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LINEAR STIELTJES INTEGRAL EQUATIONS IN BANACH SPACES

STEPAN-SCHWABIK, Praha

(Received October 29,-1997)

Abstract. Fundamental results concerning Stieltjes integrals for functions with values in
Banach spaces have been presented in ‘[5]. The background of the theory is the Kurzweil
approach to integration, based 'on Riemann type integral sums (see e.g.[3]). It is known
that the Kurzweil theory leads to the (non-absolutely convergent) Perron-Stieltjes integral
in'the finite dimensional case. Here basic results concerning equations of the form

i
2(0) = o) + [ dA@Ie() + 1)~ @)

are presented on the basis of the Kurzweil type Stieltjes integration.: We are looking for gen-
erally ‘discontinuous solutions which belong to the space-of Banach space-valued regulated
functions in the case that A is a suitable operator-valued function and f:is regulated.

Keywords: - linear Stieltjes integral ‘equations, generalized linear differential equation,
equation in Banach space

MSC 1991: 34G10, 45N05

1..PRELIMINARIES ON FUNCTIONS AND STIELTJES INTEGRALS

In this section some basic concepts and results concerning Stieltjes type integration
are collected for-the readers convenience. The presentation is.based on the results
given in the paper [5].

Assume that X is a Banach space and that L(X) is. the Banach space of all
bounded linear operators A: X — X with the uniform operator topology. Defining
the bilinear form B: L(X)x X' = X by B(A,z) = Az ¢ X for A€ L(X)and z € X,

This ‘work was.supported by the grant 201/97/0218 of the Grant Agency of the Czech
Republic.

433




we obtain in a natural way the bilinear triple B = (L(X), X, X) because using the
usual operator norm we have

1B(4,2)llx < [Allexllelx.

Similarly, if we define the bilinear form . B*: L(X) x L(X) - L(X) by the relation
B*(A,C) = AC € L(X) for A,C € L(X) where AC'is the composition of the linear
operators A and C we get the bilinear triple B* = (L(X), L(X), L(X)) because we
have

1B*(A, Ol S NACHKLx) € AL ICH L(x)-
Assume that [a,b] C R is'a bounded interval,
Given A: [a,b] = L(X), the function A is of bounded variation on [a,b] if

k
D lAe) A(“H)HL(X;} <00,

ar(A)=s
A= { -
j=l
where the supremum is taken over all finite partitions
Dia=oap <oy <. <aply <an=b

of the interval [a, b].- The set of all functions A: e, b] = L(X) with varg, 1j(4) < oo
will be.denoted by BV([a,b]; L(X)).

It is easy to. show that if A € BV({a,b]; L(X)) then the function t € [a,b] —

var(e,;j(A4) € R is nondecreasing and bounded for ¢ € [a,b] and it is additive, ie.

var(A).+ var(A4) = var(A
[w]( ) (c:b}( ) {a,b]( )

for any ¢ € [a,0].
For A: [a,b] = L(X) and a partition D of the interval [a, b] define

J

where the supremum is taken over all possible choices.of y; € X, j =1,...,k with
llyillx €1, and similarly
L(X}}

k
S lAles) = Aley-lys

j=1

VA, D) = sup{

k

STlAly) = Al 1))

=1

Y*/i(A, D) =sup {
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where the supremum is taken over all possible choices of C; € L(X),j = 1,:.0k
with J|CsllL(x) < 1
Let us set
(B) !vua;'i(A) = sup V:(A, D)
and X
(8Y) [\:fi&(A) = sup V4(4,D)

where the supremum is taken over all finite partitions

Dia=a <oy <o 0pe < ap =0
of the interval {a,?].
An operator valued function A: [a,b] = L(X) with (B) var(,1j(4) < oc is called
a function with bounded B-variation on'{a,b] (sometimes also a function of bounded

semi-variation cf.[2]) and similarly, if (B*) vary, 4 (4) < oo then A is of bounded
B*-variation on [a,b].

We denote by (B) BV.([a, b]; L(X)) the set of all functions A: {a,b] = L(X) with
(B) varp, 5j(4) < o0 and by (B7)BV([a,b]; L(X)) the set of all functions A: {a,b] —
L(X) with (B) var(,;(4) < oo

Concerning these concepts the following proposition holds.

1.1.:Proposition.
(B)BV ([a, b L(X)) = (") B (la,b; L(X),
and if A € (B) BV{[a,b}; L(X)).then
(B) [\;‘c‘\br](fl) =(B") m(A)-
Proof. Ttis sufficient to show that for a given A:'[a,b] - L(X) and every finite
partition D i a =o' < o) < < o< o = bof {a;b] we have
V/(4,D) = Vi(4,D).

Assume that the partition D is arbitrary and that C; € L(X), [|CillL(x) € 1 for
j=1,:.0k Then

' k I *
Aoy = Ay G = s Aley) = Alas_)ICH
| taten - dles-iies] = w5 l@) - Aoy o
k
e
s !lyJlesg),y;EXE ;{A(%) A(ajwl)]y] lx
= V¥(4,D)
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because ||Cyllx < 1 for j:='1,...,k. Hence passing to the supremum over all
Cj € LX), liCillLixy €1, 4= 1,..., k weobtain the inequality

V(A D) < VE(A, D).

For the.opposite inequality assume that y; € X, j = 1,..0, kwith Jly;llx < 1 are
given. Let us take w € X such that |jw||x = 1. By the Hahn-Banach Theorem there
is a 'bounded linear functional ‘f € X* such that || fllx» = 1 and f(w) = 1. Define
Cjie LX) forj =1,k in such a way that

Cir=yiflx) forz€ X,j=1,..k

Evidently Cyw = v; fw) =y,

il = swp NCsallx = sup My f@)lx < Hlysllx - 1 fllxs = lyslx-
el 1 lefix <t
Then
k | k |
| e - atasonin| = | St - Al
gl X =4 X
* 1
<] St - aeries| il
5= Hzex)
<Vh(4,D)
and therefore also .
VA4, D) S VE(A D).
Hence V2(A, D) = X;”[‘L(A,D} and the-statement is. proved. O

The following statement holds.
1.2 (see [5, Proposition 1]).. We have
BV (Ja.b}; L(X)) C (B) BV ([a,]; L(X)).
and'if A € BV([a,b]; L(X)); then
(B) fﬁ‘bﬁ(") < [‘ﬁ,r](A)-

Remark. It is not difficult to see that'if-4: {a,b] — L(X) and the space X is
finite dimensional then A € (B) BV([a,b]; L(X)) if and only if A € BV([a,b}; L(X)).
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Therefore the concept of B-variation of a function 4: [, 4] = L{X) is relevant for
infinite-dimensional Banach spaces X only:

Given z: {a,b) =X, the function zis called regulated on {a.,b] if it has one-sided
limits at_ every point of g, b]; i.e. if for'every:s € [a,b) there'is a value 2(s+) € X
such that

Jim fla() — a(s+)lx =0,

and for.every s € (a,b] thereis a value 2(s—) € X such that
Jm [l (E) ~ (s lx = 0.

The set of all regulated functions z: [a,b] =» X will be denoted by G([a,b]; X).

Assume now that B = (L{X), X, X) is-the bilinear triple of Banach spaces men-
tioned above.

A function A:[a,b] = L(X) is called. B-regulated on [a,0] if for every y €
Xilyllx <1, the function Ay [a,b] — X given by t-€ [a,b] = Aty € X for
t € [a,b] is regulated, i.e.- Ay € G(la,b); X):for every y € X, Jyllx € 1.

We denote Dy (B)G{[a,b]; L{X)) the set of all B-regulated functions A: [a, b} —
L{X).

A function @ [a,b] -+ X is called a (finite) step function on [a, b] if-there exists a
finite partition

D:a=0p <o <. i <ag-1<op=Db

of the interval {a,b] such that z has a constant. value in'X on {0;_y, o) for every
j:=1,...,k, and similarly for operator valued functions.
The following result is well known for regulated functions.

1.3 (see e.g. {2, Theorem 3.1, p.16]). A function z: [a,b] — X'is regulated
(z.€ G(la,bl; X)) if and only if % is the uniform limit of step functions.

By Proposition 3 in [5] we can state the following,
1.4. If A€ G(la,b]; L(X)) then A € (B)G([a,b]; L{X)), Le.
G(la, b L(X)) € (B)G([a, b]; L{X)).
In addition to this we also have
1.5: If A € BV([a,b]; L(X)) then A€ G([a,b]; L(X)), i.e.
BV({a, b]; L(X)) . G(a: b LX) C (BYG (a. b); L(X)).
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Proof. For st € [a,b], s <t wehave

— A Lixy S va = - var (4
1408 = AG)lLon < yar(4) = yar(4) pan(4)
and this implies (e.g. by-the Bolzano-Cauchy. condition for the existence of onesided
limits “of ‘the nondecreasing bounded ‘real -function var[,,,,](A)) that the onesided
limits of the function ‘A: [a,b] - L(X) exist at any point of [a,4],"i.e. that A €
G([a,b]; L(X)). =]
Remark. Again, if the Banach space X is finite dimensional, then it is easy to
check that a function A: {a,b] — L(X) is B-regulated if-and only if it is regulated.

Let us now give the definition of the Stieltjes integral.
A finite system of points

{ao, Ty 00, T2, 0y Qe s Ty 0

such that
a=op << < ey <op=b

and
7€ loajo1, 5] for j=10000k
is called a P-partition of the interval [a,b].
Any positive function. §: [a, b] — (0, 00).is called a gauge on {a,b].
For a given gauge d on [a, b], a P-partition {ao, 74, @y, T2, ...y 1 s Tk, g } 0f [0, 0]
is called d-fine if
laj1,05) C{r = 8(r5), 1+ 68(15)) ~forj=1,..0 k.

The following statement called the Cousin lemma is important for defining the Stielt-
jes integral.

1.6 (see e.g. [3]).. Given an arbitrary:gauge § on [a, b] there is a.d-fine P-partition
of [a,b].

Definition.- . Assume that functions 4: [a,b] — L(X) and 2:[a,b] = X are
given.

We say that the Stieltjes integral |, : d[A(s)]z(s) exists if there s an element J € X
such that for every £ > 0 there is a gauge'd on [a,b] such that for

k
$(d4,2,D) = 5" [Aly) = Alas—1)]=(r5)

F=1
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we have
1S(dA,z, D) = Jl|x <&

provided D is a d-fine P-partition of [a,b].  We denote J = f: d[A(s)]x(s). For
the case a = b it is convenimt o set f: dlA(s)]z(s). = 0 and.if b < a, then

" .
Lo dlA(s)a(s) = = [ d x(s).

The Stieltjes. integral introduced in this way is determined ‘uniquely. Let us recall
some elementary properties of the Stieltjes integral from [5].

1.7 (see [5, Proposition 6]).  Assume that functions A: [a,b] = L(X) and x;;
[a,b] = X are such that the Stieltjes mtcgza’sf d[A(s))zi(s), 1= 1,2 exist.
Then for-every c1,cy € R the integral fq d[A(8))(c11(5) + caw2(s)) exists and

/ d[A(s)]( clzl(s)—i—czz;(e)):q/ d[A(s))z1 9)+r;j [A(s)e2(s).

If functions ' A;: [a,b]: = L(X) and w:[a,b] = X are such that the Stieltjes
integrals f: d[A;(s))a(s), & = 1,2 exist then for every c;,co € R the integral
f"b dler A1 (s) +coAa(s)]a(s) exists and

b b a3
[ dlasi©) + aolsl) =a [ diaee +a [ Ao,

Also the following Bolzano-Cauchy condition holds:

1.8 (see [5, Proposition 7]). For A: [a,b] — L(X) and z: [a,b] = X the Stieltjes
integral fub d[A(s)lz(s) exists if and only.if for every e > 0-there is a gauge d-on [a, b]
~such that
IIS(dA,z,Dy) ~ S(dA,z, Da)|lz <€

provided Dy, Dy are 6-fine P-partitions of [a,b].
1.9 (see [5, Proposition 8)). - Iffor A: [a,b] — L(X) and z: [a,b] -+ X the Stieltjes

integral f ) d[A(s))z(s) exists, then for every interval[c,d] C [a,D] also the integral
f d[A(s)]x(s) exists.

1.10 (see [5, Proposition 9])." - Assume that functions A: {a,b] = L(X) and
z: [a,b] = X are such that for c € [a,b] the Stieltjes integrals [ d[A(s)]z(s) and
fc d[A(s)]z(s) exist.
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Then the integral f: d[A(s)]z(s) exists and
b ¢
/ d[A(s)]z(s) =/ d[A(s)]z(s) + /b d[A(s)]a(s).

In the opposite direction we evidently bave:
If ¢ € [a,b] and the integral [* d[A(s)]z(s) exists, then the Stieltjes integrals
J2 d[A(s)}a(s) and fcl’ d[A(s)]z(s) exist and

b < b
[ atalets) = [ diaet) + [ e
1.11 (see [5, Proposition'10]).  If functions A: [a,b] = L(X) and z: [a,b] = X
are such-that the Stieltjes integral f: d[A(s)]z(s) exists then

” / " ala)e(s)

< (B)var(4). sup Jlz(s)]lx
X [a,8]) s€fo,b]

The uniform convergence theorem holds for Stieltjes integrals in the following -
form.

1.12 (see [5, Theorem 11]). Assume that functions A: [a,b] = L(X) and &, %n:
la,8] = X, n = 1,2,... are given. If (B)var(,,)(4) < oo, the Sticltjes integrals
j: d[A(s)]zn(s) exist and the sequence T, converges on {a,b] uniformly to z, i.e.

Jim llzn(s) —x(s)l|x =0 uniformly-on [a,b],
then the integral f: d[A(s))z(s) exists and
b b
[ e = i [ a4k,

The facts given in 1.12 together with 1.3 yield the following existence result.

1.13 (see [5, Proposition 15]).  Assume that A:[a,b] = L(X) is B-regulated
on [a,b] (A € (B)G([a,b], L(X))) and (B) vary, ;)(4) < co. Let z: [a,b] = X be a
regulated function.

Then the integral f: d[A(s)]x(s) exists.

A Hake type theorem holds for our Stieltjes integral, too.
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1.14 (see {5, Theorem 17]). - Assume that functions A: e, b} = L(X) and x:
[a,b] =X are such that the Stieltjes integral [ d[A(s)]z(s) exists for every c € [a,b),
and let the limit

Jim. [ / CALA(e() 4 TAWD) = AOR®)] = Te X
exist. Then the integral f: d[A(s)]z(s) exists and

/b d[A(s)|z(s) = /.

The “left endpoint” analog of this statement has the following form.
If functions A: [a,b) = L(X).and 2 [a,b] = X are such that the Stieltjes integral
f: d[A(s)]=(s) exists for every ¢ € (a,b] and if the limit

b
[ [ d401e() + 140 - A@lst)] = 7 € x

lim
c—rat
exists, then the integral f: d[A(s)]z(s) exists and

/'h d[A()z(s) = I

1.15 (see [5, Theorem 19}). - If functions A: {a,b] = L(X) and z: [a,b] = X are
such-that the Stieltjes integral f: d[A(s)]z(s) exists and ¢ € [a,b], then
N

tim { / C AlAGe() + 140 -A(T)}x(c)} - / * dA)(s).

r€[a,b]
The last statement shows that the function given by
7€ [a,b) l—}/ d[A(s)]z(s) € X,

i.e. the indefinite Stieltjes integral is not continuous in general. “The indefinite integral
is continuous at a point ¢ € [a,b}.if and only if li_an[A(c) —A(r)}z(c):= 0.
Py
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1.16 (see [5, Corollary 21]). " If A: [a,b] = L(X) and 2 [a,b] = X are such that
the Stieltjes integral f: d[A(s))x(s) exists, c € [a,b] and'A € (B)G([a,b]; L(X)), then

tim, [ aLA@a(s) = lim [4() — AQJa(c) + / " aAG)(s)

= lim, A()2(0) - A(e(0) + / * dA)]z).

By the Banach-Steinhaus theorem (see e.g. [4]) the following can be deduced.

1.17 (see [5, Proposition 22]). . If A: [a,b] :~ L(X) is B-regulated (i.e. A €
(B)G([a, b}; L{X))) then for every ¢ € [a,b) there exists A(c+) € L(X) such that

tl_i)r& At)z = Alet)a

for-every z.€ X, and for every ¢ € (a,b] there exists A(c—) € L(X) such that
[1_1)1'[[1 Alt)z = Ale=)z

for every z € X

1.18 (see [5, Corollary 24])."  Suppose that functions A: [a,b] — L(X) and z:
[a,b] = X" are such that the Stieltjes integral fub d[A(8))x(s) exists and let ¢ € [a,b].
If A€ (B)G([a, b}, L(X)) then
tim, [ 4G = A ~ AQJ() + [ dlAG)(s)

r—et Jo

where A(ct) € L(X) is given by the relation

lim A(r)z = A(cT)z, © € X.
Tt

Remark. Inthesituation of 1.18, i.e. if A € (B)G([a,8); L(X)) and z: {a,b] = X
is such a function that the Stieltjes integral f: d[A(8)]z(s) exists, the.indefinite
integral given by .

Pl = / dA(s)a(s) for 7€ [ab]

is a function F: {a,b] = X which is regulated, i.e. F € G([a,]; X).
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2. LINEAR STIELTIES EQUATIONS

Let us assume that [a,b] = [0,1]. All the forthcoming consideration can be done
for the case of a general compact interval [a, 8] C R.

TFirst of all let us recall that the space G(X) = G([0,1}; X) of all regulated functions
10,1} = X is'a Banach space with the norm

llzllaen = sup-flz(s)llx
s€(0,1)

(see'e.g. [2]).
Let us denote
(BYBV(L(X)) = (B)BV([0,1]; L(X}),: . (B)G(L(X)) = (B)G([0,1]; L(X))
and
BV(X) =BV(0,1;X);  G(X)=G([0,1}; X)
and assume that A:[0,1] — L(X) is given where
2.1) A€ (B)BV(L(X)) N(B)G(L(X)).
Then by 1.13 for every z € G(X) the Stieltjes integral fol d[A(s))a{s) exists. ‘There-
fore by 1.9 also the integral fé d[A(s)]z(s) -exists for every t € [0,1].and z. € G(X).
Hence the relation
ot
) tef0,1] - / d[A(sa(s) € X
o
defines an. X-valued function.
Using 1.18 we conclude that:this function is regulated.
Define an operator T: G(X) = G(X) by the relation
T
23) @0 = [ @), € GO0, e 0.1)
0

Remark, Let us mention that if forsome A:{0,1) — L(X) by (2.3) a regulated
function is given for-any choice of 2 '€ G(X) then this holds also for every constant
function, i.e. for every z* € X the onesided limits

¢
. R EREEEN = e Ve A

LLHPJ«/D dlA(s)]e* = t1_1’1314_[A(t) A(0)]z" = A‘,’iﬁ Atz Az rel0,1)
and .

lim / dA@E)]* = tim AR)e® —A0), 7€ (01]
i [ t—r—
exist and this means that A € (B)G(L{X)).
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Hence the assumption A € -(B)G(L(X)) is necessary for the operator Tz given by
(2.3) to be a mapping of G(X) into G(X).

2.1. Proposition. -If A:[0,1] = L(X) satisfies (2.1), then T: G(X) — G(X)
given by-(2.3) is a.bounded linear-operator on G(X), i.e. T-€-L{G(X)).

Proof.  The linearity of the operator follows immediately from the linearity of
the Stieltjes integral given by 1.7.
By 1.11 for every t.€[0,1] we have

HT2)(®)llx < (B) var(4) :

yor 52‘[101?(] Jlz(s)llx < (B) [‘{;‘ﬁ(fi) Nellax-

Hence
ITellgx) = sup [T} ()]l x < (B) var(4).flellax)
t€[0,1] {0.1)

and this yields the boundedness of the operator T'.
Clearly we have

(2.4) 1T o < (B) [";a]l;(fl)
for the strong operator norm |T']| . (x)) of T € L{G(X)). {m]

Assume now that f € G(X) and let us consider the equation

@5 w0 =7+ [ Ak + 70 - 1@, 1€ 0.1

where 7 € X and d € {0,1].
If d € o, 6] € [0,1] then z: [, f] = X is called a solution of (2.5) if @ satisfies

w0 =7+ [ dAElelo) + 10 - 50

for-every t € [, ). ‘Clearly z(d) = 7 for-any solution = of (2.5).

Equations of the form (2.5) are called generalized linear ordinary differential equa-
tions. In the special case of X = R", n € N the equation (2.5) represents a gen-
eralization of a linear system of ordinary differential equations (see [6], [7] for more
details).

Since by 1.18 the function t — f; d[A(s)]x(s) is regulated provided the integral
fd’ d[A(s)]a(s) exists, we can easily conclude that the following holds.
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2.2, Proposition, "~ If A:{0,1] — L(X) satisfies:(2.1),"f € G(X), d € [o; 5]
and z: [a,B) = X is a solution of (2.5) on [, f), then zis regulated on [a, 4],
Le z € G, B, X):

2.3. Proposition. “If A:'[0,1] = L(X) satisfies (2.1),f € G(X), d € [a, 8] and
z [, B = X is-a solution of (2.5) on [, B), then

(2.6) z(t+) = »~1§f‘+ z(r) =L+ ATADEM +ATF), telaP)
and
@7 z(i-) = lim o(r) = [I = ATA@Dz(t) - AT (1), 1€ (o, ]

where - is the identity operator-on X, ATA(t) = A(t+) —A(t), ATAQR) = A(t) -
A(t—) and AT f(t) = f(t4) — f(1), A= f (1) = £(t) = [(t-).

Proof. Forte{a,f) weobtain by 1.15
z(t+) = ,.13& x(r)
=%+ tim [ dAGe) + tin ) - 1)
" o
= ’i‘—i-/d dlA(s)]z(s) —{-rl_i’r?_*‘/! d[A(s)]a(s)
+ Hm f(r) = f(t) -+ f(t).— f{d)
Pty
— () 4 i / A[AG)a(s)+ 1m fG) - 7(0)
Ttk fy ks

= 2(t) + (A(t+) = A)a()) + 1 (t+) = (1)
=T+ AT Az + ATF()

and (2.6) is fulfilled. The relation (2.7) can be proved similarly. 0
For [¢,d] € [0,1}, ¢ < d.define

B) o) = L, (8) e, ()
and
(B) 9;%(—4) = lim (B) [c‘,i?_%_;(A)‘

Since 4 € (B)G(L(X)) and the functions ¢ € [0,d]. — (B) varp,¢(4), t € [¢,1] =
(B) vary.,j(4) are bounded and monotone, these limits exist.
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2.4. Proposition.  Assume that A: [0,1] — L(X) satisfies (2.1) and assume that
the following condition (E) is satisfied: " for every d € [0,1] there are o = o(d) <1
and A = A(d) > 0,0 < g <1, such that

E+) (B) (d,dazg]f'\[o,x](A) <e
and
(E-) (B) (4) <o

var
{d—4,d)n[0,1]

Then for every d € [0,1],Z € X, f'& G([0,1}; X) there is a unique function z €
G(Ja; X) defined on the interval Jo =[d — A,d + A] N[0, 1] such that

20 =+ [ dAG() + 10 - 1@, te

Proof. Let A= A(d)> 0 be the value given by the assumption - (E).
Define the operator

(T2)(t) =5+ ./: ANl 10 = 1), Le T

By Proposition 2.1 Tis a bounded linear operator on G(Jy; X). H 2,y € G(Jy; X)
with z(d) = y(d) =7, then

T2)) = () = / A a() = ()

and for't-€ Jy; t <'d we have
d
@0 - @ = [ Al - =)
d—4.
=i [ [ e - =)
AW - Ald =)yl - 5(0)]

d=38
=Jm [ AUl - =),

By-1.11 we obtain

H /,H A[A(s)(y(s) = 2(s))

. < (B), var, (4). e lly(s) = 2(o)llx
<(B) var (A) 2~ vleax):
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Hence by (E) we get for't € Jq, t< d the inequality

IZ2)(0) ~ @ ©ix < Jlim | /¢ = A (s) ~ x(s)llx
< 63_1;'&(3) [tle_Yﬂ(A) e =yllewgx)
SB oy @l - yllasx)
< ollz = ylla.x).
For t € Jy, d <t we can show similarly that
1(Z2)(8) = @)Olx < elle = yhaumx:
Passing to the supremum over ¢ € Jy we get

1Tz ~ Tyllgaax) = sup 1T2(t) = Tyl x < ellz—ylloanx).
el

Since p = p(d) <1,'the operator T acting on {z € G(Jy; X); =z(d). = T} is a contrac-
tion and by the Banach Contraction Principle-it has a unique fixed point,i.e. there
is z'€ G(Jy; X) such that

o) =5+ /dL AAEels) + £~ (d), L€ .

0
Remark. Proposition 2.4 is-in fact a local ‘existence and uniqueness result for
the equation

@5) z(t)=5+/dl AAGls) + £0) ~ f(@), te[01]

for a given “initial value” z(d) =% € X and f € G(X).

Our goal is to show a global existence and uniqueness.result for the solution of
(2.5).

To this end the assumptions on A have to be strengthened.

Instead of (2.1) we assume that

(2:8) A €(B)BY(L(X)) N G(L(X)),

i.e. we require that the operator valued function A:[0,1] — L(X) is regulated. It
should be mentioned that 1.4 implies that for A satisfying (2.8) also (2.1) is fulfilled.
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Remark. For 4:[0,1] = L(X) satisfying (2.8) the onesided limits

Alt+) = lim A(r) € L(X), t€[0,1)

and
Alt~) = ,l_i}f'_ A(r) € L(X), - t€(0,1]

exist because A € G{L(X)) and for every & > 0 the sets
{te 0, 1A+ — AWl 2 €); {t € 0,1 1A@) — AG)llzxy = €}
are finite (see [2]). Therefore the set of discontinuity points of A is at most countable
and there is a finite set {t1,45,. .., tm} C [0,1] such that for ¢t € [0,1], ¢ # ,,
t=1,...,m, the operators
I+ ATA(t), I-AA®) e L(X)
are invertible, i.e. the inverse operators
[I+ATA@), I —ATA®) e L(X)
exist.
Indeed, as was stated above, the sets
{t e, 1AT AW L x) 21} and  {t € (0,1 AT AN L) 2 1}
are finite ‘and if we set
{ti,t2,, s tm} = {1 € [0, )5 |ATAWNLx) 2 1} U {t € (0,1 187 AW L (x) 2 1}
then for ¢t € [0,1]\ {t1,%2,.. ., tm} we have
At AL <1 and [JATA@)lren <1
Hence for these values of ¢ the operators I+ ATA(), I —ATA(t) € L{X) possess
inverses [I+ AT AT [I - A~A®)] 7! € L(X) (see e.g. [1, Lemma VIL6.1]).
Assume that 0 <'d <'1'and define

(2.9) L L) =0, Lt)=ATAQ) fort € (d,1].
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By the definition of L: [d, 1] — L(X) we evidently have. L(t) # 0 for an at most
countable set of points.in [d,1]." Since for every k € N the set

{t e 1 1IATAW Lo = ILOILxo 2 £}

is finite, the function .L:[d, 1] — L(X)is the uniform limit of simple step functions
and therefore L € G([d,1]; L(X)).

2.5.-Lemma. Forevery finite system of points d < on < ap < .ov <o €1 and
every choice ofy; € X, fyillx <1,5=1,...,k we have

(2.10)

Y3 . <(B) [\(;z}]xj(A)

for the function L: [d,1} = L(X) given by (2.9).

Proof. Since L(d) = 0, it can be assumed that ¢; > d. Put ap = d.
Given d < a3 < ap < ... < 'ap ' 1, for every & > 0 there is a fj € (@j-1,05),
j4=1,. .,k such that

14(8) = Ales )l < 55 Sk
Then
k ] k
2o Llashs| = | SolA) - Aoyl
=1 j=1
k
= || DolAes) — ABs + [AGB) ~ Alas-Nws|
. = k
< XlAGes) - A +N lA(s;) - Aoy
=1 j=1
SAB) yax(4) + Z 14 — Ales 5,
<.(B) gaﬁ( +e.
Hence (2.10) holds. u}

2.6. Corollary. For L given by (2.9) we have L € (B)BV([d, 1} L(X))-
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Proof. Assumethatd=1ap < <...<a =1isan arbitrary finite partition
of [d,1). Then for y; € X, lly;llx < 1,5 =1,...,k we have by Lemma 2.5

k k
T Liaj)y; > L(as-1)y;

j=1

k

SO ey) = Lieg-1)lys

=1

+
X

<
X X

< .
S 2UB) par(4)
Passing to the corresponding suprema we obtain by definition the inequality
G <
(8) m(L) <2(B) m(-‘i)
and therefore L € (B) BV([d, 1}; L(X)). 0

2.7. ‘Proposition. - If L is given by (2.9) then for-every z € G([d,1]; X)- the
integral fdl d{L(s)]z(s) exists and

3
(211) /d d[L(s)]z(s) = L{t)z(t) = ATA(H)x(t)

for t € (d, 1].
Proof. Since L€ (BYBV([d,1}; L(X)) N G([d, 1]; L(X)) and by 1.4,

G(ld, 1] (X)) © (B)G((d, 1]; L(X))

the ‘existence of fdl d[L{s)]z(s) follows immediately from 1.13.

Hence by 1.10 for every ¢ € [d,1] the integral |, j d[L(s)}z(s) exists and the only
fact we have to show is the formula (2.11).

Assume that £ € (d, 1] is such that L(¢) = 0. Let 6 [d, t] -+ (0, c0) be an arbitrary
gauge on [d,#]. From the system of intervals (1. — 6(7),7 + (1)), T € [d,t] we
choose a finite-system J; = (75 —8(7;), 75 +8(73)), 7 = 1,. .., k'such that 7; < 741,

ji=a, 00 k=1 [d ] C CJ]JJ» and {d, 1] \ (kj Ji# @ for any mo=1,00 0k
= j=1,jsr

Hence J; N Jip1 # 0 is an ;nterva) for-all 4 :J 1, # , k.= 1 because the intervals .J;
are open.” Since-the set of points-at which L(s) = 0'is dense'in:[d, 1], there is an
a;:€ J;N Jipa N [d,1] such that L(a;) =0 for j = 1;...,k— 1. Let us set ag =d
and oy ='t. The system of points d = a0 < a1 < ..o < oy =1 with 75 € a3, 0],
7 =1;..., k evidently forms ‘a-6-fine P-partition D of [d, 1].

Assume that € > 0 is given arbitrarily. Since the integral [ d[L(s)la(s) exists,
there is a gauge 8 [d, #] = (0, +o00) such that

]]S(dL,x,f)) - L L) <o
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for every &-fine P-partition D.of {d, 1].
Let-us construct.a ¢-fine P-partition D for this-gauge & as was described above
for an arbitrary gauge ¢.. Then for the corresponding integral sum we have
k
S(dLyz, D) = 3" [L(ej) = Liay-1))z(7;) = 0

J=1

because L(a;) = 0,5=0,.. ,k Hence

<

H / " dL(s)e(s)

= HS(dL,LD) - /dt d{L(s)]z(s)

and since £ > 0-can be arbitrarily small, we get fdi d[L{(s)}z(s) = 0 in this case.
If ¢ € (d,1] and L(t) # 0, then define L°(s) = L(s) for s € [d,t), L°(t) =0 and
L(s) = 0for s € [d,t), L*(t) = L(t). Then evidently

12 t 13
(212) L d[L(s)]a(s) = /d ALSa(s) + /d AL (el

where f; d[L8(s)])z(s). = 0-by the result given above. Using the definition of L} we
have [} d[L}(s)]a(s) = 0 for every 7 <-d and

lim { / T AL als) L) —L‘(r))a’(t)] — L) = L)),
revi=| fy

According'to 1.14 we get

/: d[LY(s)a(s) = LM)z(t).

Using (2.12) and (2.9) we finally obtain (2.11). 0

Since A, L ¢ (B)BV([d, 1}; L(X)) N G{[d,1]; L{X)) and this set has a linear struc-
ture, we deduce easily that the function B: [d, 1] = L(X) given by

(2.13) B(d) = A(d), - B(s)=A(s=) fors'e(d,1]
also belongs to (B) BV([d, 1}; LX) NG ([d, 1); L(X)) because

B(s) = A(s) = L(s). for every s € [d, 1].



Therefore for every t € {d, 1] the integral f; d[B(s)lz(s) exists and by (2.11) we have
from Proposition 2.7

‘ dfA(s))e(s) = : d[B(s)]z(s)+ ' d[L(s))z(s)
(2.14) /“ '/dt /“'
= /I AB()els) + A~ AWe()

for t € {(d,1].
Since for every s € (d, 1] the function B: [d, 1] = L(X). given by (2.13) is contin-
uous from the left at s, we get by 1.18 the equality

rl:gx?_./‘i d[B(s)]:z(s):/i d[B(s)]z(s)

for every € G([d, 1};X) and this shows that the integral [} d[B(s)]z(s) does not
depend on the value a(t).

2.8. Proposition.  Assume that d € [0,1), Z-€ X, f € G([0,1;X) and that
A:10,1] = L(X) satisfies (2.8),(E) and

(2.15) [L=ATAW)7 € L(X)  exists for every t € {d,'1]-

Then there exists x € G([d, 1]; X) such that

(2.16) o) =3+ / CAAGR) + £ = 1)

for every t € [d,1].
Proof.. By the local existence result given in Proposition 2.4 thereis a.A >0
such that, there'is a function = € G([d,d + A); X) satisfying (2.16) for ¢ € [d,d + A].
Define
t* = sup {T € (d,1]; thereis = € G([d, T}; X) such that (2.16) holds for t € {d,T]}

and ‘assume that t* <'1. Evidently t*'> d and there exists a function z: [d,*) =X
such that (2.16) holds for every t'€ [d, t*). Let us define

2.17) (") =1 - A"A(t”)]‘l{i-k/d d[B(s))z(s) + f(") — f(d)}
where B is given by (2.13).
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Since ff d[B(s))z(s) depends only on the values of z(s) at s € [d,¢*) and the
inverse [I'— A7A(t*)]7! exists by the assumption (2.15), the value z(t*) € X is well
defined and we have by its definition

(I = ATAW)z(t) =F + /d AB()als) + £(12) = f(d).

Using (2.14) we get

-
w) =7+ [ dBE() + AT AE)E) + 107) - 1)
4
"
=7 +/ AlA(s)lz(s) +f(t*) ~ f(d).

1

Hence the function 2 completed at t* by (2,17)is a solution of (2.16) on [d,#*].
Now for ¢* and the well defined initial value z(¢*). the local existence result given

by Proposition 2.4 can be used again to show that there is.a A(*) >0 such that a
solution y:€ G([t*, 1" +A(t*)); X).of

o0 = =2(t) + [ Al + 50 = 0
exists on [t*, 1%+ AR N[0,1].
Putting z(t) = z(t) for t € [d,1*], z(¢) = y(t) for t € [t*, 15+ A(t")] we obtain

a solution ‘of (2.16) on {d,#* -+ A(¢*)]. But this contradicts the properties of the
supremum and therefore t* =1. [m]

Proposition: 2.8 gives ‘conditions such that given d- € [0,1), ¥ € X and f €
G([0,1]; X) there is.a global forward solution of the equation (2.16).
~In a completely analogous way the following statement can be proved.

2.9, Proposition.  Assume that d € {0,1), 2 ¢ X, f ¢ G([0,1]; X) and that
A:{0,1] = L(X) satisfies (2.8), (E) and

(2.18) [T+ ATA@)T! € L(X). exists forevery t € [0,d).
Then there exists 2 € G([0,d]; X) such that
1.
2.16) Sy =F b /d AW+ 70 = f@)
for everyt € [0,d].
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Putting together the results given by Proposition 2.8 and Proposition 2.9 we obtain
the following

2.10.-Theorem.  Assume that A: [0,1] = L(X) satisfies (2.8), (E) and -assume
that the following condition (U) is satisfied:

(U+H) [I+AYAB]T! € LX) exists for every t €[0,1)
and
U=) [ —ATA®]™ € L(X) exists for every't € (0,1].

Then for every choice of d € [0,1], T € X, f € G([0,1]; X). there exists -z €
G([0,1]; X) such that

(2.16) 2 =F+ /d " AAG)R() + £ - £@

foreveryt € [0,1].

This solution of (2.16) is determined uniquely.

Proof.: Given d €1{0,1], e X, f-€ G([0,1]; X), Proposition 2.8 can be used
for. proving the existence of a forward solution y € G([d,1];.X) and Proposition 2.9
for proving ‘the existence of a backward:solution z € G([0,d}; X) of the equation
(2.16). Taking

z(t) = y(t), te[d, 1] and z(t)=z(t), 1 €[0,d

we get « € G([0,1]; X), which satisfies (2.16) for all ¢ €[0,1].

To prove the uniqueness of the solution = € G([0,1]; X) assume that there are two
solutions z1,%2°€ G([0,1}; X) which satisfy (2.16) for ¢ €{0,1].  Then for ¢ € {0,1}
we haye

3
228 - 1) = [ AAEN2(5) - a2(e),
il
i.e. the difference z(1)'= z3(f) — 21 (t) satisfies
t
(2.19) )= / dA()]2(s), teo 1]
d
Taking assumption (E) into account we obtain by Proposition 2.4 that the equation

(2.19) has a unique solution z(t) = 0 on the interval J; = [d—A,d+A]N[0, 1] where
A>0.
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If d <1, then in ‘a standard manner we take
Tr=sup{r€ld1];z(t)=0 forteldr]}

Then evidently 2(¢) = 0 for all ¢ € [d,7%). Hence 2(T"~) = -lim " 2(r) = 0. Since

zis‘a solution of (2.19) we have by Proposition 2.3
2T =)= [I=ATATH))(T") =0

and therefore by the assumption of the existence of the inverse [I — ATA(T™)] ™! we
get 2(T*) = 0.
If we had T* <'1; then for the equation

¢ ¢
2(t)=2(T*) + /’;‘. d[A(s)]z(s) = /W d[A(s)]2(s)

we could show that there is a A(T*) > O.such that z(t) =0 for t € [T T" + A(T*))
and this ‘would contradict: the definition of the supremum 7. Hence T* =1 and
2(t) = 0. for t € [d,1]; Analogously it can be shown that also z(¢) = 0 for t ‘€ [0,d]
and therefore z; (t) = z,(t) for t € [0,1]. 0

By “Theorem 2.10 conditions are given which are sufficient for every choice of
del0,1,TeX, feG(0,1};X).

Let us show that if (2.8) and :(E) are satisfied ‘then the condition (U) is also
necessary for the existence and uniqueness of a solution z of the equation (2.16} on
the whole interval {0, 1] in this sense.

Assume that (2.8) and (E) hold where (U).is not valid. As.was shown above there
is a finite set of points {t1,t2,...,tm} C [0,1] at which the condition (U) can be
violated. Assume eg. that d € [0,1) is given and that there is a point ¢* € (d,1]
such that the operator I.— ATA(#*) € L(X) has not an inverse while [/~ A~ A(t)] =}
exists for every-¢ € (d,t*). Then there exists y € X such that the linear equation

[I-ATA())z=y
has no solution z in X.

Define g(1) = 0 for't € [0,1], t # ¢* and g(t*) = y. Evidently g € G(X). Suppose
that « is a solution of

220 20 = [ At +90 - (@
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for-every. t € [0,1], “Then z(t) = 0 for t € [d,t*) and by Proposition 2.3 we have
0=a(t'-) = [ - A= A@)a(t') ~ A g(t*) = [[ - A=AE)a(t') — y
and this means that for the value 2(t*) we have
[ = A7A@) (") = y.

But by the assumption such a value z(t*) € X cannot exist and consequently neither
can the equation (2.20) have a solution in G({0,1]; X) for the given choice of g €
G([0,1}; X).

Assuming that the operator /+AtA(t*). € L(X) has no inverse for some ¢* € {0,1)
we can proceed analogously,

Together with Theorem 2.10 we arrive at the following resuit.

2.11. Theorem. If A:[0,1] —+ L(X) satisfies (2.8) and (E), then the equation

(2.16) a(t) =F+ /d d[A(s)]z(s) + F(t) — F(d)

has-a unique solution z: [0, 1} — X forany choiceof d € [0,1], T € X, f € G([0,1]; X)
if and only if the condition (U) is satisfied.

Remark. Forthe finite-dimensional case X = R”, equations of the form (2.16)
have been studied thoroughly in [7] for the case when A: [0,1] — L(R™) is a function
of bounded variation 4 € BV([0,1]; L(R™)) and.f € BV([0,1]; R*). It has to.-be
mentioned that in this case we hayve = € BV([0,1}; R") for a solution z: [0,1] = R"
of (2.16).

It was shown (see {7, Theorem III.1.4]) that the condition (U) is necessary and
sufficient for having a unique global solution x: [0,1] — R™ of (2,16) for.every f-€
BV([0,1]; B*) and ¥ € R™. This result corresponds in some sense to Theorem 2.11.
The techniques used in [7] are different from the approach used there.

Let us mention that if we.assume that A € BV([0,1]; L(X)) then by 1.2.and 1.5 we
have A € (B) BV(L(X))NG(L(X)), i.e..(2.8) is satisfied. Moreover, for{c,d] C[0,1]
we have by 1.2

B) m(A) < [\2%(/4) = [‘53!](/4) - [U%}CS(A)

because the variation is known to be linear. The function given by

t€[0,1) = H]%(A) eR
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is nondecreasing and has therefore onesided limits at every-point of {6, 1]. Hence for
every d € [0,1] there are 0 < p(d) < 1-and A(d) >0 such that

[o,d‘fLAr(d)](A) - rl—lvl}t]~ ng\gi(A) &

and this yields var(g a4 a(aynjo1](4) < ¢ and similarly varja_aa),a)nj0,1)(4) <.
Hence the condition (E) is also satisfied if A € BV ([0, 1}; L(X)). Using Theorem
2.11 we obtain the following statement.
If A [0,1] = L(X) satisfies A € BV([0,1}; L{X)) then the equation

(2.16) o) =7+ /; ALA()]a(s) + f(8) = f(d)

has a-unique solution z: [0,1} = X for any choice of d € [0,1], T € X, f € G([0,1}; X)
if and only if the condition (U) is satisfied.

This statement is in fact’ the above mentioned result from [7] for the case of ‘a
general Banach space X
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