = 2 proves to be quite different as the next theorem 
demonstrates. For example it shows that the second ordinary and the second Peano 
derivatives can differ only on a countable set. 

Theorem 2. Let H C K be perfect, let k G N with k >- 2 and let f e PDfc(ff). 
Suppose 0 <,i < k with k — i even and put 

Ei = {x e H; ifi' +f<k or if i' + f = k and %' > i, then 

(/ ( i , )) (x) exists and = f{i'+i'](x) and 

Then Et is countable. 



P r o o f . For rational numbers a and j3 with a > /. and for n 6 N let 

E^f = (xe H; (f(i')):j,(x) - fii'+j')(x) for i' + / < k, 

(/ (°) t_ i,(a;) = / (* )(x) fori < » ' < „ , 

i „ w , . ^ (/ w ),.(*), >.i^ _______ •*-< 
| / w ( y ) - _ _ , — j j - — ( J t - ^ ^ - ^ T i j j l i ' - a f r 

for y e _f, |y ~ x| < i , and/(*)(..) > _ > / . > (/ ( i ) ) f c _ i (_)}. 

The theorem will be proved if it can be shown that E"f is an isolated set. So 

suppose to the contrary that x is a non-isolated point of E"f. Let _ > 0 and select 

y e E°f with Is. - _| < ;_ such that for i < i' < k 

i * _ i ' ( f ( i , ) ) (a-) , 
(3) /«(!/) - E , (y - *) ' < % - a.*-". 

j=o J ' 

Since both x and y belong to E*f, 

*-* ( / W ) (x) 
(4) 

jr-O J ^ * 

and 

(5) Иw-E^-И<S-^ ^ ( / ^ 
j ! v " I ~ 2 ( A - . ) ! ' 

For u e H put 

ff(«)=/(«) - E ^ r ^ ( « - * y = /(«) - ft.-) 
3=0 J ' 

where ftis a polynomial of degree no more than k. Then pW (x) = 0 for j = 0 , 1 , . . . , k 

and for 0 < i' < k 

/)(„)_ЯW-g!ÍÍҘî)(!1_гľ 
i=o J-

Using the assumptions in the definition of E°f and (3) for i < i' < k we have 

(6) | s ( , < ) (v) l<e | l .-~. t -* ' ' . 



Again using the definition of E°J and (4) we infer 

„ k , w + _ _ _ ^ _ _ _ , , . , M < 5 ^ b . , „ . 

Since h is a polynomial of degree no more than k, by (5) we have 

< * - / * . .*-• I (.v, 1 ( , I M *.5i(s(i)),(») + C«(i)),(»)/ „. 
-~\y - _|*-' > 5

(,>(_) + ftw(x) - N/J J—~ (x - y)3 2(4 

.^-fЩ&ь-Ą 
(using (6) and that ( g w ) .(y) = g{i+j)(y) for I < j < k - i) 

>|o-.<o(v)__^__^(_.tfH 
I (K —i j . I 

i = i 

I ( o ( i ) ) (v) I 

> j - _ w (y) - - ( f c _ 7 } j (» " »)*-' - e(* - i)\~ ~ vf-'-

Since (</«)*_.„-) = ( / ( i » ) i . i ( } ) - / w W , we obtain 

2 (^Ii)i ly - * ! * " ' + e ( * ~ ON - »i*_ i 

I « ^ _f__\___j__-f{k){x), .*-<! 
> - < ? w ( y ) 7 7 — ^ , - (* - y)k * • 

I (h — t). I 
Using (7) we have 

<*-? i i ^ J w ^ (/w)*-,(*)-t( fc)(*), V.-.I 
_ ? F ^ -*' > r f e ) ( * 3 i ) ! — ( " - *>* |-

Adding the two preceding inequalities together, canceling and keeping in mind that 
A; — i is even we obtain 

(8) (a-0)+ e(k - i)(k - i)\ > |2/W(„) - (/«),_.(j/) - (/ ( i ) )„_,(x) | = A. 

On the other hand x, v 6 E"'f implies 

/<*>(_) > a > 15 > (f®)kJx) and (i > (/«),_.({/). 
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Hence A > 1(a-/3) and this contradicts (8) when e is small. Thus E°f is countable. 
In a similar fashion the set resulting from JS"'f by reversing the inequality between 

a and 0 in the definition is also clearly countable. This observation concludes the 
proof. D 

The next theorem shows that if i = 0 the set defined in Theorem 2, besides being 
countable, is scattered when / is k + 1 times differentiable in both senses. 

Theorem 3. Let ken be even and let / G PD*+1(.ff). Set 

E = {x e H; ifi + j<korifi + j = kandO<i, then(/'*') .(x) exists and 

= f<i+i)(.x)aadfk{x)?fW(x)}. 

Then E is nowhere dense in each 0 j£ F C H with F perfect. 

P r o o f . By Theorem 2, E is countable. Let 0 # F C H be perfect. Suppose 
there is an interval h such that F n h # 0 and F n E is dense in h n -F. Since /A + 1 

is a Baire one function, there is an interval h C I\ and an M £ (0, co) such that 
I2nF =£ 0 and |/*+i(x)| ^ M for each x e i 3 n F . By the Baire Category Theorem 
there is a 5 > 0 such that 

/Cj = •{ x € h n F ; y 6 ff and |x - y\ < 5 implies 

•fit*) 
4+1 

i=o J 

is of the second category in h n F . Also there is an interval h C h with J3 n F ^ 0 
such that ifi is of the second category in every subportion of h n F. Since E n E is 
dense in /3 n F, we may select x € h n F n JS. Let e > 0. For y e E, y sufficiently 
close to x 

(9) \m-J2&P-(V-x)i\<e\v-x\k 

I i=o J ' I 

and for 0 < i < k 

(io) \f(i)(y) - E J (y-*y\ <ei!/-xi*-<. 

Since y e E, (10) may be rewritten as 

( i i ) | / w ( y ) - E - - - 5 - - - ( y - x ) 3 ' | < e | i , - x | * - v 



As in the proof of Theorem 2 for u € H let 

p(u) = / ( u ) - £ - - ^ _ - ( u - a : ) ' . 
j=o }' 

Then gW> (x) = 0 for j = 0 , 1 , . . . , A;. Since x € E, (9) implies for y 6 f. sufficiently 
close to x 

(12) U ) + / W ( a ) " / * ( 3 ; ) ( - - y ) * | < e | y - a ! l ' ' . 

Moreover for 0 < i € k 

ЃЧVÌ^ҐЧУÌ-E^^ІУ-XУ 

So (11) and the assumption that x e E imply |_-(i'(?/)| < s|y — a;|fe—*'. Also \g^(y)\ = 

|yW(y) _ fW(x)\ < e for y sufficiently close to x since /( fc+1)(a;) exists. Because 

g — f is a polynomial of degree at most k, for j/ € I-j sufficiently close to x we have 

I j=o •?' I I i=o •?' I 

Thus by (12) 

" • ' s - 0 ) ( y ) . : - V Г ^ Í ( * ) - £ - - Ä - - V ) 
. = 0 

l_______(I_s).l_j5(ï)+__ţ__) ,-_„,. 

i = i j ! ' " ' ІÍA + I)! 

| / W ( a ; ) - / f c ( a ; ) | , , . , ,,. l t Л 1 
,„, V '\\x - y\k - є\x - y\k - e\x - y\k Vj -

M 

(fc + 1) 
•Ix-yГ1. 

Dividing by\x-y\k, using that 3/ can be chosen arbitrarily close to x and that e was 

arbitrary we obtain an inequality which contradicts fk(x) ^ f^(x)- D 



4. A POROSITY CONDITION 

In this section we introduce a condition on the set H sufficient for the existence 

of a function in NPD t(fl r) for which /W = fk fails to hold on a dense subset of H. 

We show that in some sense the condition is necessary. 

Definition 2. Let H C R, let 0 < 7 < 1 and let x e H. Then H is 7-gap porous 

at x means there exist sequences ai < a2 < ... < at < ... < x < ... < b{ < ... < 

b2 < bi such that [a2t+i, a2e+2] n H = 0, [b2t+2, b2t+l] n H = 0, for I e H U {0} 

-y\x - o2«+i| < |a2f+2 - a2«+i|, 7l^2«+i - x\ <. |62*+i - 62^+2! 

and 
,. |o2«+i — a2i\ 

= 0, 
-Ъ2t+ 

The first condition asserts that [a2t+i,a2t+2} is at least a fixed portion of the 

interval [a2t+1, x] while the second condition can be shown to be equivalent to stating 

that the length of [a2t,0.21+1] divided by the length of [02/, 1] tends to 0. Analogous 

statement can be made concerning the sequence {bi}. These remarks are expressed 

in a very useful way in the following proposition. 

Proposition 4. Let H C R be perfect, let 0 < 7 < 1 and let x e H. The set 

H is 7-gap porous at x if and only if for each e > 0 there is a S > 0 such that if 

l/i > 2/2 6 H with \yi — x\ < 8 and either yi < y2 < x or x < y2 < y 1 ; then we have 
\y2-yA . I3/2 - y i | . 

> 7 or <. e. \x - j/i I \x - j/i I 

The proof of the proposition is standard and hence is omitted. 

T h e o r e m 5. Let H be a perfect set, let k € N with k > 2 and for each n e N 

iet £ n e H. Suppose for each n € N there is a 7„ G (0,1) such that H is 7n-gap 

porous at z„. Then there is an f e NPDifif) such that for each n e N we have 

f(k)(xn) # fk(xn)- la addition, for all n we can also insist that i + j < k implies 

(f(i))j(Xn) = f{i+j)(xn) and0<i<k implies (f(i))k-i(xn) = f<-k)(xn). 

Before proving this theorem we remark that given a 7 6 (0,1) it is easy to construct 

a perfect set H and a dense subset {xn; n e M} of H such that H is 7-porous at 

each xn- Then Theorem 5 provides a function, / , which is in NPT)k(H), Since 

{xn\ n 6 M} is not scattered, by Theorem 3 / cannot belong to PDk+i(H). 
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P r o o f . For each n € N let an,t f xn, 6„,f \ xn such that for each £ 6 N we 
have 

7„|i'n - a„,2£+l| ^ |a„,2«+2 - On,2f+l|> 

7n|b„,2f+l - xn\ ^ |b„,2«+l - 6„,2.'+2l 

аnd 

,. |a„,2c+i -a„,2<| 
hm • r = 0, 

<-+oo |o„,2<:+2 -a„,2<+i| 
,. |6„,2£ - 6„,2<+l| „ 
hm -J—: ~——- ~ 0. 

<-+oo |0„,2f+l - 0„,2<+2| 
Further assume, as we may, that \xn — o„,j| ^ 1 and |6„,i — x„| < 1 for each 

n € M. For £ € N U {0} set la,n,e = K,2£+1,a„,2<>+2], h,n,t = [6„,2i+2,&„,2m], 

Ja,n,o = (-oo,o„,i), Jb,n,o = (&„,i,oo) and for £ e N set Ja,n,e = (an,2e,an,2t+i) and 

Jb,n,t = (b„,2£+i, bn,2t). Since H is 7„-gap porous at xn, for £ e Nu{0}, Ia,n,e^H = 0, 

h,n,e n H = 0, 7„|x„ - a„,2£+i| < \h,n,t\, 7„|b„,2m - xn\ < \h,n,e\, and 

limiH+!7M=o-
- <-+<x, | / 0 , „ , . | | / t > „ , . | 

For each ti € N let o» = - . Then T; —- < oo. Fix n 6 N. We define 
2n n£N 7„ 

/ (n ) : R -+ R as follows. First put f(n)(xn) = 0. For i e N U {0} the function /(n) 

is constant on Ja,n,« and on Jb,n,t and is linear on h,n,t and on It,n,t- In addition 

and 

/(n)(a„,2ť+2) - /(n)(0„,2ť+l) = Qn((a„,2ť+2 - Xn)
k - (an,2ť+i - x„)k) 

f(n)(bn,2t+l) - /(n)(Ь„,2ť+2) = an((Ь„,2ť+l - Xn)
k - (b„,2ť+2 - Xn)

k). 

Finally assume that f(n) is continuous at xn. Hence f(n) is continuous everywhere. 
Since \xn - o„,2i+i| ^ \h,n,i\/lln and since |b„,2£+i - xn\ < \h,n,e\/ln, 

\f(n)(anM+2) - /(n)(a„,2£+1)j < a„|x„ - a„, 2ť+ 1 |* s: -~\h,n,t\
k 

|/(n)(Ь„,2ť+l) - /(n)(Ь„, 2 ť + 2 ) | ^ an\Ьn,2Є+i - xn\
k < Ş|Л,»,í |*-



Let x,y e U (Ja,n,e U Jb,n,e) with x < y. Let h = ?/ - x and let {£i = 
<€NU{0} 

[a,di\; i 6 Af} denote the set of intervals Ia,n,e and h,n,t contained in (x,y) where 

M CH. Put hi = \Li\. Then yj — ^ 1 and since 0 ̂  -^ ^ 1 implies 0 ^ - 4 ^ - ^ , 
i£AT h h hk h 

we have yj (^-) <, 1; that is, yj n* ^ /ifc. Because f(n) is continuous at x„ and 
ieM ieM 

constant on each Ja,n,e and on each Jb,n,e, 

(13) \f(n)(v)-f(n)(x)\£^ty-x)k. 

Since if C U {Ja,n,e U Jb,n,t), the above inequality holds for a;,y € 77. 
^6NU{0} 

For x e H put / (x) = yj /(?x)(x). Since /(n) is constant on Ja,n,t and on Ji,n,i 
„€N 

and since |a,-„-a„il ^ l a n d | h n i - a ; n | <. l.from (13) it follows that |/(n)(x)| <. - 4 
7n 

for all x e H. Hence the sum defining / converges for all x 6 77. 
Let x € H\{xn;n e H}. Then for each n e N there i s a n { „ € N U {0} such 

that x e Ja,n,en U J(,,n,c„. Let JV0 6 N. Since /(n) is constant on Ja>n,< and on 
J6,n,«> there is an open interval U such that x £ U and f(n) is constant on {/ for 
n € ( 1 , 2 , . . . , 7V0 - 1}. Then for yeU by (13) we have 

(/(n)(*)-/(«)(y))U £ ^ly-^lfc-

Since yj —£• < co, by definition it follows that f is k times Peano differentiable 
n£N In 

at x and that fj(x) = 0 for all 1 <. j <. A;. In particular since A; ̂  2, we have 
f'(x) = f1(x)=0. 

To complete the proof it suffices to show that for each n € N, / is k times Peano 
differentiable at xn with fj(xn) = 0 for 1 <. j < k and fk(xn) = ank\ because then 
/ ' = 0 on H and hence /(fe ' = 0 on H while /jt(a;n) = ank\ ^ 0. First we show that 
for each n 6 N if f(n) is A; times Peano differentiable at xn, then so is / and indeed 
with the same Peano derivatives. To this end fix n0 € N and choose N0 > no. Then 
there is an open interval U such that xno € U and f(n) is constant on U for all 
n <, No — 1 with n 5̂  no- Then for y G U 

f(y)-f(xn0) = f(n0)(y)-f(n0)(xno)+ £ (/(„)(•/) - /(n)(a;no)). 

n^N0 

Thus 

!/(») - /(*».) - (/(no)(y) - /(no)(-^,)) | < £ ~ | y - * „ / • 



Therefore f'(xno) = f'(n0)(xn„) and for 1 <, j < k we have fj(xno) = fj(n0)(xnu) 
whenever the right-hand side exists. 

Finally it will be shown that for each 116N, /(«) is k times Peano differentiable 
at xn with f(n)j(xn) = 0 for 1 <. j < k and f(n)k(xn) = ank\. Now fix n 6 M and 
let £ > 0. Because 0 < yn < 1, there is K € W such that (1 - j n ) K < e and there 
exists £0 6 N such that I" > 0̂ implies 

\Ja,n,e\ < \h,n,t\j< and |J6,ni<| < \h,n,t\jc 

Let x < xn with x e H so close to a;„ that if ,T G Ja,n,e<, then f ^ fn- Set 
t = \xn — an>2e'+i\\ the distance between s„ and the right endpoint of Ja,n,t'- Since 
|'/a,n,H < \Ia,n,e'\j; < tj<, we conclude that t < \xn-x\ < \Ja,n,t'\ + t < \la,n,t'\ji + 
t <t(l + j ^ ) . Since \xn - a„,2£'+1| ^ \Ia,n,e>\hn, we have 

\xn - an,2£'+2| = \xn - an,2V+i - (an,2t'+2 - a„,2£'+i)| < t - jnt = (1 - 7„)t. 

Moreover 

\xn - an,2t'+i\ < (1 - 7n)|zn - an,2«'+3| < (1 - 7 » ) K - a„,2 i .+ 2 | < (1 - -yn)
2t 

and in general 
\xn-a,,h2{e'+K)\<.(l-ln)Kt<et. 

In the interval (an,2<»+1,an,2^,+K)) there are K intervals /„,„,<; namely /„,«,«', 
h,n,t'+i,. • .,Ia,n,t>+K-i- Since \Ja,n,i\ < \h,n,t\j( for all f = f + 1,1' + 2,...,£' + 

it" — 1, and since for these same values of I we have |/a,n,<| < t, it follows that 
l^o,n,«| < ^< and consequently 

<'+K-l 
E | J a , „ , . | < ( A - - l ) ^ < e . . 

fcf+1 

The function f(n) changes by an((an,2<+2 - xn)k - (an,2t+i - xn)
k) on /„,,,,(? = 

[an,2£+i,an,2^+2], later it will also be useful to keep in mind that the sign of this 
t'+K-l 

change equals that of (~l)h+1. From \xn - an,2(e'+i<)\ < et and ^ l^a,n,<| < et 
e=e+i 

it is easy to see that (Recall that t = \xn - an,2e'+i\-) 

ant
k > (-l)k+1(f(n)(anfi{t'+K)) - f(n)(an,2e-+i)) 

l'+K-i 

= ( - l ) * + 1 E /(n)(o»,2 .-+a)- /(n)(°- .«+ .) 
t=i* 

e'+K-i 

= ( - - )* E «»((o»,«+i - *»)* " (a»>«+2 - *»)*) > « » « ! " 2eW*-



From (13) and from the continuity of f(n) it follows that 

\f(n)(anMl,+K)) - f(n)(xn)\ % ^\an>2{l,+K) - xn\
k < 2 |e* .* . 

Since f(n) is constant on Ja,n,t', we have f(n)(x) ~ f(n)(an,2f+i); hence 

ant
k + ^ektk > (-l)k(f(n)(x) - f(n)(xn)) > an(l - 2e)Hk - °^eHk. 

Using the above inequality, t < |x„ — x\ < (1 + j^)t, and the fact that the above 
argument is valid for any e > 0 one can easily verify that 

f(n)(x) - f(n)(xn) —• y -—\,n ->• an as a; -4 x„, a; < a;„, and a; e if. 
( i - 1 „ ) * 

A similar argument is valid when x > xn. This implies fj(n)(xn) = 0 for 0 ^ 
j < k and fk(n)(xn) = ank\ ^ 0. Therefore for each no £ M we have f'(xno) = 
/'(no)(a.'no) = 0, / J ( I „ 0 ) = fj(n0)(xno) = 0 for 1 < j < k, and fk(xm) = 
A(no)(rE„()) = anak\ # 0 = / « ( i n ( ) ) . D 

Theorem 6. Let H be a non empty perfect set and let f 6 NPD^(JI). Assume 
that fj = /W) onHforall2<.j^k-l and let 

E = {x £ H; ifi + j<k, orifi+j = k and i > 0, then 

(/<%(*) = f(i+i)(x) and fk(x) ? / W ( - ) } . 

Suppose J3 is dense in H. Then there is a (non empty) portion I OH of H such that 
for each x £ I HE there is a 7 6 (0,1) such that H is 7-gap porous at x. 

The above theorem seems to be too restrictive, but if E is not dense in H, then we 
can still obtain some information about its size. It is clear that the union of dense 
in itself sets is dense in itself. Let EQ denote a maximal dense in itself subset of E 
and JJo be the closure of J5o- Then E \ H0 is a scattered set, and our theorem is 
applicable to Ho- Here we also point out that the assumptions in the definition of the 
set E are not unnatural either. If fk(x) # f^(x) and x g E, then there is a k' < k 
and 0 < i < k such that for g == /W the point a; belongs to a set of non-coincidence, 
E', which is defined analogously to E by using g and k'. This means that one should 
think of E as an "exact" non-coincidence set of order k. 

Theorems 5 and 6 imply that J?2 can be dense in J? if and only if the set of gap 
porosity points is dense in H. Furthermore the set {/(fc) ^ fk} can be dense in H 
for some / £ NPD^(iJ) if and only if the set of gap porosity points of H is dense in 
H. 
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P r o o f . By Baire Category Theorem there is a portion I n H, a g0 ~7 °, an 
M' e (0, oo) and a set F C I n H dense in I n if such that for each a; g j p B we 
have |/jfc(:r)| <. M' and for each x £ F and each j / 6 if with \y - x\ < S0 

(14) |/(y)-E^(s/-^U!s/-^lfc. 
1 J = 0 J ' I 

Let p £ J n £• As in the proof of Theorem 2 for a: € if we let 

, , „ , A / ( i ) ( p ) , w 
9(x) = f(x) - 2_^ —r^—(a,' - pY • 

j=o •?' 

Then gU)(p) = &(p) = 0 for all j = 0 , 1 , . . . , / : - 1, S(fc)(p) = 0 and gk(p) = 
A ( P ) - /ffc)(p) 5̂  C In general for each y £ if we have <?*,({/) = /t(j/) - /W(p) and 
hence | ^ (y ) | <. M' + |/(fc '(p)| = M for all y 6 I n if. Moreover since p — / is a 
polynomial of degree no more than k, for x,y £ H 

gto-Z^iv-tV^m-i:^-*)*-
3=0 ' •?' 3=0 J ' 

Thus by (14) for x € F and j / e if with \y - x\ < 60 

(15) U ) - E - - - - ( » - ^ | < | y - s i * . 
I 3=0 •?• I 

L e t A = [n,Jl L i ' " a i ld set 7 = r 4 j . We will now show that if is 7-gap 
V2(ikf + fc!)/ 1 + / i 

porous at p using Proposition 4. 
Let e > 0. By hypothesis, g^x) = g(i)(x) for each x 6 H and 1 <. j < k and since 

p € E, if i + j < k or if i + j = k and i > 0, then (5W) .(p) = ^ ^ ( p ) - Thus there 
is a 0 < 6\ < <50 such that y £ H, \y -p\< $i and 1 <_ i < k imply 

L(y) - J2 ^~Sl(y ~Py\< e.|y -P|fc^ 
I 3=0 3- I 

where e. = f, (^y1)'""1- Since g(i)(p) = 0, for j = 0 ,1 , . . .,fc and | . / - p | < 5, 

we obtain 

(-«) lu . - (y) l^«l i / -p |*- i . 



Since gj(p) = 0 for j = 0 , 1 , . . . , k - 1, there is a 0 < <52 < S\ such that y ' H and 

|y ™ p| < <$2 implies 

(17) | « / ( y ) - - * ^ ( y - P ) * | < e * | y - p l * 

where e_ = -.—— — ~ r — . Let x,y e H with \p - y\ < 52- Further suppose 
(1 + (1 -y)k~1)2k\ 

y < x < p. (The argument for p < x < y is similar.) In addition assume that x € F. 
By (15), (16) and (17) 

| - ^ | | < V - P ) * - ( * - P ) * I 

< I^p(y-P)* -9(V)\ + \9{v)-9(x)\ + \g(X) - £*M(x_p)*| 

<e„|y-p|* + U ) - ^ - - M t o - x y | + ^ J a ^ | y - x | ^ + _ „ | _ - P | * 
• j=o J ' I i=i -'' 

/ . fc . ,1. v-^ sAx — p|*-J '|« — _|J" M . ,_ , ._ 
< e*(p - y)* + |y - _|* + VJ -ii - L _ J _ _ _ L + _ _ | j , _ _|* + Ek(p _ x ) ~ . 

Since 

I * I 
Id, _ p ) * _ (_ _ p ) * | _ |j, _ X | T_(V -pf-^x -py-1 

i _ = i I 
k 

= {--y)Yl{p-y)k~i(p--)i-1, 

\^\(--v)ib->-v)k-i<p--)i-1 

(18) 

<M(P-y)* + (P-)*) + E ^ ^ ^ 
i=i 

Suppose e < | 5 f < 7- Since p —y = p — x + x — y < p~x + "/(p~y), (1 — "f)(p — y) < 
(p - x). So for j = 1,2, . . . , k - 1 

e_ (P - _)*-''(_ - y>'' < .,(_ - y)(p - y)*-j(p - y)>-V_ 1 

(19) ' <e i (x-y ) (p-y )* - J ' (p - .^ ' - 1 ( r ^-y" 1 

= l_iMli!(_-y)(p_./)*-i(p __),--i. 
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Also 

ek ((P - vt + (P - x)k) + ( - - ^ ) (x - y)k 

,f(p-x)k-1 (p-x)k~u 

(x - y)(p - s)--1 + ђgH(„ - y)(p - xf 

(x - y)(p - _)* ] _ _ _ _ . . , . _ . . . . , . _ ~ . - l 
k\ 

S u m m i n g inequal i ty (19) mult ipl ied by 1/j! for j = 1 , 2 , . . . , k - 1, a n d a d d i n g t o i t 

t h e above e s t i m a t e c o n t r a d i c t s inequal i ty (18). T h u s ^ 5 J . f o r 2 5 s - 1 7- Since F 

is dense in _" n H, we m a y a s s u m e t h a t l e l f l i . . So by P r o p o s i t i o n 4 t h e set # is 

7-gap p o r o u s a t p. D 
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