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Abstract.” Sufficient conditions for the existence of solutions to boundary value problems
with ‘a:Carathéodory. right hand side for: ordinary. differential systems are established by
means of continuous approximations.
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1. INTRODUCTION

In this-paper we prove theorems on the existence of solutions to the differential
system

(1:1) 28 = gt e e
satisfying the boundary condition
(1.2) Vz)=o0,

where V. is a continuous operator -of boundary conditions and o is'a zero point of the
kn times

——N—
space. R*™, 0 =(0,0,...,0).

We generalize the results of [2] where the second-order differential systems with
L*°-Carathéodory right-hand sides are considered. ‘Here we consider the k-th order
differential ‘system (1.1) with a Carathéodory-function f. The problem (1.1),7(1.2)
is-approximated by a sequence of problems with continuous right-hand sides. The
existence of solutions of (1.1), (1.2) is.obtained as.a consequence. of the existence of
solutions of these auxiliary problems.
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Let ~00 < at'Sia < b < U < oo, T = [a,b], I = [a% 0], R = (~o00,00), n,k
natural numbers. R™ denotes ‘the Euclidean n-space as ‘usual and [z] denotes the
Euclidean norm. C*(I).= C¥([a,b], R™) is the Banach space of functions u such that
u!®) is continuous on I with the norm

lulls = masc (), 'l e 0,

where
llull = max{Ju()ll, t € 1}.

Let C (1) denote the space Co(I). C33(R) = Cog (R, R™) is the space of functions
suchi that for each 1€ {1,2,.7.} there exists a continuous.on ® function @) and
the support of the function ¢ is a bounded closed set, supp ¢ = WW
Finally, let 1:<'p < 00, let L2 (1) = L2 ((a, b), R™) be as usual the space of Lebesgue
integrable functions. with the norm

= ([ b ool ac)

let-us denote LP(I) = LY(I),"L(I) = L}(I).

Definition 1.1, - A function f: 1% x R* — R" js a Carathéodory function
provided

(i) the map y.+ f(t,y) is continuous for almost every t € I*,
(i) the map # = f(t, ) is measurable for all y € R*»,
(iii) “for each bounded subset B C R*" we have

1) = sup{llf (¢, y)ll, y € B} € L(I").

Throughout the paper let us assume f: 1% x RA™ = R™ is a Carathéodory function
and V.: CF=1(1) - R is a continuous operator,

If f“is continuous, by a solution on I to the equation (1.1) we mean a classical
solution with a continuous k-th derivative, while if f is a Carathéodory function,
a solution will mean a function 2 which has an absolutely continuous'(k — 1)-st
derivative such that z fulfils the equality &) (t) = F(t, &{t), 2 (t),. ., 5= () for
almost every 1€ 1.

By 2y where z,y € R™ we mean a scalar product:of two vectors from R™
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2. 'REGULARIZATION OPERATOR

Let w.in CT§ be-such that
1
w(t) >0 Vte R, ‘suppp=[-1,1], / () dt = 1.
==l

For an example of such a function see 4], page 26.
Instead of problem(1.1), (1.2) we will consider the equation

(2.1.) 2B = fo (kD)

with the boundary condition (1:2), where € is a positive real number and Vy € RF"
we have

1 b by
Feltyy) = g/ﬂ_ @(—;)fm,y)dn

or-equivalently

1 g

fety)= / ft—en,y)en) dn,
=1
- fltyy) te€latb?]

where f(t,y) = {0 £ ot b]

The following theorem is proved in [3] (a simple form for n=1 is presented):

Theorem 2.1. Letu € L2(I%), where 1 < p < o0, and for £ > 0 let us denote

=1 [ o (S utman= [ atc- engtnan,

u(t) t€far, b}

where T(t) =
0 1¢feb)

Then
(i) Rou.€ C(R) fore >0,
(i1) 11%1, [Rew— 1)y =0,
£ =0+

Lemma 2.1. Let B be a bounded subset in 8. Then the function f.(t,y) is
continuous on I* x B for every g >0,

Pirioof.- Continnity of f. follows from the theorem on continuous dependence of

the integral on a parameter. a
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Definition 2.1. . Let w: I* x.[0,00) = [0, 00) be a Carathéodory function. We
write w € M(I* x [0, 00);[0,00)) if w satisfies:
(i) For almost every ¢.€ I* and for-every di,d, €.[0, 00), di < dy we have

w(t,dy) < wlt, dy).

(i) For almost every £-€ I* we have w(t,0):= 0.

Definition 2.2.- - Let B be a compact subset of R*?, 7 € R, 4 € [0,00) and
&> 0. Let us denote by -w(7,6) the function

w(7,8) =mm&{l[7(7‘,1‘1,...,zk) ~?(T,y1,.”,yk)“;
(e ), (s ye) € B fla —wll <6, i =1, .k}

and by w; (7, 6) the function
b

welrd) =2 [ 0T um g0

or equivalently
1
welr0) = [ wtr—en d)etnan.

Lemma 2.2, Let B be a compact subset of ®RE™. Then for every ¢ >.0
(i) w, we € M(I*x:[0,00); [0, 00));
(i) E!i!é}ﬂ fe(ty) = f(t,y) ~and £§30n+ we(t,8) = w(t,8) for-ally € B, 6 >0 and

for almost every t € I*;
(idi) forevery (21, -, @k )y (1, .., yx) € B and for almost every t € I* we have

We@an, o mny = felboyn, . ue) =~ f 3w+ Gy uell
Sweltymax{flos = yilli i =1,2,.. kD) +wtmax{[les ~ vl i = 1,2,.0..k});

1
(iv) 5]_‘1;&’/” (fe(r,2) — (7, @) dr =0 uniformly on'T xB.
Proof,
(i):Since f(r,.) is a Carathéodory function and B ‘is-a compact set, for almost
every 7 € I* we have 0. € w(r,§) £ 2/;(7), w(7,.) is nondecreasing and continuous,

w(.,4)-is measurable and
51_‘,’5‘+w(7’ 8)=0.
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It ‘means that w(7,0) = 0 for almost every 7€ I*. Therefore we can see that
w € M(I* x[0,00);0,00)).

By the theorem on-continuous dependence of the integral on a parameter, w,is'a,
continuous function for arbitrary >0, Therefore w, is a Carathéodory-function

such that w,(7,0) = 0 for almost every 7€ I*. I{-6, < d,, then for almost every
T eI

—
o
&

0.5 w(1,01) S w(r,dy)

hence for almost every 1€ I*

0g %so(T _1Z)w(n,f51) < %w(r — ")w(ngéz)

T c
and therefore
(2.3) 0 S we(7,01) S we(7,8).

It means that we € M(I*x [0,00);]0,00)).

(i) This statement. is ‘a consequence:of Theorem 2.1 which asserts that our as-
sumption implies for every 4 >0,y € Bandi=1,2,...;n

1
Iim/ lwe (7,8) = w(r,0)|d7 = 0,
-1

£m0+
1
S [ 1futr) = Blar =,
where fi, fe; ‘are the i-th components of the functions' f, f., respectively.
(1) Obviously for flz; — il € 6,i=1,...,k
[l feCt oz vnmn) = Fe(tyn, o u)l]

I -
Llw(n)(f(t—en,rx,--~,xk) =Fe—enu.. ) dn“

!

1
< [ IFe = om0 =T em g vl d
1
< / w(t = en, B)el) dn = wi(£,8).
-1
Now-it is easy: to see that the statement (iii) of the above lemma holds.
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(iv) - We will prove that for every (¢,) € I X B, z = (21,...,z), and every e > 0
there exist o > 0 and a neighbourhood O,z of (t, ) in the set 7'x B such that for
every 0 <'e < g and for every (t',4) € O(rz)s ¥ = (yrs- -1 Ys)s

“ / ) ar| <.

By (i) and by the Lebesgue dominated convergence theorem there exists £, > 0
such that for every 0.< e <&

b
[ 1m0 - fraar <5
Since w € M{I* x [0,00); [0,00)) there exists:such a8 > 0 that

b
/ w(r,d)dr <'§.
a
By (i) and the Lebesgue dominated convergence theorem there exists €' > 0 such

that for every 0 <& <'es

b
/ welrd)dr <5

a

Let us denote Oy = {(t9) € Ix Billas —will <6, 1= 1,2,.. 7k} and ep =
min{er, g2} Now for every 0 <€ < &g and for every (t/,y) € O(L_m) we have

H /a (Je(1:9) = f(r,9)) dr

< ]] / ! (£o) - 1)) ar)

+ H /:/ (e (rs@) = folr.y) ~ f(r2) + £(ryy)) A

|
< /& £ 2) = £(r, ) dr + /bws(m) fu(n8)dr

<g+itise

£

This means that the system of the sets {O(m)}([ \yeixn COvers the compact set

I'x B and therefore there exists a-finite subsystem which covers the set. I x B and

therefore the statement of (iv) holds. o
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Lemma 2.3.  Let B C RE be a compact set. Let € be'a set. of € > 0 such that
the system of functions {¥¢ }ige, ®e: 1~ B, Is equi-continuons and 0. € ¢.

t
Then lir(x)l4 / Te(Ty2e (1)) i= f (T, 2 (7)) d7:= 0 uniformly on 1.
=04/,

Proof. This proof is a modification of the ‘proof of Lemma 3.1 in [6].
Fore € € let us denote

Qe = sup {

L
b = max { §! [ #rato) - strarar

33
l/ felmiy) = flry)dris a < s <1 <0, yEB}»

;aétsh}A

By (iv) of Lemma 2.2
liné ae = 0.

We want to prove
lim 8. =0.
£—0

Let e >0 be an arbitrary real number, ‘Then by (i) of Lemma:2.2 there exists
such'a 6 >0 that

b
/ w(r,6)dr< 3,
Ja
and by (i), (i) of Lemma 2.2 such an'e; > 0 that for every ¢ € €, & < & we have
b
/ we{T,0) dr < %c-
a
Since {@cege, Te = (Te1, .11, 3ex) IS equi-continuous there exists §o > 0.such that

foeilt) =z )| <6 for tym el i=1,.000k [t=7| <0, c€€.

Let 1 be such an integer that [ < < I+ 1. Let us denote t; = a.+ jdp and
Te(t) =z (1) for 15 <t <ty wherej=0,1,...;L. Then

fzes(t) — T ()l < 6

forte I i=1,...;kand e € ¢ and

<+ 1o

” /@ s fe(r, 72 (7)) = f(r,7=(1)) dr

fora <t <bande<eo, ce €.
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Therefore by (iii) of Lemma 2.2 we obtain

“ [:(ﬂ(‘ﬂ 2e(1)) = f{7,2(7))) dT

t
< [ Moo = 10 = £ o) + S

* ” /:(f“'(’*m’f” — Jln Ty dr

b
< / (we (7, 8) +w(r,8)) dT + (1 + Dae < e+ (L4 Dae

fortel,e<e, e €€
Therefore 3. < e+ (I +1)a. for £.< g1, e € €."Since lin}’ a, =0 and e is arbitrary
£
we conclude that lim f, =0, o
e=0

Theorem 2.2. ‘Let f: I* x R5" -5 R™ be a Carathéodory function. Denote by €
the set of positive £ such that for each ¢ € € there exists a solution z.: I C I* — R™
to the problem (2.1:),(1.2). Suppose that 0 € € and that there exists a compact sub-
set B.C R independent of e such that (ze(t), zL(t),. " ,zgk‘l)(t)) € B'is satisfied
for each e:€ € and foreacht €.].

Then -there exist a sequence {e,}%2, and a solution z: T '~ R™ to the given
boundary value problem (1.1); (1.2) such that es € € for all s:€°N, sll,r& es=0,
(z(®), 2! (t), ..., 2% D)) e B forall t € I, slgloloz?) (t) = 20 (t) uniformly on I for

anyi=1,2,..,k~1,and xh}l;xﬁf’(t) =2®) () on I.

Proof. Firstlet us prove that the set {z.}cc e is relatively compact in C¥=(I).

Really, for the assumptions of the Arzela-Ascoli theorem to be gatisﬁed, it is necessary
to.prove equi-continuity of the set {xgk‘"l)}sgg(

Let e > 0 be an arbitrary real number; suppose t;, 4, € I and compute
o
fe=e) - 2 = | [ b0 0]

3

ta ; i

=| [ remwmo. e
1; 1]
s
= ”/ [ H-en 0,20, et an dt“
6 oJ1

12 1 1l
<| [ [yt - emetmana,
ty /1 I
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(). terr

0 ter -“Now for e close t0 0. (¢ < &1, where & is defined

where [3(t) = {

below) we have

t2 ol
/ l/;(t —eme(n) dth]
11

<

ll!(t)dr 1/ ( l,(f—fﬂ)w(n)du—lf(t)) df*

Since I5(¢) € L(I*) then f ly(r)dr is ‘a continuous function, every continuous
function on a compact interval is umfon'nly continuous on that interval, and therefore
there exists & > 0 such that for all {t; ~ {2] < 01 we have

t2
15(8) dz‘ <z

t

By Theorem 2.1 there exists 1 such that for each e € €, 0 < e'<¢e;,
byopl
/ i/ l](t-i"l;)ip(n)dﬂ"l[(t)ldt <3,
PR YT
and therefore for Ve € €, 0 <'e <y, we have

< e

iz 1
[ 16— emetm anar
4y -1

Now for e € €, 61 e

1 / I5( t—en)ww)dndtb

/ / l:(n),o dndti

Let ® = max{y(t),1.€ I}. Then

t/t/ lf(n)w dndi]

/ /l!(ﬂ)édﬂdtl “Itl—izi‘f’/ 1p(n)dn.

1
e
Let 8, = —=%1— “then for |t; = t2| < 62 :we Obtain

® f, Li(mdn’
s pl
/ / l,(z-eﬂ)w(n)dndc]q.
ty /-1
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Let = min{§;, 02} then for:|t1 — 22| < we have
llz () = 2= D (ta)]| <.
This means: that the set {Zc}cce is relatively compact in Ck=1(I).. Therefore
there exist a sequence {es}, 65 €€, €, —:0 and a function z:. 7 —» R™ such that

(z(t),2'(),...,a*=N(@) € B, VL€ 2y 2 in Cy= ().
Now, ‘since z., is the:solution to the equation (2.1;) for £ = £, we have

t.
(24) V@) =280+ / feolry ze (), 2 (1) 5 3D (1)) dr, WEE L.
Using Lemma 2.3 we get
t
oot = 2l (a) + / fra(n), 2 (), 2D () dr,

which means that z is a solution to the equation (1.1).
Since ., uniformly converges to'z in CE¥~1(I), V is'a continuous operator V:
Ch=1(]) = R** and =, is a'solution to the problem (2.1,), (1.2), we can see that

V(ze,) =0,
and therefore for €,'~»-0 we have

V(z)=o0.

It means that 2 is a solution to the problem (1.1), (1.2). (m}

Remark 2.1.:When [,(¢) € LP(I*) in Definition 1.1,'where 1 < p < co (in this
case we speak about an LP-Carathéodory function) we can prove that the convergence
of 2" to £ is in the norm of LP(I*). To prove it we need only to assume in
Definition 2.2

w(r,) = max{[(r, 1, 1) = T, )7
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3. AN APPLICATION
As an example how to use Theorem 2.2 we may consider the equation
(3.1) 2= f(t,z,2")
with ‘the four point boundary conditions
(32) 20 =), a(d) = (),
where 0 <'¢ € d <1. In [1] the following result is proved.

Theorem 3.1, Let f:[0,1] x R*® — R™ be a continuous function and let us
consider the problem (3.1), (3.2). Assume
(i) there is a constant M 20 such that uf(t,u,p) 2 0 for vt € [0,1], Vu € R™,
llull'> M and ¥p € R?, pu=0,
(ii). there exist continuous positive functions A;, Bj, j€{1,2,...,n},

A [0, x B LR B [0,1) x R B
such that
it P S A;(wp,pe, s pio)s+ Byt 1w,y pa, .y Pict),s

where fi=(fi; fa, oo fn)u € R, p € RY, p=1(p1,p2, ..., pn) and for j.=1,
Ay and By areindependent-of p functions.
Then the problem (3.1),:(3.2) has-a solution.

Remark 3.1. From the proof of this theorem and from the topological transver-
sality theorem in.[4] it follows that the solution to the problem(3.1), (3.2) is bounded
in C1{[0,1]) by a constant 901 which depends only on M; A;, B;.

Now we can extend the results of Theorem 3.1 to the Carathéodory case similarly
to [2). We allow discontinuities of functions A5, B; in contrast to [2].

Definition 3,1. - Let k, I be natural numbers, A function f: [ x R* — R! is an
L*°-Carathéodory function provided f-= f(¢,u) satisfies

(i) the map w = f(t,u).is continuous for almost every i € 1,
(i) the map ¢+ f(,u) is measurable for all (u,p) € RY,
(iii) - for each bounded subset B C R¥,

Ls(t) = sup{[Lf(t, )|, u € B} € L=(1),
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where L% is the space of Lebesgue integrable functions with the norm
iflloo = esssup | £l-
tel

Theorem 3.2, Let f:[0,1] x R?" — R™ be a Carathéodory function and let us
consider:the problem (3.1), (3.2). Assume

(i) there is a constant M > O such that uf(t,u,p) 2 0 for almost every t in [0,1],
Yu € R?, Wlu|| > M and Vp € R®, pu'= 0,

(it) " there exist- positive L>-Carathéodory: functions A, B;, where the-index j is
from {1,2,..7;n},

A [0 x RPFSU s R B [0, 1] X RS 5 R,

such that for almost every i€ [0,1]
13t D) < A5 (8w, i, P2y s Py )95 By Py 2, s pi),

where:f = (f1, f2,...,fn), u € R?, p.€ R™, p = (p1, P2, :,Py) and for j =1,
Ay and By are independent of p functions.
Then the problem (3.1), (3.2) has a solution.

Proof. Let f. be an approximated function asin Section 2, where a = ¢* =0,
b=0b"=1and k =2, thatis

1h e
ff(t,u,p)u:g/() w(t n)f(n,u,zﬁ)dm

£

and let:V: C1(]0,1]) — R?™be a continuous operator of boundary conditions V() =
(z(0) — z(a), z(b) —z(1)) . Then
1) for Ve € (0,1), for Vt € [0,1], Yu.€ R™, |lul| > M and ¥p € R?, pu =0 we have

felt,u,plu= (é /Dlw(i;—")f(muw)dn)u =

1 =g

== Lo >
E/G v( . )(f(mu,p)u)dn 0

by the assumption (i) of this theorem.: .

2) Let j€{1,2,. ., n},u € R*, p € R™, p=(D1,P2,.+,Pn),
Ai(u,pr,pa, i pim1) = efﬁg‘i]l’{&(‘:”»m,ﬁz: S pi-1)}
€lo,

348



and

Bi(u,pr,p2, - picy) :essisu)p{Bj(i,u,phpz,.”,Pj.-])},
LtEf0,1

Since A;, B; are L#-Carathéodory functions; A;, B; are obviously continuous,
Now. we have

4 e,
|fe, (6w, p)| = _/_1fj(f/—sn‘u,p)@<n)dn

1
< [ Bte=enuplewdn
Joa

1
< /I(Aj(u,px-,pa,~-v,pj~1)p§+Bj(u,pl\pz,.wm—x})w(n)dn

1 o1
< /erj('U»spleZr»ij»l)P_?‘P(”) d71+/ Bi(u,p1,p2r -, pie )e(n) dn
- -1

= Aj(u,p1, P2, i )P + By (w2 D)

By Theorem:3.1 and Remark 3.1, for-any e > 0 there exists a solution z. to the
approximated problem

(3.1.) 2= folt,z,a))

where z satisfies boundary conditions (3.2) such-that |lz.||;. < 9.
Now all ‘assumptions. of - Theorem 2.1 are fullfiled ‘and therefore there exists a
solution to ‘the problem (1.1),(3.1). [w]
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